Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the integer arithmetic instructions in the X86
     11 // architecture.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // LEA - Load Effective Address
     17 let SchedRW = [WriteLEA] in {
     18 let neverHasSideEffects = 1 in
     19 def LEA16r   : I<0x8D, MRMSrcMem,
     20                  (outs GR16:$dst), (ins i32mem:$src),
     21                  "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize;
     22 let isReMaterializable = 1 in
     23 def LEA32r   : I<0x8D, MRMSrcMem,
     24                  (outs GR32:$dst), (ins i32mem:$src),
     25                  "lea{l}\t{$src|$dst}, {$dst|$src}",
     26                  [(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
     27                  Requires<[In32BitMode]>;
     28 
     29 def LEA64_32r : I<0x8D, MRMSrcMem,
     30                   (outs GR32:$dst), (ins lea64_32mem:$src),
     31                   "lea{l}\t{$src|$dst}, {$dst|$src}",
     32                   [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>,
     33                   Requires<[In64BitMode]>;
     34 
     35 let isReMaterializable = 1 in
     36 def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
     37                   "lea{q}\t{$src|$dst}, {$dst|$src}",
     38                   [(set GR64:$dst, lea64addr:$src)], IIC_LEA>;
     39 } // SchedRW
     40 
     41 //===----------------------------------------------------------------------===//
     42 //  Fixed-Register Multiplication and Division Instructions.
     43 //
     44 
     45 // SchedModel info for instruction that loads one value and gets the second
     46 // (and possibly third) value from a register.
     47 // This is used for instructions that put the memory operands before other
     48 // uses.
     49 class SchedLoadReg<SchedWrite SW> : Sched<[SW,
     50   // Memory operand.
     51   ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
     52   // Register reads (implicit or explicit).
     53   ReadAfterLd, ReadAfterLd]>;
     54 
     55 // Extra precision multiplication
     56 
     57 // AL is really implied by AX, but the registers in Defs must match the
     58 // SDNode results (i8, i32).
     59 // AL,AH = AL*GR8
     60 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
     61 def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
     62                // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
     63                // This probably ought to be moved to a def : Pat<> if the
     64                // syntax can be accepted.
     65                [(set AL, (mul AL, GR8:$src)),
     66                 (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
     67 // AX,DX = AX*GR16
     68 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
     69 def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
     70                "mul{w}\t$src",
     71                [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>;
     72 // EAX,EDX = EAX*GR32
     73 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
     74 def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
     75                "mul{l}\t$src",
     76                [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
     77                IIC_MUL32_REG>, Sched<[WriteIMul]>;
     78 // RAX,RDX = RAX*GR64
     79 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
     80 def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
     81                 "mul{q}\t$src",
     82                 [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
     83                 IIC_MUL64>, Sched<[WriteIMul]>;
     84 // AL,AH = AL*[mem8]
     85 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
     86 def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
     87                "mul{b}\t$src",
     88                // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
     89                // This probably ought to be moved to a def : Pat<> if the
     90                // syntax can be accepted.
     91                [(set AL, (mul AL, (loadi8 addr:$src))),
     92                 (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
     93 // AX,DX = AX*[mem16]
     94 let mayLoad = 1, neverHasSideEffects = 1 in {
     95 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
     96 def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
     97                "mul{w}\t$src",
     98                [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>;
     99 // EAX,EDX = EAX*[mem32]
    100 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
    101 def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
    102               "mul{l}\t$src",
    103               [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>;
    104 // RAX,RDX = RAX*[mem64]
    105 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
    106 def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
    107                 "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>;
    108 }
    109 
    110 let neverHasSideEffects = 1 in {
    111 // AL,AH = AL*GR8
    112 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
    113 def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", [],
    114               IIC_IMUL8>, Sched<[WriteIMul]>;
    115 // AX,DX = AX*GR16
    116 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
    117 def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", [],
    118               IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>;
    119 // EAX,EDX = EAX*GR32
    120 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
    121 def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", [],
    122               IIC_IMUL32_RR>, Sched<[WriteIMul]>;
    123 // RAX,RDX = RAX*GR64
    124 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
    125 def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [],
    126               IIC_IMUL64_RR>, Sched<[WriteIMul]>;
    127 
    128 let mayLoad = 1 in {
    129 // AL,AH = AL*[mem8]
    130 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
    131 def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
    132                 "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>;
    133 // AX,DX = AX*[mem16]
    134 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
    135 def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
    136                 "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize,
    137               SchedLoadReg<WriteIMulLd>;
    138 // EAX,EDX = EAX*[mem32]
    139 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
    140 def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
    141                 "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>;
    142 // RAX,RDX = RAX*[mem64]
    143 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
    144 def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
    145                  "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>;
    146 }
    147 } // neverHasSideEffects
    148 
    149 
    150 let Defs = [EFLAGS] in {
    151 let Constraints = "$src1 = $dst" in {
    152 
    153 let isCommutable = 1, SchedRW = [WriteIMul] in {
    154 // X = IMUL Y, Z --> X = IMUL Z, Y
    155 // Register-Register Signed Integer Multiply
    156 def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
    157                  "imul{w}\t{$src2, $dst|$dst, $src2}",
    158                  [(set GR16:$dst, EFLAGS,
    159                        (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>,
    160                        TB, OpSize;
    161 def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
    162                  "imul{l}\t{$src2, $dst|$dst, $src2}",
    163                  [(set GR32:$dst, EFLAGS,
    164                        (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>,
    165                  TB;
    166 def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
    167                                    (ins GR64:$src1, GR64:$src2),
    168                   "imul{q}\t{$src2, $dst|$dst, $src2}",
    169                   [(set GR64:$dst, EFLAGS,
    170                         (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>,
    171                  TB;
    172 } // isCommutable, SchedRW
    173 
    174 // Register-Memory Signed Integer Multiply
    175 let SchedRW = [WriteIMulLd, ReadAfterLd] in {
    176 def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
    177                                   (ins GR16:$src1, i16mem:$src2),
    178                  "imul{w}\t{$src2, $dst|$dst, $src2}",
    179                  [(set GR16:$dst, EFLAGS,
    180                        (X86smul_flag GR16:$src1, (load addr:$src2)))],
    181                        IIC_IMUL16_RM>,
    182                TB, OpSize;
    183 def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
    184                  (ins GR32:$src1, i32mem:$src2),
    185                  "imul{l}\t{$src2, $dst|$dst, $src2}",
    186                  [(set GR32:$dst, EFLAGS,
    187                        (X86smul_flag GR32:$src1, (load addr:$src2)))],
    188                        IIC_IMUL32_RM>,
    189                TB;
    190 def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
    191                                    (ins GR64:$src1, i64mem:$src2),
    192                   "imul{q}\t{$src2, $dst|$dst, $src2}",
    193                   [(set GR64:$dst, EFLAGS,
    194                         (X86smul_flag GR64:$src1, (load addr:$src2)))],
    195                         IIC_IMUL64_RM>,
    196                TB;
    197 } // SchedRW
    198 } // Constraints = "$src1 = $dst"
    199 
    200 } // Defs = [EFLAGS]
    201 
    202 // Surprisingly enough, these are not two address instructions!
    203 let Defs = [EFLAGS] in {
    204 let SchedRW = [WriteIMul] in {
    205 // Register-Integer Signed Integer Multiply
    206 def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
    207                       (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
    208                       "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    209                       [(set GR16:$dst, EFLAGS,
    210                             (X86smul_flag GR16:$src1, imm:$src2))],
    211                             IIC_IMUL16_RRI>, OpSize;
    212 def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
    213                      (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
    214                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    215                      [(set GR16:$dst, EFLAGS,
    216                            (X86smul_flag GR16:$src1, i16immSExt8:$src2))],
    217                            IIC_IMUL16_RRI>,
    218                  OpSize;
    219 def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
    220                       (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
    221                       "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    222                       [(set GR32:$dst, EFLAGS,
    223                             (X86smul_flag GR32:$src1, imm:$src2))],
    224                             IIC_IMUL32_RRI>;
    225 def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
    226                      (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
    227                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    228                      [(set GR32:$dst, EFLAGS,
    229                            (X86smul_flag GR32:$src1, i32immSExt8:$src2))],
    230                            IIC_IMUL32_RRI>;
    231 def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
    232                         (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
    233                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    234                        [(set GR64:$dst, EFLAGS,
    235                              (X86smul_flag GR64:$src1, i64immSExt32:$src2))],
    236                              IIC_IMUL64_RRI>;
    237 def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
    238                       (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
    239                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    240                       [(set GR64:$dst, EFLAGS,
    241                             (X86smul_flag GR64:$src1, i64immSExt8:$src2))],
    242                             IIC_IMUL64_RRI>;
    243 } // SchedRW
    244 
    245 // Memory-Integer Signed Integer Multiply
    246 let SchedRW = [WriteIMulLd] in {
    247 def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
    248                       (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
    249                       "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    250                       [(set GR16:$dst, EFLAGS,
    251                             (X86smul_flag (load addr:$src1), imm:$src2))],
    252                             IIC_IMUL16_RMI>,
    253                  OpSize;
    254 def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
    255                      (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
    256                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    257                      [(set GR16:$dst, EFLAGS,
    258                            (X86smul_flag (load addr:$src1),
    259                                          i16immSExt8:$src2))], IIC_IMUL16_RMI>,
    260                                          OpSize;
    261 def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
    262                       (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
    263                       "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    264                       [(set GR32:$dst, EFLAGS,
    265                             (X86smul_flag (load addr:$src1), imm:$src2))],
    266                             IIC_IMUL32_RMI>;
    267 def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
    268                      (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
    269                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    270                      [(set GR32:$dst, EFLAGS,
    271                            (X86smul_flag (load addr:$src1),
    272                                          i32immSExt8:$src2))],
    273                                          IIC_IMUL32_RMI>;
    274 def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
    275                         (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
    276                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    277                         [(set GR64:$dst, EFLAGS,
    278                               (X86smul_flag (load addr:$src1),
    279                                             i64immSExt32:$src2))],
    280                                             IIC_IMUL64_RMI>;
    281 def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
    282                       (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
    283                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    284                       [(set GR64:$dst, EFLAGS,
    285                             (X86smul_flag (load addr:$src1),
    286                                           i64immSExt8:$src2))],
    287                                           IIC_IMUL64_RMI>;
    288 } // SchedRW
    289 } // Defs = [EFLAGS]
    290 
    291 
    292 
    293 
    294 // unsigned division/remainder
    295 let hasSideEffects = 1 in { // so that we don't speculatively execute
    296 let SchedRW = [WriteIDiv] in {
    297 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
    298 def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
    299                "div{b}\t$src", [], IIC_DIV8_REG>;
    300 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    301 def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
    302                "div{w}\t$src", [], IIC_DIV16>, OpSize;
    303 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
    304 def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
    305                "div{l}\t$src", [], IIC_DIV32>;
    306 // RDX:RAX/r64 = RAX,RDX
    307 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    308 def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
    309                 "div{q}\t$src", [], IIC_DIV64>;
    310 } // SchedRW
    311 
    312 let mayLoad = 1 in {
    313 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
    314 def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
    315                "div{b}\t$src", [], IIC_DIV8_MEM>,
    316              SchedLoadReg<WriteIDivLd>;
    317 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    318 def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
    319                "div{w}\t$src", [], IIC_DIV16>, OpSize,
    320              SchedLoadReg<WriteIDivLd>;
    321 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
    322 def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
    323                "div{l}\t$src", [], IIC_DIV32>,
    324              SchedLoadReg<WriteIDivLd>;
    325 // RDX:RAX/[mem64] = RAX,RDX
    326 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    327 def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
    328                 "div{q}\t$src", [], IIC_DIV64>,
    329              SchedLoadReg<WriteIDivLd>;
    330 }
    331 
    332 // Signed division/remainder.
    333 let SchedRW = [WriteIDiv] in {
    334 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
    335 def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
    336                "idiv{b}\t$src", [], IIC_IDIV8>;
    337 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    338 def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
    339                "idiv{w}\t$src", [], IIC_IDIV16>, OpSize;
    340 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
    341 def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
    342                "idiv{l}\t$src", [], IIC_IDIV32>;
    343 // RDX:RAX/r64 = RAX,RDX
    344 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    345 def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
    346                 "idiv{q}\t$src", [], IIC_IDIV64>;
    347 } // SchedRW
    348 
    349 let mayLoad = 1 in {
    350 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
    351 def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
    352                "idiv{b}\t$src", [], IIC_IDIV8>,
    353              SchedLoadReg<WriteIDivLd>;
    354 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    355 def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
    356                "idiv{w}\t$src", [], IIC_IDIV16>, OpSize,
    357              SchedLoadReg<WriteIDivLd>;
    358 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
    359 def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
    360                "idiv{l}\t$src", [], IIC_IDIV32>,
    361              SchedLoadReg<WriteIDivLd>;
    362 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
    363 def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
    364                 "idiv{q}\t$src", [], IIC_IDIV64>,
    365              SchedLoadReg<WriteIDivLd>;
    366 }
    367 } // hasSideEffects = 0
    368 
    369 //===----------------------------------------------------------------------===//
    370 //  Two address Instructions.
    371 //
    372 
    373 // unary instructions
    374 let CodeSize = 2 in {
    375 let Defs = [EFLAGS] in {
    376 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
    377 def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
    378                "neg{b}\t$dst",
    379                [(set GR8:$dst, (ineg GR8:$src1)),
    380                 (implicit EFLAGS)], IIC_UNARY_REG>;
    381 def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
    382                "neg{w}\t$dst",
    383                [(set GR16:$dst, (ineg GR16:$src1)),
    384                 (implicit EFLAGS)], IIC_UNARY_REG>, OpSize;
    385 def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
    386                "neg{l}\t$dst",
    387                [(set GR32:$dst, (ineg GR32:$src1)),
    388                 (implicit EFLAGS)], IIC_UNARY_REG>;
    389 def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
    390                 [(set GR64:$dst, (ineg GR64:$src1)),
    391                  (implicit EFLAGS)], IIC_UNARY_REG>;
    392 } // Constraints = "$src1 = $dst", SchedRW
    393 
    394 // Read-modify-write negate.
    395 let SchedRW = [WriteALULd, WriteRMW] in {
    396 def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
    397                "neg{b}\t$dst",
    398                [(store (ineg (loadi8 addr:$dst)), addr:$dst),
    399                 (implicit EFLAGS)], IIC_UNARY_MEM>;
    400 def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
    401                "neg{w}\t$dst",
    402                [(store (ineg (loadi16 addr:$dst)), addr:$dst),
    403                 (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize;
    404 def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
    405                "neg{l}\t$dst",
    406                [(store (ineg (loadi32 addr:$dst)), addr:$dst),
    407                 (implicit EFLAGS)], IIC_UNARY_MEM>;
    408 def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
    409                 [(store (ineg (loadi64 addr:$dst)), addr:$dst),
    410                  (implicit EFLAGS)], IIC_UNARY_MEM>;
    411 } // SchedRW
    412 } // Defs = [EFLAGS]
    413 
    414 
    415 // Note: NOT does not set EFLAGS!
    416 
    417 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
    418 // Match xor -1 to not. Favors these over a move imm + xor to save code size.
    419 let AddedComplexity = 15 in {
    420 def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
    421                "not{b}\t$dst",
    422                [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>;
    423 def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
    424                "not{w}\t$dst",
    425                [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize;
    426 def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
    427                "not{l}\t$dst",
    428                [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>;
    429 def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
    430                 [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>;
    431 }
    432 } // Constraints = "$src1 = $dst", SchedRW
    433 
    434 let SchedRW = [WriteALULd, WriteRMW] in {
    435 def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
    436                "not{b}\t$dst",
    437                [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
    438 def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
    439                "not{w}\t$dst",
    440                [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
    441                OpSize;
    442 def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
    443                "not{l}\t$dst",
    444                [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
    445 def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
    446                 [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
    447 } // SchedRW
    448 } // CodeSize
    449 
    450 // TODO: inc/dec is slow for P4, but fast for Pentium-M.
    451 let Defs = [EFLAGS] in {
    452 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
    453 let CodeSize = 2 in
    454 def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
    455                "inc{b}\t$dst",
    456                [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
    457                IIC_UNARY_REG>;
    458 
    459 let isConvertibleToThreeAddress = 1, CodeSize = 1 in {  // Can xform into LEA.
    460 def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
    461                "inc{w}\t$dst",
    462                [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>,
    463              OpSize, Requires<[In32BitMode]>;
    464 def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
    465                "inc{l}\t$dst",
    466                [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
    467                IIC_UNARY_REG>,
    468              Requires<[In32BitMode]>;
    469 def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
    470                 [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
    471                 IIC_UNARY_REG>;
    472 } // isConvertibleToThreeAddress = 1, CodeSize = 1
    473 
    474 
    475 // In 64-bit mode, single byte INC and DEC cannot be encoded.
    476 let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
    477 // Can transform into LEA.
    478 def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
    479                   "inc{w}\t$dst",
    480                   [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
    481                   IIC_UNARY_REG>,
    482                 OpSize, Requires<[In64BitMode]>;
    483 def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
    484                   "inc{l}\t$dst",
    485                   [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
    486                   IIC_UNARY_REG>,
    487                 Requires<[In64BitMode]>;
    488 def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
    489                   "dec{w}\t$dst",
    490                   [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
    491                   IIC_UNARY_REG>,
    492                 OpSize, Requires<[In64BitMode]>;
    493 def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
    494                   "dec{l}\t$dst",
    495                   [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
    496                   IIC_UNARY_REG>,
    497                 Requires<[In64BitMode]>;
    498 } // isConvertibleToThreeAddress = 1, CodeSize = 2
    499 
    500 } // Constraints = "$src1 = $dst", SchedRW
    501 
    502 let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
    503   def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
    504                [(store (add (loadi8 addr:$dst), 1), addr:$dst),
    505                 (implicit EFLAGS)], IIC_UNARY_MEM>;
    506   def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
    507                [(store (add (loadi16 addr:$dst), 1), addr:$dst),
    508                 (implicit EFLAGS)], IIC_UNARY_MEM>,
    509                OpSize, Requires<[In32BitMode]>;
    510   def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
    511                [(store (add (loadi32 addr:$dst), 1), addr:$dst),
    512                 (implicit EFLAGS)], IIC_UNARY_MEM>,
    513                Requires<[In32BitMode]>;
    514   def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
    515                   [(store (add (loadi64 addr:$dst), 1), addr:$dst),
    516                    (implicit EFLAGS)], IIC_UNARY_MEM>;
    517 
    518 // These are duplicates of their 32-bit counterparts. Only needed so X86 knows
    519 // how to unfold them.
    520 // FIXME: What is this for??
    521 def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
    522                   [(store (add (loadi16 addr:$dst), 1), addr:$dst),
    523                     (implicit EFLAGS)], IIC_UNARY_MEM>,
    524                 OpSize, Requires<[In64BitMode]>;
    525 def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
    526                   [(store (add (loadi32 addr:$dst), 1), addr:$dst),
    527                     (implicit EFLAGS)], IIC_UNARY_MEM>,
    528                 Requires<[In64BitMode]>;
    529 def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
    530                   [(store (add (loadi16 addr:$dst), -1), addr:$dst),
    531                     (implicit EFLAGS)], IIC_UNARY_MEM>,
    532                 OpSize, Requires<[In64BitMode]>;
    533 def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
    534                   [(store (add (loadi32 addr:$dst), -1), addr:$dst),
    535                     (implicit EFLAGS)], IIC_UNARY_MEM>,
    536                 Requires<[In64BitMode]>;
    537 } // CodeSize = 2, SchedRW
    538 
    539 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
    540 let CodeSize = 2 in
    541 def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
    542                "dec{b}\t$dst",
    543                [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
    544                IIC_UNARY_REG>;
    545 let isConvertibleToThreeAddress = 1, CodeSize = 1 in {   // Can xform into LEA.
    546 def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
    547                "dec{w}\t$dst",
    548                [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
    549                IIC_UNARY_REG>,
    550              OpSize, Requires<[In32BitMode]>;
    551 def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
    552                "dec{l}\t$dst",
    553                [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
    554                IIC_UNARY_REG>,
    555              Requires<[In32BitMode]>;
    556 def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
    557                 [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
    558                 IIC_UNARY_REG>;
    559 } // CodeSize = 2
    560 } // Constraints = "$src1 = $dst", SchedRW
    561 
    562 
    563 let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
    564   def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
    565                [(store (add (loadi8 addr:$dst), -1), addr:$dst),
    566                 (implicit EFLAGS)], IIC_UNARY_MEM>;
    567   def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
    568                [(store (add (loadi16 addr:$dst), -1), addr:$dst),
    569                 (implicit EFLAGS)], IIC_UNARY_MEM>,
    570                OpSize, Requires<[In32BitMode]>;
    571   def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
    572                [(store (add (loadi32 addr:$dst), -1), addr:$dst),
    573                 (implicit EFLAGS)], IIC_UNARY_MEM>,
    574                Requires<[In32BitMode]>;
    575   def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
    576                   [(store (add (loadi64 addr:$dst), -1), addr:$dst),
    577                    (implicit EFLAGS)], IIC_UNARY_MEM>;
    578 } // CodeSize = 2, SchedRW
    579 } // Defs = [EFLAGS]
    580 
    581 
    582 /// X86TypeInfo - This is a bunch of information that describes relevant X86
    583 /// information about value types.  For example, it can tell you what the
    584 /// register class and preferred load to use.
    585 class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
    586                   PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
    587                   Operand immoperand, SDPatternOperator immoperator,
    588                   Operand imm8operand, SDPatternOperator imm8operator,
    589                   bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
    590   /// VT - This is the value type itself.
    591   ValueType VT = vt;
    592 
    593   /// InstrSuffix - This is the suffix used on instructions with this type.  For
    594   /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
    595   string InstrSuffix = instrsuffix;
    596 
    597   /// RegClass - This is the register class associated with this type.  For
    598   /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
    599   RegisterClass RegClass = regclass;
    600 
    601   /// LoadNode - This is the load node associated with this type.  For
    602   /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
    603   PatFrag LoadNode = loadnode;
    604 
    605   /// MemOperand - This is the memory operand associated with this type.  For
    606   /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
    607   X86MemOperand MemOperand = memoperand;
    608 
    609   /// ImmEncoding - This is the encoding of an immediate of this type.  For
    610   /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
    611   /// since the immediate fields of i64 instructions is a 32-bit sign extended
    612   /// value.
    613   ImmType ImmEncoding = immkind;
    614 
    615   /// ImmOperand - This is the operand kind of an immediate of this type.  For
    616   /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
    617   /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
    618   /// extended value.
    619   Operand ImmOperand = immoperand;
    620 
    621   /// ImmOperator - This is the operator that should be used to match an
    622   /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
    623   SDPatternOperator ImmOperator = immoperator;
    624 
    625   /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
    626   /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
    627   /// only used for instructions that have a sign-extended imm8 field form.
    628   Operand Imm8Operand = imm8operand;
    629 
    630   /// Imm8Operator - This is the operator that should be used to match an 8-bit
    631   /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
    632   SDPatternOperator Imm8Operator = imm8operator;
    633 
    634   /// HasOddOpcode - This bit is true if the instruction should have an odd (as
    635   /// opposed to even) opcode.  Operations on i8 are usually even, operations on
    636   /// other datatypes are odd.
    637   bit HasOddOpcode = hasOddOpcode;
    638 
    639   /// HasOpSizePrefix - This bit is set to true if the instruction should have
    640   /// the 0x66 operand size prefix.  This is set for i16 types.
    641   bit HasOpSizePrefix = hasOpSizePrefix;
    642 
    643   /// HasREX_WPrefix - This bit is set to true if the instruction should have
    644   /// the 0x40 REX prefix.  This is set for i64 types.
    645   bit HasREX_WPrefix = hasREX_WPrefix;
    646 }
    647 
    648 def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
    649 
    650 
    651 def Xi8  : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
    652                        Imm8 , i8imm ,    imm,          i8imm   , invalid_node,
    653                        0, 0, 0>;
    654 def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
    655                        Imm16, i16imm,    imm,          i16i8imm, i16immSExt8,
    656                        1, 1, 0>;
    657 def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
    658                        Imm32, i32imm,    imm,          i32i8imm, i32immSExt8,
    659                        1, 0, 0>;
    660 def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
    661                        Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
    662                        1, 0, 1>;
    663 
    664 /// ITy - This instruction base class takes the type info for the instruction.
    665 /// Using this, it:
    666 /// 1. Concatenates together the instruction mnemonic with the appropriate
    667 ///    suffix letter, a tab, and the arguments.
    668 /// 2. Infers whether the instruction should have a 0x66 prefix byte.
    669 /// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
    670 /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
    671 ///    or 1 (for i16,i32,i64 operations).
    672 class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
    673           string mnemonic, string args, list<dag> pattern,
    674           InstrItinClass itin = IIC_BIN_NONMEM>
    675   : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
    676        opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
    677       f, outs, ins,
    678       !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern,
    679       itin> {
    680 
    681   // Infer instruction prefixes from type info.
    682   let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
    683   let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
    684 }
    685 
    686 // BinOpRR - Instructions like "add reg, reg, reg".
    687 class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    688               dag outlist, list<dag> pattern, InstrItinClass itin,
    689               Format f = MRMDestReg>
    690   : ITy<opcode, f, typeinfo, outlist,
    691         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    692         mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
    693     Sched<[WriteALU]>;
    694 
    695 // BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
    696 // just a regclass (no eflags) as a result.
    697 class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    698                 SDNode opnode>
    699   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    700             [(set typeinfo.RegClass:$dst,
    701                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
    702                   IIC_BIN_NONMEM>;
    703 
    704 // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
    705 // just a EFLAGS as a result.
    706 class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    707                 SDPatternOperator opnode, Format f = MRMDestReg>
    708   : BinOpRR<opcode, mnemonic, typeinfo, (outs),
    709             [(set EFLAGS,
    710                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
    711             IIC_BIN_NONMEM, f>;
    712 
    713 // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
    714 // both a regclass and EFLAGS as a result.
    715 class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    716                  SDNode opnode>
    717   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    718             [(set typeinfo.RegClass:$dst, EFLAGS,
    719                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
    720                   IIC_BIN_NONMEM>;
    721 
    722 // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
    723 // both a regclass and EFLAGS as a result, and has EFLAGS as input.
    724 class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    725                   SDNode opnode>
    726   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    727             [(set typeinfo.RegClass:$dst, EFLAGS,
    728                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
    729                           EFLAGS))], IIC_BIN_NONMEM>;
    730 
    731 // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
    732 class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
    733   : ITy<opcode, MRMSrcReg, typeinfo,
    734         (outs typeinfo.RegClass:$dst),
    735         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    736         mnemonic, "{$src2, $dst|$dst, $src2}", [], IIC_BIN_NONMEM>,
    737     Sched<[WriteALU]> {
    738   // The disassembler should know about this, but not the asmparser.
    739   let isCodeGenOnly = 1;
    740   let hasSideEffects = 0;
    741 }
    742 
    743 // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
    744 class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
    745   : ITy<opcode, MRMSrcReg, typeinfo, (outs),
    746         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    747         mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>,
    748     Sched<[WriteALU]> {
    749   // The disassembler should know about this, but not the asmparser.
    750   let isCodeGenOnly = 1;
    751   let hasSideEffects = 0;
    752 }
    753 
    754 // BinOpRM - Instructions like "add reg, reg, [mem]".
    755 class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    756               dag outlist, list<dag> pattern>
    757   : ITy<opcode, MRMSrcMem, typeinfo, outlist,
    758         (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
    759         mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
    760     Sched<[WriteALULd, ReadAfterLd]>;
    761 
    762 // BinOpRM_R - Instructions like "add reg, reg, [mem]".
    763 class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    764               SDNode opnode>
    765   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    766             [(set typeinfo.RegClass:$dst,
    767             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    768 
    769 // BinOpRM_F - Instructions like "cmp reg, [mem]".
    770 class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    771               SDPatternOperator opnode>
    772   : BinOpRM<opcode, mnemonic, typeinfo, (outs),
    773             [(set EFLAGS,
    774             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    775 
    776 // BinOpRM_RF - Instructions like "add reg, reg, [mem]".
    777 class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    778                  SDNode opnode>
    779   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    780             [(set typeinfo.RegClass:$dst, EFLAGS,
    781             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    782 
    783 // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
    784 class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    785                  SDNode opnode>
    786   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    787             [(set typeinfo.RegClass:$dst, EFLAGS,
    788             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
    789                     EFLAGS))]>;
    790 
    791 // BinOpRI - Instructions like "add reg, reg, imm".
    792 class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    793               Format f, dag outlist, list<dag> pattern>
    794   : ITy<opcode, f, typeinfo, outlist,
    795         (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
    796         mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
    797     Sched<[WriteALU]> {
    798   let ImmT = typeinfo.ImmEncoding;
    799 }
    800 
    801 // BinOpRI_R - Instructions like "add reg, reg, imm".
    802 class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    803                 SDNode opnode, Format f>
    804   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    805             [(set typeinfo.RegClass:$dst,
    806                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    807 
    808 // BinOpRI_F - Instructions like "cmp reg, imm".
    809 class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    810                 SDPatternOperator opnode, Format f>
    811   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
    812             [(set EFLAGS,
    813                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    814 
    815 // BinOpRI_RF - Instructions like "add reg, reg, imm".
    816 class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    817                  SDNode opnode, Format f>
    818   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    819             [(set typeinfo.RegClass:$dst, EFLAGS,
    820                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    821 // BinOpRI_RFF - Instructions like "adc reg, reg, imm".
    822 class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    823                  SDNode opnode, Format f>
    824   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    825             [(set typeinfo.RegClass:$dst, EFLAGS,
    826                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
    827                         EFLAGS))]>;
    828 
    829 // BinOpRI8 - Instructions like "add reg, reg, imm8".
    830 class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    831                Format f, dag outlist, list<dag> pattern>
    832   : ITy<opcode, f, typeinfo, outlist,
    833         (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
    834         mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
    835     Sched<[WriteALU]> {
    836   let ImmT = Imm8; // Always 8-bit immediate.
    837 }
    838 
    839 // BinOpRI8_R - Instructions like "add reg, reg, imm8".
    840 class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    841                   SDNode opnode, Format f>
    842   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    843              [(set typeinfo.RegClass:$dst,
    844                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    845 
    846 // BinOpRI8_F - Instructions like "cmp reg, imm8".
    847 class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    848                   SDNode opnode, Format f>
    849   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
    850              [(set EFLAGS,
    851                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    852 
    853 // BinOpRI8_RF - Instructions like "add reg, reg, imm8".
    854 class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    855                   SDNode opnode, Format f>
    856   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    857              [(set typeinfo.RegClass:$dst, EFLAGS,
    858                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    859 
    860 // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
    861 class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    862                    SDNode opnode, Format f>
    863   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    864              [(set typeinfo.RegClass:$dst, EFLAGS,
    865                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
    866                        EFLAGS))]>;
    867 
    868 // BinOpMR - Instructions like "add [mem], reg".
    869 class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    870               list<dag> pattern>
    871   : ITy<opcode, MRMDestMem, typeinfo,
    872         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
    873         mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
    874     Sched<[WriteALULd, WriteRMW]>;
    875 
    876 // BinOpMR_RMW - Instructions like "add [mem], reg".
    877 class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    878                   SDNode opnode>
    879   : BinOpMR<opcode, mnemonic, typeinfo,
    880           [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
    881            (implicit EFLAGS)]>;
    882 
    883 // BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
    884 class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    885                     SDNode opnode>
    886   : BinOpMR<opcode, mnemonic, typeinfo,
    887           [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
    888                   addr:$dst),
    889            (implicit EFLAGS)]>;
    890 
    891 // BinOpMR_F - Instructions like "cmp [mem], reg".
    892 class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    893                   SDNode opnode>
    894   : BinOpMR<opcode, mnemonic, typeinfo,
    895             [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
    896 
    897 // BinOpMI - Instructions like "add [mem], imm".
    898 class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
    899               Format f, list<dag> pattern, bits<8> opcode = 0x80>
    900   : ITy<opcode, f, typeinfo,
    901         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
    902         mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
    903     Sched<[WriteALULd, WriteRMW]> {
    904   let ImmT = typeinfo.ImmEncoding;
    905 }
    906 
    907 // BinOpMI_RMW - Instructions like "add [mem], imm".
    908 class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
    909                   SDNode opnode, Format f>
    910   : BinOpMI<mnemonic, typeinfo, f,
    911             [(store (opnode (typeinfo.VT (load addr:$dst)),
    912                             typeinfo.ImmOperator:$src), addr:$dst),
    913              (implicit EFLAGS)]>;
    914 // BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
    915 class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
    916                   SDNode opnode, Format f>
    917   : BinOpMI<mnemonic, typeinfo, f,
    918             [(store (opnode (typeinfo.VT (load addr:$dst)),
    919                             typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
    920              (implicit EFLAGS)]>;
    921 
    922 // BinOpMI_F - Instructions like "cmp [mem], imm".
    923 class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
    924                 SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
    925   : BinOpMI<mnemonic, typeinfo, f,
    926             [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
    927                                                typeinfo.ImmOperator:$src))],
    928             opcode>;
    929 
    930 // BinOpMI8 - Instructions like "add [mem], imm8".
    931 class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
    932                Format f, list<dag> pattern>
    933   : ITy<0x82, f, typeinfo,
    934         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
    935         mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
    936     Sched<[WriteALULd, WriteRMW]> {
    937   let ImmT = Imm8; // Always 8-bit immediate.
    938 }
    939 
    940 // BinOpMI8_RMW - Instructions like "add [mem], imm8".
    941 class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
    942                    SDNode opnode, Format f>
    943   : BinOpMI8<mnemonic, typeinfo, f,
    944              [(store (opnode (load addr:$dst),
    945                              typeinfo.Imm8Operator:$src), addr:$dst),
    946               (implicit EFLAGS)]>;
    947 
    948 // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
    949 class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
    950                    SDNode opnode, Format f>
    951   : BinOpMI8<mnemonic, typeinfo, f,
    952              [(store (opnode (load addr:$dst),
    953                              typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
    954               (implicit EFLAGS)]>;
    955 
    956 // BinOpMI8_F - Instructions like "cmp [mem], imm8".
    957 class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
    958                  SDNode opnode, Format f>
    959   : BinOpMI8<mnemonic, typeinfo, f,
    960              [(set EFLAGS, (opnode (load addr:$dst),
    961                                    typeinfo.Imm8Operator:$src))]>;
    962 
    963 // BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
    964 class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    965               Register areg, string operands>
    966   : ITy<opcode, RawFrm, typeinfo,
    967         (outs), (ins typeinfo.ImmOperand:$src),
    968         mnemonic, operands, []>, Sched<[WriteALU]> {
    969   let ImmT = typeinfo.ImmEncoding;
    970   let Uses = [areg];
    971   let Defs = [areg, EFLAGS];
    972   let hasSideEffects = 0;
    973 }
    974 
    975 // BinOpAI_FF - Instructions like "adc %eax, %eax, imm", that implicitly define
    976 // and use EFLAGS.
    977 class BinOpAI_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    978                 Register areg, string operands>
    979   : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
    980   let Uses = [areg, EFLAGS];
    981 }
    982 
    983 /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
    984 /// defined with "(set GPR:$dst, EFLAGS, (...".
    985 ///
    986 /// It would be nice to get rid of the second and third argument here, but
    987 /// tblgen can't handle dependent type references aggressively enough: PR8330
    988 multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
    989                          string mnemonic, Format RegMRM, Format MemMRM,
    990                          SDNode opnodeflag, SDNode opnode,
    991                          bit CommutableRR, bit ConvertibleToThreeAddress> {
    992   let Defs = [EFLAGS] in {
    993     let Constraints = "$src1 = $dst" in {
    994       let isCommutable = CommutableRR,
    995           isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    996         def NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
    997         def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
    998         def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
    999         def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
   1000       } // isCommutable
   1001 
   1002       def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
   1003       def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
   1004       def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
   1005       def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
   1006 
   1007       def NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
   1008       def NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
   1009       def NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
   1010       def NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
   1011 
   1012       let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1013         // NOTE: These are order specific, we want the ri8 forms to be listed
   1014         // first so that they are slightly preferred to the ri forms.
   1015         def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
   1016         def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
   1017         def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
   1018 
   1019         def NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
   1020         def NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
   1021         def NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
   1022         def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
   1023       }
   1024     } // Constraints = "$src1 = $dst"
   1025 
   1026     def NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
   1027     def NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
   1028     def NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
   1029     def NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
   1030 
   1031     // NOTE: These are order specific, we want the mi8 forms to be listed
   1032     // first so that they are slightly preferred to the mi forms.
   1033     def NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
   1034     def NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
   1035     def NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
   1036 
   1037     def NAME#8mi    : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
   1038     def NAME#16mi   : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
   1039     def NAME#32mi   : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
   1040     def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
   1041   } // Defs = [EFLAGS]
   1042 
   1043   def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
   1044                            "{$src, %al|al, $src}">;
   1045   def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
   1046                            "{$src, %ax|ax, $src}">;
   1047   def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
   1048                            "{$src, %eax|eax, $src}">;
   1049   def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
   1050                            "{$src, %rax|rax, $src}">;
   1051 }
   1052 
   1053 /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
   1054 /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
   1055 /// SBB.
   1056 ///
   1057 /// It would be nice to get rid of the second and third argument here, but
   1058 /// tblgen can't handle dependent type references aggressively enough: PR8330
   1059 multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
   1060                           string mnemonic, Format RegMRM, Format MemMRM,
   1061                           SDNode opnode, bit CommutableRR,
   1062                            bit ConvertibleToThreeAddress> {
   1063   let Uses = [EFLAGS], Defs = [EFLAGS] in {
   1064     let Constraints = "$src1 = $dst" in {
   1065       let isCommutable = CommutableRR,
   1066           isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1067         def NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
   1068         def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
   1069         def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
   1070         def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
   1071       } // isCommutable
   1072 
   1073       def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
   1074       def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
   1075       def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
   1076       def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
   1077 
   1078       def NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
   1079       def NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
   1080       def NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
   1081       def NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
   1082 
   1083       let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1084         // NOTE: These are order specific, we want the ri8 forms to be listed
   1085         // first so that they are slightly preferred to the ri forms.
   1086         def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
   1087         def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
   1088         def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
   1089 
   1090         def NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
   1091         def NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
   1092         def NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
   1093         def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
   1094       }
   1095     } // Constraints = "$src1 = $dst"
   1096 
   1097     def NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
   1098     def NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
   1099     def NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
   1100     def NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
   1101 
   1102     // NOTE: These are order specific, we want the mi8 forms to be listed
   1103     // first so that they are slightly preferred to the mi forms.
   1104     def NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
   1105     def NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
   1106     def NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
   1107 
   1108     def NAME#8mi    : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
   1109     def NAME#16mi   : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
   1110     def NAME#32mi   : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
   1111     def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
   1112   } // Uses = [EFLAGS], Defs = [EFLAGS]
   1113 
   1114   def NAME#8i8   : BinOpAI_FF<BaseOpc4, mnemonic, Xi8 , AL,
   1115                               "{$src, %al|al, $src}">;
   1116   def NAME#16i16 : BinOpAI_FF<BaseOpc4, mnemonic, Xi16, AX,
   1117                               "{$src, %ax|ax, $src}">;
   1118   def NAME#32i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi32, EAX,
   1119                               "{$src, %eax|eax, $src}">;
   1120   def NAME#64i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi64, RAX,
   1121                               "{$src, %rax|rax, $src}">;
   1122 }
   1123 
   1124 /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
   1125 /// defined with "(set EFLAGS, (...".  It would be really nice to find a way
   1126 /// to factor this with the other ArithBinOp_*.
   1127 ///
   1128 multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
   1129                         string mnemonic, Format RegMRM, Format MemMRM,
   1130                         SDNode opnode,
   1131                         bit CommutableRR, bit ConvertibleToThreeAddress> {
   1132   let Defs = [EFLAGS] in {
   1133     let isCommutable = CommutableRR,
   1134         isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1135       def NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
   1136       def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
   1137       def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
   1138       def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
   1139     } // isCommutable
   1140 
   1141     def NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
   1142     def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
   1143     def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
   1144     def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
   1145 
   1146     def NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
   1147     def NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
   1148     def NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
   1149     def NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
   1150 
   1151     let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1152       // NOTE: These are order specific, we want the ri8 forms to be listed
   1153       // first so that they are slightly preferred to the ri forms.
   1154       def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
   1155       def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
   1156       def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
   1157 
   1158       def NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
   1159       def NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
   1160       def NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
   1161       def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
   1162     }
   1163 
   1164     def NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
   1165     def NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
   1166     def NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
   1167     def NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
   1168 
   1169     // NOTE: These are order specific, we want the mi8 forms to be listed
   1170     // first so that they are slightly preferred to the mi forms.
   1171     def NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
   1172     def NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
   1173     def NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
   1174 
   1175     def NAME#8mi    : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
   1176     def NAME#16mi   : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
   1177     def NAME#32mi   : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
   1178     def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
   1179   } // Defs = [EFLAGS]
   1180 
   1181   def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
   1182                            "{$src, %al|al, $src}">;
   1183   def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
   1184                            "{$src, %ax|ax, $src}">;
   1185   def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
   1186                            "{$src, %eax|eax, $src}">;
   1187   def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
   1188                            "{$src, %rax|rax, $src}">;
   1189 }
   1190 
   1191 
   1192 defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
   1193                          X86and_flag, and, 1, 0>;
   1194 defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
   1195                          X86or_flag, or, 1, 0>;
   1196 defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
   1197                          X86xor_flag, xor, 1, 0>;
   1198 defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
   1199                          X86add_flag, add, 1, 1>;
   1200 let isCompare = 1 in {
   1201 defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
   1202                          X86sub_flag, sub, 0, 0>;
   1203 }
   1204 
   1205 // Arithmetic.
   1206 defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
   1207                           1, 0>;
   1208 defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
   1209                           0, 0>;
   1210 
   1211 let isCompare = 1 in {
   1212 defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
   1213 }
   1214 
   1215 
   1216 //===----------------------------------------------------------------------===//
   1217 // Semantically, test instructions are similar like AND, except they don't
   1218 // generate a result.  From an encoding perspective, they are very different:
   1219 // they don't have all the usual imm8 and REV forms, and are encoded into a
   1220 // different space.
   1221 def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
   1222                          (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
   1223 
   1224 let isCompare = 1 in {
   1225   let Defs = [EFLAGS] in {
   1226     let isCommutable = 1 in {
   1227       def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
   1228       def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
   1229       def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
   1230       def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
   1231     } // isCommutable
   1232 
   1233     def TEST8rm    : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
   1234     def TEST16rm   : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
   1235     def TEST32rm   : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
   1236     def TEST64rm   : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
   1237 
   1238     def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
   1239     def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
   1240     def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
   1241     def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
   1242 
   1243     def TEST8mi    : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
   1244     def TEST16mi   : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
   1245     def TEST32mi   : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
   1246     def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
   1247 
   1248     // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
   1249     // register class is constrained to GR8_NOREX.
   1250     let isPseudo = 1 in
   1251     def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
   1252                           "", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>;
   1253   } // Defs = [EFLAGS]
   1254 
   1255   def TEST8i8    : BinOpAI<0xA8, "test", Xi8 , AL,
   1256                            "{$src, %al|al, $src}">;
   1257   def TEST16i16  : BinOpAI<0xA8, "test", Xi16, AX,
   1258                            "{$src, %ax|ax, $src}">;
   1259   def TEST32i32  : BinOpAI<0xA8, "test", Xi32, EAX,
   1260                            "{$src, %eax|eax, $src}">;
   1261   def TEST64i32  : BinOpAI<0xA8, "test", Xi64, RAX,
   1262                            "{$src, %rax|rax, $src}">;
   1263 } // isCompare
   1264 
   1265 //===----------------------------------------------------------------------===//
   1266 // ANDN Instruction
   1267 //
   1268 multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
   1269                     PatFrag ld_frag> {
   1270   def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
   1271             !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1272             [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))],
   1273             IIC_BIN_NONMEM>, Sched<[WriteALU]>;
   1274   def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
   1275             !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1276             [(set RC:$dst, EFLAGS,
   1277              (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>,
   1278            Sched<[WriteALULd, ReadAfterLd]>;
   1279 }
   1280 
   1281 let Predicates = [HasBMI], Defs = [EFLAGS] in {
   1282   defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V;
   1283   defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W;
   1284 }
   1285 
   1286 let Predicates = [HasBMI] in {
   1287   def : Pat<(and (not GR32:$src1), GR32:$src2),
   1288             (ANDN32rr GR32:$src1, GR32:$src2)>;
   1289   def : Pat<(and (not GR64:$src1), GR64:$src2),
   1290             (ANDN64rr GR64:$src1, GR64:$src2)>;
   1291   def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
   1292             (ANDN32rm GR32:$src1, addr:$src2)>;
   1293   def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
   1294             (ANDN64rm GR64:$src1, addr:$src2)>;
   1295 }
   1296 
   1297 //===----------------------------------------------------------------------===//
   1298 // MULX Instruction
   1299 //
   1300 multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
   1301 let neverHasSideEffects = 1 in {
   1302   let isCommutable = 1 in
   1303   def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
   1304              !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
   1305              [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul, WriteIMulH]>;
   1306 
   1307   let mayLoad = 1 in
   1308   def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
   1309              !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
   1310              [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd, WriteIMulH]>;
   1311 }
   1312 }
   1313 
   1314 let Predicates = [HasBMI2] in {
   1315   let Uses = [EDX] in
   1316     defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>;
   1317   let Uses = [RDX] in
   1318     defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W;
   1319 }
   1320 
   1321 //===----------------------------------------------------------------------===//
   1322 // ADCX Instruction
   1323 //
   1324 let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
   1325   let SchedRW = [WriteALU] in {
   1326   def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
   1327              "adcx{l}\t{$src, $dst|$dst, $src}",
   1328              [], IIC_BIN_NONMEM>, T8, OpSize;
   1329 
   1330   def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
   1331              "adcx{q}\t{$src, $dst|$dst, $src}",
   1332              [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
   1333   } // SchedRW
   1334 
   1335   let mayLoad = 1, SchedRW = [WriteALULd] in {
   1336   def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1337              "adcx{l}\t{$src, $dst|$dst, $src}",
   1338              [], IIC_BIN_MEM>, T8, OpSize;
   1339 
   1340   def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1341              "adcx{q}\t{$src, $dst|$dst, $src}",
   1342              [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
   1343   }
   1344 }
   1345 
   1346 //===----------------------------------------------------------------------===//
   1347 // ADOX Instruction
   1348 //
   1349 let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
   1350   let SchedRW = [WriteALU] in {
   1351   def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
   1352              "adox{l}\t{$src, $dst|$dst, $src}",
   1353              [], IIC_BIN_NONMEM>, T8XS;
   1354 
   1355   def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
   1356              "adox{q}\t{$src, $dst|$dst, $src}",
   1357              [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>;
   1358   } // SchedRW
   1359 
   1360   let mayLoad = 1, SchedRW = [WriteALULd] in {
   1361   def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1362              "adox{l}\t{$src, $dst|$dst, $src}",
   1363              [], IIC_BIN_MEM>, T8XS;
   1364 
   1365   def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1366              "adox{q}\t{$src, $dst|$dst, $src}",
   1367              [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>;
   1368   }
   1369 }
   1370