Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 instruction set, defining the instructions, and
     11 // properties of the instructions which are needed for code generation, machine
     12 // code emission, and analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 //===----------------------------------------------------------------------===//
     17 // X86 specific DAG Nodes.
     18 //
     19 
     20 def SDTIntShiftDOp: SDTypeProfile<1, 3,
     21                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
     22                                    SDTCisInt<0>, SDTCisInt<3>]>;
     23 
     24 def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>;
     25 
     26 def SDTX86Cmpsd : SDTypeProfile<1, 3, [SDTCisVT<0, f64>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
     27 def SDTX86Cmpss : SDTypeProfile<1, 3, [SDTCisVT<0, f32>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
     28 
     29 def SDTX86Cmov    : SDTypeProfile<1, 4,
     30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
     31                                    SDTCisVT<3, i8>, SDTCisVT<4, i32>]>;
     32 
     33 // Unary and binary operator instructions that set EFLAGS as a side-effect.
     34 def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
     35                                            [SDTCisInt<0>, SDTCisVT<1, i32>]>;
     36 
     37 def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
     38                                             [SDTCisSameAs<0, 2>,
     39                                              SDTCisSameAs<0, 3>,
     40                                              SDTCisInt<0>, SDTCisVT<1, i32>]>;
     41 
     42 // SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS
     43 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
     44                                             [SDTCisSameAs<0, 2>,
     45                                              SDTCisSameAs<0, 3>,
     46                                              SDTCisInt<0>,
     47                                              SDTCisVT<1, i32>,
     48                                              SDTCisVT<4, i32>]>;
     49 // RES1, RES2, FLAGS = op LHS, RHS
     50 def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2,
     51                                             [SDTCisSameAs<0, 1>,
     52                                              SDTCisSameAs<0, 2>,
     53                                              SDTCisSameAs<0, 3>,
     54                                              SDTCisInt<0>, SDTCisVT<1, i32>]>;
     55 def SDTX86BrCond  : SDTypeProfile<0, 3,
     56                                   [SDTCisVT<0, OtherVT>,
     57                                    SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
     58 
     59 def SDTX86SetCC   : SDTypeProfile<1, 2,
     60                                   [SDTCisVT<0, i8>,
     61                                    SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
     62 def SDTX86SetCC_C : SDTypeProfile<1, 2,
     63                                   [SDTCisInt<0>,
     64                                    SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
     65 
     66 def SDTX86sahf : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>;
     67 
     68 def SDTX86rdrand : SDTypeProfile<2, 0, [SDTCisInt<0>, SDTCisVT<1, i32>]>;
     69 
     70 def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>,
     71                                      SDTCisVT<2, i8>]>;
     72 def SDTX86caspair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
     73 
     74 def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>,
     75                                 SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>;
     76 def SDTX86Ret     : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>;
     77 
     78 def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
     79 def SDT_X86CallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
     80                                         SDTCisVT<1, i32>]>;
     81 
     82 def SDT_X86Call   : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
     83 
     84 def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
     85                                                          SDTCisVT<1, iPTR>,
     86                                                          SDTCisVT<2, iPTR>]>;
     87 
     88 def SDT_X86VAARG_64 : SDTypeProfile<1, -1, [SDTCisPtrTy<0>,
     89                                             SDTCisPtrTy<1>,
     90                                             SDTCisVT<2, i32>,
     91                                             SDTCisVT<3, i8>,
     92                                             SDTCisVT<4, i32>]>;
     93 
     94 def SDTX86RepStr  : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
     95 
     96 def SDTX86Void    : SDTypeProfile<0, 0, []>;
     97 
     98 def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
     99 
    100 def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
    101 
    102 def SDT_X86TLSBASEADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
    103 
    104 def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
    105 
    106 def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
    107 
    108 def SDT_X86WIN_FTOL : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
    109 
    110 def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
    111 
    112 def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
    113 
    114 def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>;
    115 
    116 def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER,
    117                             [SDNPHasChain,SDNPSideEffect]>;
    118 def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER,
    119                         [SDNPHasChain]>;
    120 def X86SFence : SDNode<"X86ISD::SFENCE", SDT_X86MEMBARRIER,
    121                         [SDNPHasChain]>;
    122 def X86LFence : SDNode<"X86ISD::LFENCE", SDT_X86MEMBARRIER,
    123                         [SDNPHasChain]>;
    124 
    125 
    126 def X86bsf     : SDNode<"X86ISD::BSF",      SDTUnaryArithWithFlags>;
    127 def X86bsr     : SDNode<"X86ISD::BSR",      SDTUnaryArithWithFlags>;
    128 def X86shld    : SDNode<"X86ISD::SHLD",     SDTIntShiftDOp>;
    129 def X86shrd    : SDNode<"X86ISD::SHRD",     SDTIntShiftDOp>;
    130 
    131 def X86cmp     : SDNode<"X86ISD::CMP" ,     SDTX86CmpTest>;
    132 def X86bt      : SDNode<"X86ISD::BT",       SDTX86CmpTest>;
    133 
    134 def X86cmov    : SDNode<"X86ISD::CMOV",     SDTX86Cmov>;
    135 def X86brcond  : SDNode<"X86ISD::BRCOND",   SDTX86BrCond,
    136                         [SDNPHasChain]>;
    137 def X86setcc   : SDNode<"X86ISD::SETCC",    SDTX86SetCC>;
    138 def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>;
    139 
    140 def X86sahf    : SDNode<"X86ISD::SAHF",     SDTX86sahf>;
    141 
    142 def X86rdrand  : SDNode<"X86ISD::RDRAND",   SDTX86rdrand,
    143                         [SDNPHasChain, SDNPSideEffect]>;
    144 
    145 def X86rdseed  : SDNode<"X86ISD::RDSEED",   SDTX86rdrand,
    146                         [SDNPHasChain, SDNPSideEffect]>;
    147 
    148 def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas,
    149                         [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
    150                          SDNPMayLoad, SDNPMemOperand]>;
    151 def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86caspair,
    152                         [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
    153                          SDNPMayLoad, SDNPMemOperand]>;
    154 def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86caspair,
    155                         [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
    156                          SDNPMayLoad, SDNPMemOperand]>;
    157 
    158 def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary,
    159                         [SDNPHasChain, SDNPMayStore,
    160                          SDNPMayLoad, SDNPMemOperand]>;
    161 def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary,
    162                         [SDNPHasChain, SDNPMayStore,
    163                          SDNPMayLoad, SDNPMemOperand]>;
    164 def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary,
    165                         [SDNPHasChain, SDNPMayStore,
    166                          SDNPMayLoad, SDNPMemOperand]>;
    167 def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary,
    168                         [SDNPHasChain, SDNPMayStore,
    169                          SDNPMayLoad, SDNPMemOperand]>;
    170 def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary,
    171                         [SDNPHasChain, SDNPMayStore,
    172                          SDNPMayLoad, SDNPMemOperand]>;
    173 def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary,
    174                         [SDNPHasChain, SDNPMayStore,
    175                          SDNPMayLoad, SDNPMemOperand]>;
    176 def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary,
    177                         [SDNPHasChain, SDNPMayStore,
    178                          SDNPMayLoad, SDNPMemOperand]>;
    179 def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
    180                         [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    181 
    182 def X86vastart_save_xmm_regs :
    183                  SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
    184                         SDT_X86VASTART_SAVE_XMM_REGS,
    185                         [SDNPHasChain, SDNPVariadic]>;
    186 def X86vaarg64 :
    187                  SDNode<"X86ISD::VAARG_64", SDT_X86VAARG_64,
    188                         [SDNPHasChain, SDNPMayLoad, SDNPMayStore,
    189                          SDNPMemOperand]>;
    190 def X86callseq_start :
    191                  SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
    192                         [SDNPHasChain, SDNPOutGlue]>;
    193 def X86callseq_end :
    194                  SDNode<"ISD::CALLSEQ_END",   SDT_X86CallSeqEnd,
    195                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    196 
    197 def X86call    : SDNode<"X86ISD::CALL",     SDT_X86Call,
    198                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
    199                          SDNPVariadic]>;
    200 
    201 def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
    202                         [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>;
    203 def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
    204                         [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
    205                          SDNPMayLoad]>;
    206 
    207 def X86rdtsc   : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void,
    208                         [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
    209 
    210 def X86Wrapper    : SDNode<"X86ISD::Wrapper",     SDTX86Wrapper>;
    211 def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP",  SDTX86Wrapper>;
    212 
    213 def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
    214                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    215 
    216 def X86tlsbaseaddr : SDNode<"X86ISD::TLSBASEADDR", SDT_X86TLSBASEADDR,
    217                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    218 
    219 def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
    220                         [SDNPHasChain]>;
    221 
    222 def X86eh_sjlj_setjmp  : SDNode<"X86ISD::EH_SJLJ_SETJMP",
    223                                 SDTypeProfile<1, 1, [SDTCisInt<0>,
    224                                                      SDTCisPtrTy<1>]>,
    225                                 [SDNPHasChain, SDNPSideEffect]>;
    226 def X86eh_sjlj_longjmp : SDNode<"X86ISD::EH_SJLJ_LONGJMP",
    227                                 SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
    228                                 [SDNPHasChain, SDNPSideEffect]>;
    229 
    230 def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
    231                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
    232 
    233 def X86add_flag  : SDNode<"X86ISD::ADD",  SDTBinaryArithWithFlags,
    234                           [SDNPCommutative]>;
    235 def X86sub_flag  : SDNode<"X86ISD::SUB",  SDTBinaryArithWithFlags>;
    236 def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
    237                           [SDNPCommutative]>;
    238 def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags,
    239                           [SDNPCommutative]>;
    240 def X86adc_flag  : SDNode<"X86ISD::ADC",  SDTBinaryArithWithFlagsInOut>;
    241 def X86sbb_flag  : SDNode<"X86ISD::SBB",  SDTBinaryArithWithFlagsInOut>;
    242 
    243 def X86inc_flag  : SDNode<"X86ISD::INC",  SDTUnaryArithWithFlags>;
    244 def X86dec_flag  : SDNode<"X86ISD::DEC",  SDTUnaryArithWithFlags>;
    245 def X86or_flag   : SDNode<"X86ISD::OR",   SDTBinaryArithWithFlags,
    246                           [SDNPCommutative]>;
    247 def X86xor_flag  : SDNode<"X86ISD::XOR",  SDTBinaryArithWithFlags,
    248                           [SDNPCommutative]>;
    249 def X86and_flag  : SDNode<"X86ISD::AND",  SDTBinaryArithWithFlags,
    250                           [SDNPCommutative]>;
    251 def X86andn_flag : SDNode<"X86ISD::ANDN", SDTBinaryArithWithFlags>;
    252 
    253 def X86blsi   : SDNode<"X86ISD::BLSI",   SDTIntUnaryOp>;
    254 def X86blsmsk : SDNode<"X86ISD::BLSMSK", SDTIntUnaryOp>;
    255 def X86blsr   : SDNode<"X86ISD::BLSR",   SDTIntUnaryOp>;
    256 
    257 def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
    258 
    259 def X86WinAlloca : SDNode<"X86ISD::WIN_ALLOCA", SDTX86Void,
    260                           [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
    261 
    262 def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA,
    263                           [SDNPHasChain]>;
    264 
    265 def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL,
    266                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    267 
    268 def X86WinFTOL : SDNode<"X86ISD::WIN_FTOL", SDT_X86WIN_FTOL,
    269                         [SDNPHasChain, SDNPOutGlue]>;
    270 
    271 //===----------------------------------------------------------------------===//
    272 // X86 Operand Definitions.
    273 //
    274 
    275 // A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
    276 // the index operand of an address, to conform to x86 encoding restrictions.
    277 def ptr_rc_nosp : PointerLikeRegClass<1>;
    278 
    279 // *mem - Operand definitions for the funky X86 addressing mode operands.
    280 //
    281 def X86MemAsmOperand : AsmOperandClass { 
    282  let Name = "Mem"; let PredicateMethod = "isMem"; 
    283 }
    284 def X86Mem8AsmOperand : AsmOperandClass { 
    285   let Name = "Mem8"; let PredicateMethod = "isMem8";
    286 }
    287 def X86Mem16AsmOperand : AsmOperandClass { 
    288   let Name = "Mem16"; let PredicateMethod = "isMem16";
    289 }
    290 def X86Mem32AsmOperand : AsmOperandClass { 
    291   let Name = "Mem32"; let PredicateMethod = "isMem32";
    292 }
    293 def X86Mem64AsmOperand : AsmOperandClass { 
    294   let Name = "Mem64"; let PredicateMethod = "isMem64";
    295 }
    296 def X86Mem80AsmOperand : AsmOperandClass { 
    297   let Name = "Mem80"; let PredicateMethod = "isMem80";
    298 }
    299 def X86Mem128AsmOperand : AsmOperandClass { 
    300   let Name = "Mem128"; let PredicateMethod = "isMem128";
    301 }
    302 def X86Mem256AsmOperand : AsmOperandClass { 
    303   let Name = "Mem256"; let PredicateMethod = "isMem256";
    304 }
    305 
    306 // Gather mem operands
    307 def X86MemVX32Operand : AsmOperandClass {
    308   let Name = "MemVX32"; let PredicateMethod = "isMemVX32";
    309 }
    310 def X86MemVY32Operand : AsmOperandClass {
    311   let Name = "MemVY32"; let PredicateMethod = "isMemVY32";
    312 }
    313 def X86MemVX64Operand : AsmOperandClass {
    314   let Name = "MemVX64"; let PredicateMethod = "isMemVX64";
    315 }
    316 def X86MemVY64Operand : AsmOperandClass {
    317   let Name = "MemVY64"; let PredicateMethod = "isMemVY64";
    318 }
    319 
    320 def X86MemVZ64Operand : AsmOperandClass {
    321   let Name = "MemVZ64"; let PredicateMethod = "isMemVZ64";
    322 }
    323 def X86MemVZ32Operand : AsmOperandClass {
    324   let Name = "MemVZ32"; let PredicateMethod = "isMemVZ32";
    325 }
    326 def X86Mem512AsmOperand : AsmOperandClass {
    327   let Name = "Mem512"; let PredicateMethod = "isMem512";
    328 }
    329 
    330 def X86AbsMemAsmOperand : AsmOperandClass {
    331   let Name = "AbsMem";
    332   let SuperClasses = [X86MemAsmOperand];
    333 }
    334 class X86MemOperand<string printMethod> : Operand<iPTR> {
    335   let PrintMethod = printMethod;
    336   let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
    337   let ParserMatchClass = X86MemAsmOperand;
    338 }
    339 
    340 let OperandType = "OPERAND_MEMORY" in {
    341 def opaque32mem : X86MemOperand<"printopaquemem">;
    342 def opaque48mem : X86MemOperand<"printopaquemem">;
    343 def opaque80mem : X86MemOperand<"printopaquemem">;
    344 def opaque512mem : X86MemOperand<"printopaquemem">;
    345 
    346 def i8mem   : X86MemOperand<"printi8mem"> { 
    347   let ParserMatchClass = X86Mem8AsmOperand; }
    348 def i16mem  : X86MemOperand<"printi16mem"> { 
    349   let ParserMatchClass = X86Mem16AsmOperand; }
    350 def i32mem  : X86MemOperand<"printi32mem"> { 
    351   let ParserMatchClass = X86Mem32AsmOperand; }
    352 def i64mem  : X86MemOperand<"printi64mem"> { 
    353   let ParserMatchClass = X86Mem64AsmOperand; }
    354 def i128mem : X86MemOperand<"printi128mem"> { 
    355   let ParserMatchClass = X86Mem128AsmOperand; }
    356 def i256mem : X86MemOperand<"printi256mem"> { 
    357   let ParserMatchClass = X86Mem256AsmOperand; }
    358 def i512mem : X86MemOperand<"printi512mem"> { 
    359   let ParserMatchClass = X86Mem512AsmOperand; }
    360 def f32mem  : X86MemOperand<"printf32mem"> { 
    361   let ParserMatchClass = X86Mem32AsmOperand; }
    362 def f64mem  : X86MemOperand<"printf64mem"> { 
    363   let ParserMatchClass = X86Mem64AsmOperand; }
    364 def f80mem  : X86MemOperand<"printf80mem"> { 
    365   let ParserMatchClass = X86Mem80AsmOperand; }
    366 def f128mem : X86MemOperand<"printf128mem"> { 
    367   let ParserMatchClass = X86Mem128AsmOperand; }
    368 def f256mem : X86MemOperand<"printf256mem">{ 
    369   let ParserMatchClass = X86Mem256AsmOperand; }
    370 def f512mem : X86MemOperand<"printf512mem">{
    371   let ParserMatchClass = X86Mem512AsmOperand; }
    372 def v512mem : Operand<iPTR> {
    373   let PrintMethod = "printf512mem";
    374   let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
    375   let ParserMatchClass = X86Mem512AsmOperand; }
    376 
    377 // Gather mem operands
    378 def vx32mem : X86MemOperand<"printi32mem">{
    379   let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
    380   let ParserMatchClass = X86MemVX32Operand; }
    381 def vy32mem : X86MemOperand<"printi32mem">{
    382   let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
    383   let ParserMatchClass = X86MemVY32Operand; }
    384 def vx64mem : X86MemOperand<"printi64mem">{
    385   let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
    386   let ParserMatchClass = X86MemVX64Operand; }
    387 def vy64mem : X86MemOperand<"printi64mem">{
    388   let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
    389   let ParserMatchClass = X86MemVY64Operand; }
    390 def vy64xmem : X86MemOperand<"printi64mem">{
    391   let MIOperandInfo = (ops ptr_rc, i8imm, VR256X, i32imm, i8imm);
    392   let ParserMatchClass = X86MemVY64Operand; }
    393 def vz32mem : X86MemOperand<"printi32mem">{
    394   let MIOperandInfo = (ops ptr_rc, i16imm, VR512, i32imm, i8imm);
    395   let ParserMatchClass = X86MemVZ32Operand; }
    396 def vz64mem : X86MemOperand<"printi64mem">{
    397   let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
    398   let ParserMatchClass = X86MemVZ64Operand; }
    399 }
    400 
    401 // A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
    402 // plain GR64, so that it doesn't potentially require a REX prefix.
    403 def i8mem_NOREX : Operand<i64> {
    404   let PrintMethod = "printi8mem";
    405   let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm);
    406   let ParserMatchClass = X86Mem8AsmOperand;
    407   let OperandType = "OPERAND_MEMORY";
    408 }
    409 
    410 // GPRs available for tailcall.
    411 // It represents GR32_TC, GR64_TC or GR64_TCW64.
    412 def ptr_rc_tailcall : PointerLikeRegClass<2>;
    413 
    414 // Special i32mem for addresses of load folding tail calls. These are not
    415 // allowed to use callee-saved registers since they must be scheduled
    416 // after callee-saved register are popped.
    417 def i32mem_TC : Operand<i32> {
    418   let PrintMethod = "printi32mem";
    419   let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall,
    420                        i32imm, i8imm);
    421   let ParserMatchClass = X86Mem32AsmOperand;
    422   let OperandType = "OPERAND_MEMORY";
    423 }
    424 
    425 // Special i64mem for addresses of load folding tail calls. These are not
    426 // allowed to use callee-saved registers since they must be scheduled
    427 // after callee-saved register are popped.
    428 def i64mem_TC : Operand<i64> {
    429   let PrintMethod = "printi64mem";
    430   let MIOperandInfo = (ops ptr_rc_tailcall, i8imm,
    431                        ptr_rc_tailcall, i32imm, i8imm);
    432   let ParserMatchClass = X86Mem64AsmOperand;
    433   let OperandType = "OPERAND_MEMORY";
    434 }
    435 
    436 let OperandType = "OPERAND_PCREL",
    437     ParserMatchClass = X86AbsMemAsmOperand,
    438     PrintMethod = "printPCRelImm" in {
    439 def i32imm_pcrel : Operand<i32>;
    440 def i16imm_pcrel : Operand<i16>;
    441 
    442 def offset8 : Operand<i64>;
    443 def offset16 : Operand<i64>;
    444 def offset32 : Operand<i64>;
    445 def offset64 : Operand<i64>;
    446 
    447 // Branch targets have OtherVT type and print as pc-relative values.
    448 def brtarget : Operand<OtherVT>;
    449 def brtarget8 : Operand<OtherVT>;
    450 
    451 }
    452 
    453 def SSECC : Operand<i8> {
    454   let PrintMethod = "printSSECC";
    455   let OperandType = "OPERAND_IMMEDIATE";
    456 }
    457 
    458 def AVXCC : Operand<i8> {
    459   let PrintMethod = "printAVXCC";
    460   let OperandType = "OPERAND_IMMEDIATE";
    461 }
    462 
    463 class ImmSExtAsmOperandClass : AsmOperandClass {
    464   let SuperClasses = [ImmAsmOperand];
    465   let RenderMethod = "addImmOperands";
    466 }
    467 
    468 class ImmZExtAsmOperandClass : AsmOperandClass {
    469   let SuperClasses = [ImmAsmOperand];
    470   let RenderMethod = "addImmOperands";
    471 }
    472 
    473 // Sign-extended immediate classes. We don't need to define the full lattice
    474 // here because there is no instruction with an ambiguity between ImmSExti64i32
    475 // and ImmSExti32i8.
    476 //
    477 // The strange ranges come from the fact that the assembler always works with
    478 // 64-bit immediates, but for a 16-bit target value we want to accept both "-1"
    479 // (which will be a -1ULL), and "0xFF" (-1 in 16-bits).
    480 
    481 // [0, 0x7FFFFFFF]                                            |
    482 //   [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF]
    483 def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass {
    484   let Name = "ImmSExti64i32";
    485 }
    486 
    487 // [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] |
    488 //   [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
    489 def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass {
    490   let Name = "ImmSExti16i8";
    491   let SuperClasses = [ImmSExti64i32AsmOperand];
    492 }
    493 
    494 // [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] |
    495 //   [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
    496 def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass {
    497   let Name = "ImmSExti32i8";
    498 }
    499 
    500 // [0, 0x000000FF]
    501 def ImmZExtu32u8AsmOperand : ImmZExtAsmOperandClass {
    502   let Name = "ImmZExtu32u8";
    503 }
    504 
    505 
    506 // [0, 0x0000007F]                                            |
    507 //   [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
    508 def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass {
    509   let Name = "ImmSExti64i8";
    510   let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand,
    511                       ImmSExti64i32AsmOperand];
    512 }
    513 
    514 // A couple of more descriptive operand definitions.
    515 // 16-bits but only 8 bits are significant.
    516 def i16i8imm  : Operand<i16> {
    517   let ParserMatchClass = ImmSExti16i8AsmOperand;
    518   let OperandType = "OPERAND_IMMEDIATE";
    519 }
    520 // 32-bits but only 8 bits are significant.
    521 def i32i8imm  : Operand<i32> {
    522   let ParserMatchClass = ImmSExti32i8AsmOperand;
    523   let OperandType = "OPERAND_IMMEDIATE";
    524 }
    525 // 32-bits but only 8 bits are significant, and those 8 bits are unsigned.
    526 def u32u8imm  : Operand<i32> {
    527   let ParserMatchClass = ImmZExtu32u8AsmOperand;
    528   let OperandType = "OPERAND_IMMEDIATE";
    529 }
    530 
    531 // 64-bits but only 32 bits are significant.
    532 def i64i32imm  : Operand<i64> {
    533   let ParserMatchClass = ImmSExti64i32AsmOperand;
    534   let OperandType = "OPERAND_IMMEDIATE";
    535 }
    536 
    537 // 64-bits but only 32 bits are significant, and those bits are treated as being
    538 // pc relative.
    539 def i64i32imm_pcrel : Operand<i64> {
    540   let PrintMethod = "printPCRelImm";
    541   let ParserMatchClass = X86AbsMemAsmOperand;
    542   let OperandType = "OPERAND_PCREL";
    543 }
    544 
    545 // 64-bits but only 8 bits are significant.
    546 def i64i8imm   : Operand<i64> {
    547   let ParserMatchClass = ImmSExti64i8AsmOperand;
    548   let OperandType = "OPERAND_IMMEDIATE";
    549 }
    550 
    551 def lea64_32mem : Operand<i32> {
    552   let PrintMethod = "printi32mem";
    553   let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
    554   let ParserMatchClass = X86MemAsmOperand;
    555 }
    556 
    557 // Memory operands that use 64-bit pointers in both ILP32 and LP64.
    558 def lea64mem : Operand<i64> {
    559   let PrintMethod = "printi64mem";
    560   let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
    561   let ParserMatchClass = X86MemAsmOperand;
    562 }
    563 
    564 
    565 //===----------------------------------------------------------------------===//
    566 // X86 Complex Pattern Definitions.
    567 //
    568 
    569 // Define X86 specific addressing mode.
    570 def addr      : ComplexPattern<iPTR, 5, "SelectAddr", [], [SDNPWantParent]>;
    571 def lea32addr : ComplexPattern<i32, 5, "SelectLEAAddr",
    572                                [add, sub, mul, X86mul_imm, shl, or, frameindex],
    573                                []>;
    574 // In 64-bit mode 32-bit LEAs can use RIP-relative addressing.
    575 def lea64_32addr : ComplexPattern<i32, 5, "SelectLEA64_32Addr",
    576                                   [add, sub, mul, X86mul_imm, shl, or,
    577                                    frameindex, X86WrapperRIP],
    578                                   []>;
    579 
    580 def tls32addr : ComplexPattern<i32, 5, "SelectTLSADDRAddr",
    581                                [tglobaltlsaddr], []>;
    582 
    583 def tls32baseaddr : ComplexPattern<i32, 5, "SelectTLSADDRAddr",
    584                                [tglobaltlsaddr], []>;
    585 
    586 def lea64addr : ComplexPattern<i64, 5, "SelectLEAAddr",
    587                         [add, sub, mul, X86mul_imm, shl, or, frameindex,
    588                          X86WrapperRIP], []>;
    589 
    590 def tls64addr : ComplexPattern<i64, 5, "SelectTLSADDRAddr",
    591                                [tglobaltlsaddr], []>;
    592 
    593 def tls64baseaddr : ComplexPattern<i64, 5, "SelectTLSADDRAddr",
    594                                [tglobaltlsaddr], []>;
    595 
    596 //===----------------------------------------------------------------------===//
    597 // X86 Instruction Predicate Definitions.
    598 def HasCMov      : Predicate<"Subtarget->hasCMov()">;
    599 def NoCMov       : Predicate<"!Subtarget->hasCMov()">;
    600 
    601 def HasMMX       : Predicate<"Subtarget->hasMMX()">;
    602 def Has3DNow     : Predicate<"Subtarget->has3DNow()">;
    603 def Has3DNowA    : Predicate<"Subtarget->has3DNowA()">;
    604 def HasSSE1      : Predicate<"Subtarget->hasSSE1()">;
    605 def UseSSE1      : Predicate<"Subtarget->hasSSE1() && !Subtarget->hasAVX()">;
    606 def HasSSE2      : Predicate<"Subtarget->hasSSE2()">;
    607 def UseSSE2      : Predicate<"Subtarget->hasSSE2() && !Subtarget->hasAVX()">;
    608 def HasSSE3      : Predicate<"Subtarget->hasSSE3()">;
    609 def UseSSE3      : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">;
    610 def HasSSSE3     : Predicate<"Subtarget->hasSSSE3()">;
    611 def UseSSSE3     : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">;
    612 def HasSSE41     : Predicate<"Subtarget->hasSSE41()">;
    613 def UseSSE41     : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">;
    614 def HasSSE42     : Predicate<"Subtarget->hasSSE42()">;
    615 def UseSSE42     : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">;
    616 def HasSSE4A     : Predicate<"Subtarget->hasSSE4A()">;
    617 def HasAVX       : Predicate<"Subtarget->hasAVX()">;
    618 def HasAVX2      : Predicate<"Subtarget->hasAVX2()">;
    619 def HasAVX1Only  : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX2()">;
    620 def HasAVX512      : Predicate<"Subtarget->hasAVX512()">;
    621 def UseAVX       : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX512()">;
    622 def UseAVX2      : Predicate<"Subtarget->hasAVX2() && !Subtarget->hasAVX512()">;
    623 def NoAVX512       : Predicate<"!Subtarget->hasAVX512()">;
    624 def HasCDI       : Predicate<"Subtarget->hasCDI()">;
    625 def HasPFI       : Predicate<"Subtarget->hasPFI()">;
    626 def HasEMI       : Predicate<"Subtarget->hasERI()">;
    627 
    628 def HasPOPCNT    : Predicate<"Subtarget->hasPOPCNT()">;
    629 def HasAES       : Predicate<"Subtarget->hasAES()">;
    630 def HasPCLMUL    : Predicate<"Subtarget->hasPCLMUL()">;
    631 def HasFMA       : Predicate<"Subtarget->hasFMA()">;
    632 def UseFMAOnAVX  : Predicate<"Subtarget->hasFMA() && !Subtarget->hasAVX512()">;
    633 def HasFMA4      : Predicate<"Subtarget->hasFMA4()">;
    634 def HasXOP       : Predicate<"Subtarget->hasXOP()">;
    635 def HasMOVBE     : Predicate<"Subtarget->hasMOVBE()">;
    636 def HasRDRAND    : Predicate<"Subtarget->hasRDRAND()">;
    637 def HasF16C      : Predicate<"Subtarget->hasF16C()">;
    638 def HasFSGSBase  : Predicate<"Subtarget->hasFSGSBase()">;
    639 def HasLZCNT     : Predicate<"Subtarget->hasLZCNT()">;
    640 def HasBMI       : Predicate<"Subtarget->hasBMI()">;
    641 def HasBMI2      : Predicate<"Subtarget->hasBMI2()">;
    642 def HasRTM       : Predicate<"Subtarget->hasRTM()">;
    643 def HasHLE       : Predicate<"Subtarget->hasHLE()">;
    644 def HasTSX       : Predicate<"Subtarget->hasRTM() || Subtarget->hasHLE()">;
    645 def HasADX       : Predicate<"Subtarget->hasADX()">;
    646 def HasPRFCHW    : Predicate<"Subtarget->hasPRFCHW()">;
    647 def HasRDSEED    : Predicate<"Subtarget->hasRDSEED()">;
    648 def HasPrefetchW : Predicate<"Subtarget->has3DNow() || Subtarget->hasPRFCHW()">;
    649 def FPStackf32   : Predicate<"!Subtarget->hasSSE1()">;
    650 def FPStackf64   : Predicate<"!Subtarget->hasSSE2()">;
    651 def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">;
    652 def In32BitMode  : Predicate<"!Subtarget->is64Bit()">,
    653                              AssemblerPredicate<"!Mode64Bit", "32-bit mode">;
    654 def In64BitMode  : Predicate<"Subtarget->is64Bit()">,
    655                              AssemblerPredicate<"Mode64Bit", "64-bit mode">;
    656 def IsWin64      : Predicate<"Subtarget->isTargetWin64()">;
    657 def IsNaCl       : Predicate<"Subtarget->isTargetNaCl()">;
    658 def NotNaCl      : Predicate<"!Subtarget->isTargetNaCl()">;
    659 def SmallCode    : Predicate<"TM.getCodeModel() == CodeModel::Small">;
    660 def KernelCode   : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
    661 def FarData      : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
    662                              "TM.getCodeModel() != CodeModel::Kernel">;
    663 def NearData     : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
    664                              "TM.getCodeModel() == CodeModel::Kernel">;
    665 def IsStatic     : Predicate<"TM.getRelocationModel() == Reloc::Static">;
    666 def IsNotPIC     : Predicate<"TM.getRelocationModel() != Reloc::PIC_">;
    667 def OptForSize   : Predicate<"OptForSize">;
    668 def OptForSpeed  : Predicate<"!OptForSize">;
    669 def FastBTMem    : Predicate<"!Subtarget->isBTMemSlow()">;
    670 def CallImmAddr  : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">;
    671 def FavorMemIndirectCall  : Predicate<"!Subtarget->callRegIndirect()">;
    672 
    673 //===----------------------------------------------------------------------===//
    674 // X86 Instruction Format Definitions.
    675 //
    676 
    677 include "X86InstrFormats.td"
    678 
    679 //===----------------------------------------------------------------------===//
    680 // Pattern fragments.
    681 //
    682 
    683 // X86 specific condition code. These correspond to CondCode in
    684 // X86InstrInfo.h. They must be kept in synch.
    685 def X86_COND_A   : PatLeaf<(i8 0)>;  // alt. COND_NBE
    686 def X86_COND_AE  : PatLeaf<(i8 1)>;  // alt. COND_NC
    687 def X86_COND_B   : PatLeaf<(i8 2)>;  // alt. COND_C
    688 def X86_COND_BE  : PatLeaf<(i8 3)>;  // alt. COND_NA
    689 def X86_COND_E   : PatLeaf<(i8 4)>;  // alt. COND_Z
    690 def X86_COND_G   : PatLeaf<(i8 5)>;  // alt. COND_NLE
    691 def X86_COND_GE  : PatLeaf<(i8 6)>;  // alt. COND_NL
    692 def X86_COND_L   : PatLeaf<(i8 7)>;  // alt. COND_NGE
    693 def X86_COND_LE  : PatLeaf<(i8 8)>;  // alt. COND_NG
    694 def X86_COND_NE  : PatLeaf<(i8 9)>;  // alt. COND_NZ
    695 def X86_COND_NO  : PatLeaf<(i8 10)>;
    696 def X86_COND_NP  : PatLeaf<(i8 11)>; // alt. COND_PO
    697 def X86_COND_NS  : PatLeaf<(i8 12)>;
    698 def X86_COND_O   : PatLeaf<(i8 13)>;
    699 def X86_COND_P   : PatLeaf<(i8 14)>; // alt. COND_PE
    700 def X86_COND_S   : PatLeaf<(i8 15)>;
    701 
    702 let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs.
    703   def i16immSExt8  : ImmLeaf<i16, [{ return Imm == (int8_t)Imm; }]>;
    704   def i32immSExt8  : ImmLeaf<i32, [{ return Imm == (int8_t)Imm; }]>;
    705   def i64immSExt8  : ImmLeaf<i64, [{ return Imm == (int8_t)Imm; }]>;
    706 }
    707 
    708 def i64immSExt32 : ImmLeaf<i64, [{ return Imm == (int32_t)Imm; }]>;
    709 
    710 
    711 // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    712 // unsigned field.
    713 def i64immZExt32 : ImmLeaf<i64, [{ return (uint64_t)Imm == (uint32_t)Imm; }]>;
    714 
    715 def i64immZExt32SExt8 : ImmLeaf<i64, [{
    716   return (uint64_t)Imm == (uint32_t)Imm && (int32_t)Imm == (int8_t)Imm;
    717 }]>;
    718 
    719 // Helper fragments for loads.
    720 // It's always safe to treat a anyext i16 load as a i32 load if the i16 is
    721 // known to be 32-bit aligned or better. Ditto for i8 to i16.
    722 def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
    723   LoadSDNode *LD = cast<LoadSDNode>(N);
    724   ISD::LoadExtType ExtType = LD->getExtensionType();
    725   if (ExtType == ISD::NON_EXTLOAD)
    726     return true;
    727   if (ExtType == ISD::EXTLOAD)
    728     return LD->getAlignment() >= 2 && !LD->isVolatile();
    729   return false;
    730 }]>;
    731 
    732 def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{
    733   LoadSDNode *LD = cast<LoadSDNode>(N);
    734   ISD::LoadExtType ExtType = LD->getExtensionType();
    735   if (ExtType == ISD::EXTLOAD)
    736     return LD->getAlignment() >= 2 && !LD->isVolatile();
    737   return false;
    738 }]>;
    739 
    740 def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
    741   LoadSDNode *LD = cast<LoadSDNode>(N);
    742   ISD::LoadExtType ExtType = LD->getExtensionType();
    743   if (ExtType == ISD::NON_EXTLOAD)
    744     return true;
    745   if (ExtType == ISD::EXTLOAD)
    746     return LD->getAlignment() >= 4 && !LD->isVolatile();
    747   return false;
    748 }]>;
    749 
    750 def loadi8  : PatFrag<(ops node:$ptr), (i8  (load node:$ptr))>;
    751 def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>;
    752 def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>;
    753 def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>;
    754 def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>;
    755 
    756 def sextloadi16i8  : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
    757 def sextloadi32i8  : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
    758 def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
    759 def sextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
    760 def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
    761 def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
    762 
    763 def zextloadi8i1   : PatFrag<(ops node:$ptr), (i8  (zextloadi1 node:$ptr))>;
    764 def zextloadi16i1  : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
    765 def zextloadi32i1  : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
    766 def zextloadi16i8  : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
    767 def zextloadi32i8  : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
    768 def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
    769 def zextloadi64i1  : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
    770 def zextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
    771 def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
    772 def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
    773 
    774 def extloadi8i1    : PatFrag<(ops node:$ptr), (i8  (extloadi1 node:$ptr))>;
    775 def extloadi16i1   : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
    776 def extloadi32i1   : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
    777 def extloadi16i8   : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
    778 def extloadi32i8   : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
    779 def extloadi32i16  : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
    780 def extloadi64i1   : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
    781 def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
    782 def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
    783 def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
    784 
    785 
    786 // An 'and' node with a single use.
    787 def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
    788   return N->hasOneUse();
    789 }]>;
    790 // An 'srl' node with a single use.
    791 def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{
    792   return N->hasOneUse();
    793 }]>;
    794 // An 'trunc' node with a single use.
    795 def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
    796   return N->hasOneUse();
    797 }]>;
    798 
    799 //===----------------------------------------------------------------------===//
    800 // Instruction list.
    801 //
    802 
    803 // Nop
    804 let neverHasSideEffects = 1, SchedRW = [WriteZero] in {
    805   def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", [], IIC_NOP>;
    806   def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero),
    807                 "nop{w}\t$zero", [], IIC_NOP>, TB, OpSize;
    808   def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero),
    809                 "nop{l}\t$zero", [], IIC_NOP>, TB;
    810 }
    811 
    812 
    813 // Constructing a stack frame.
    814 def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl),
    815                  "enter\t$len, $lvl", [], IIC_ENTER>, Sched<[WriteMicrocoded]>;
    816 
    817 let SchedRW = [WriteALU] in {
    818 let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in
    819 def LEAVE    : I<0xC9, RawFrm,
    820                  (outs), (ins), "leave", [], IIC_LEAVE>,
    821                  Requires<[In32BitMode]>;
    822 
    823 let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
    824 def LEAVE64  : I<0xC9, RawFrm,
    825                  (outs), (ins), "leave", [], IIC_LEAVE>,
    826                  Requires<[In64BitMode]>;
    827 } // SchedRW
    828 
    829 //===----------------------------------------------------------------------===//
    830 //  Miscellaneous Instructions.
    831 //
    832 
    833 let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
    834 let mayLoad = 1, SchedRW = [WriteLoad] in {
    835 def POP16r  : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", [],
    836                 IIC_POP_REG16>, OpSize;
    837 def POP32r  : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", [],
    838                 IIC_POP_REG>;
    839 def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", [],
    840                 IIC_POP_REG>, OpSize;
    841 def POP16rmm: I<0x8F, MRM0m, (outs), (ins i16mem:$dst), "pop{w}\t$dst", [],
    842                 IIC_POP_MEM>, OpSize;
    843 def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", [],
    844                 IIC_POP_REG>;
    845 def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", [],
    846                 IIC_POP_MEM>;
    847 
    848 def POPF16   : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>, OpSize;
    849 def POPF32   : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
    850                Requires<[In32BitMode]>;
    851 } // mayLoad, SchedRW
    852 
    853 let mayStore = 1, SchedRW = [WriteStore] in {
    854 def PUSH16r  : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[],
    855                  IIC_PUSH_REG>, OpSize;
    856 def PUSH32r  : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[],
    857                  IIC_PUSH_REG>;
    858 def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[],
    859                  IIC_PUSH_REG>, OpSize;
    860 def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[],
    861                  IIC_PUSH_MEM>,
    862   OpSize;
    863 def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[],
    864                  IIC_PUSH_REG>;
    865 def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[],
    866                  IIC_PUSH_MEM>;
    867 
    868 def PUSHi8   : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm),
    869                       "push{l}\t$imm", [], IIC_PUSH_IMM>;
    870 def PUSHi16  : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
    871                       "push{w}\t$imm", [], IIC_PUSH_IMM>, OpSize;
    872 def PUSHi32  : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
    873                       "push{l}\t$imm", [], IIC_PUSH_IMM>;
    874 
    875 def PUSHF16  : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>,
    876                  OpSize;
    877 def PUSHF32  : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", [], IIC_PUSH_F>,
    878                Requires<[In32BitMode]>;
    879 
    880 } // mayStore, SchedRW
    881 }
    882 
    883 let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
    884 let mayLoad = 1, SchedRW = [WriteLoad] in {
    885 def POP64r   : I<0x58, AddRegFrm,
    886                  (outs GR64:$reg), (ins), "pop{q}\t$reg", [], IIC_POP_REG>;
    887 def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", [],
    888                 IIC_POP_REG>;
    889 def POP64rmm: I<0x8F, MRM0m, (outs), (ins i64mem:$dst), "pop{q}\t$dst", [],
    890                 IIC_POP_MEM>;
    891 } // mayLoad, SchedRW
    892 let mayStore = 1, SchedRW = [WriteStore] in {
    893 def PUSH64r  : I<0x50, AddRegFrm,
    894                  (outs), (ins GR64:$reg), "push{q}\t$reg", [], IIC_PUSH_REG>;
    895 def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", [],
    896                  IIC_PUSH_REG>;
    897 def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", [],
    898                  IIC_PUSH_MEM>;
    899 } // mayStore, SchedRW
    900 }
    901 
    902 let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1,
    903     SchedRW = [WriteStore] in {
    904 def PUSH64i8   : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm),
    905                      "push{q}\t$imm", [], IIC_PUSH_IMM>;
    906 def PUSH64i16  : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
    907                       "push{q}\t$imm", [], IIC_PUSH_IMM>;
    908 def PUSH64i32  : Ii32<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
    909                       "push{q}\t$imm", [], IIC_PUSH_IMM>;
    910 }
    911 
    912 let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in
    913 def POPF64   : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>,
    914                Requires<[In64BitMode]>, Sched<[WriteLoad]>;
    915 let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in
    916 def PUSHF64    : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>,
    917                  Requires<[In64BitMode]>, Sched<[WriteStore]>;
    918 
    919 let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP],
    920     mayLoad = 1, neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
    921 def POPA32   : I<0x61, RawFrm, (outs), (ins), "popa{l}", [], IIC_POP_A>,
    922                Requires<[In32BitMode]>;
    923 }
    924 let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP],
    925     mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
    926 def PUSHA32  : I<0x60, RawFrm, (outs), (ins), "pusha{l}", [], IIC_PUSH_A>,
    927                Requires<[In32BitMode]>;
    928 }
    929 
    930 let Constraints = "$src = $dst", SchedRW = [WriteALU] in {
    931 // GR32 = bswap GR32
    932 def BSWAP32r : I<0xC8, AddRegFrm,
    933                  (outs GR32:$dst), (ins GR32:$src),
    934                  "bswap{l}\t$dst",
    935                  [(set GR32:$dst, (bswap GR32:$src))], IIC_BSWAP>, TB;
    936 
    937 def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
    938                   "bswap{q}\t$dst",
    939                   [(set GR64:$dst, (bswap GR64:$src))], IIC_BSWAP>, TB;
    940 } // Constraints = "$src = $dst", SchedRW
    941 
    942 // Bit scan instructions.
    943 let Defs = [EFLAGS] in {
    944 def BSF16rr  : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
    945                  "bsf{w}\t{$src, $dst|$dst, $src}",
    946                  [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))],
    947                   IIC_BSF>, TB, OpSize, Sched<[WriteShift]>;
    948 def BSF16rm  : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
    949                  "bsf{w}\t{$src, $dst|$dst, $src}",
    950                  [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))],
    951                   IIC_BSF>, TB, OpSize, Sched<[WriteShiftLd]>;
    952 def BSF32rr  : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
    953                  "bsf{l}\t{$src, $dst|$dst, $src}",
    954                  [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))], IIC_BSF>, TB,
    955                Sched<[WriteShift]>;
    956 def BSF32rm  : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
    957                  "bsf{l}\t{$src, $dst|$dst, $src}",
    958                  [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))],
    959                  IIC_BSF>, TB, Sched<[WriteShiftLd]>;
    960 def BSF64rr  : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
    961                   "bsf{q}\t{$src, $dst|$dst, $src}",
    962                   [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))],
    963                   IIC_BSF>, TB, Sched<[WriteShift]>;
    964 def BSF64rm  : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
    965                   "bsf{q}\t{$src, $dst|$dst, $src}",
    966                   [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))],
    967                   IIC_BSF>, TB, Sched<[WriteShiftLd]>;
    968 
    969 def BSR16rr  : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
    970                  "bsr{w}\t{$src, $dst|$dst, $src}",
    971                  [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))], IIC_BSR>,
    972                  TB, OpSize, Sched<[WriteShift]>;
    973 def BSR16rm  : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
    974                  "bsr{w}\t{$src, $dst|$dst, $src}",
    975                  [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))],
    976                  IIC_BSR>, TB,
    977                  OpSize, Sched<[WriteShiftLd]>;
    978 def BSR32rr  : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
    979                  "bsr{l}\t{$src, $dst|$dst, $src}",
    980                  [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))], IIC_BSR>, TB,
    981                Sched<[WriteShift]>;
    982 def BSR32rm  : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
    983                  "bsr{l}\t{$src, $dst|$dst, $src}",
    984                  [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))],
    985                  IIC_BSR>, TB, Sched<[WriteShiftLd]>;
    986 def BSR64rr  : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
    987                   "bsr{q}\t{$src, $dst|$dst, $src}",
    988                   [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))], IIC_BSR>, TB,
    989                Sched<[WriteShift]>;
    990 def BSR64rm  : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
    991                   "bsr{q}\t{$src, $dst|$dst, $src}",
    992                   [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))],
    993                   IIC_BSR>, TB, Sched<[WriteShiftLd]>;
    994 } // Defs = [EFLAGS]
    995 
    996 let SchedRW = [WriteMicrocoded] in {
    997 // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
    998 let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
    999 def MOVSB : I<0xA4, RawFrm, (outs), (ins), "movsb", [], IIC_MOVS>;
   1000 def MOVSW : I<0xA5, RawFrm, (outs), (ins), "movsw", [], IIC_MOVS>, OpSize;
   1001 def MOVSD : I<0xA5, RawFrm, (outs), (ins), "movs{l|d}", [], IIC_MOVS>;
   1002 def MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "movsq", [], IIC_MOVS>;
   1003 }
   1004 
   1005 // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
   1006 let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
   1007 def STOSB : I<0xAA, RawFrm, (outs), (ins), "stosb", [], IIC_STOS>;
   1008 let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
   1009 def STOSW : I<0xAB, RawFrm, (outs), (ins), "stosw", [], IIC_STOS>, OpSize;
   1010 let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
   1011 def STOSD : I<0xAB, RawFrm, (outs), (ins), "stos{l|d}", [], IIC_STOS>;
   1012 let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI,EFLAGS] in
   1013 def STOSQ : RI<0xAB, RawFrm, (outs), (ins), "stosq", [], IIC_STOS>;
   1014 
   1015 def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scasb", [], IIC_SCAS>;
   1016 def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scasw", [], IIC_SCAS>, OpSize;
   1017 def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l|d}", [], IIC_SCAS>;
   1018 def SCAS64 : RI<0xAF, RawFrm, (outs), (ins), "scasq", [], IIC_SCAS>;
   1019 
   1020 def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmpsb", [], IIC_CMPS>;
   1021 def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmpsw", [], IIC_CMPS>, OpSize;
   1022 def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l|d}", [], IIC_CMPS>;
   1023 def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmpsq", [], IIC_CMPS>;
   1024 } // SchedRW
   1025 
   1026 //===----------------------------------------------------------------------===//
   1027 //  Move Instructions.
   1028 //
   1029 let SchedRW = [WriteMove] in {
   1030 let neverHasSideEffects = 1 in {
   1031 def MOV8rr  : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
   1032                 "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1033 def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
   1034                 "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize;
   1035 def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
   1036                 "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1037 def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
   1038                  "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1039 }
   1040 
   1041 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
   1042 def MOV8ri  : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src),
   1043                    "mov{b}\t{$src, $dst|$dst, $src}",
   1044                    [(set GR8:$dst, imm:$src)], IIC_MOV>;
   1045 def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src),
   1046                    "mov{w}\t{$src, $dst|$dst, $src}",
   1047                    [(set GR16:$dst, imm:$src)], IIC_MOV>, OpSize;
   1048 def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src),
   1049                    "mov{l}\t{$src, $dst|$dst, $src}",
   1050                    [(set GR32:$dst, imm:$src)], IIC_MOV>;
   1051 def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
   1052                     "movabs{q}\t{$src, $dst|$dst, $src}",
   1053                     [(set GR64:$dst, imm:$src)], IIC_MOV>;
   1054 def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
   1055                       "mov{q}\t{$src, $dst|$dst, $src}",
   1056                       [(set GR64:$dst, i64immSExt32:$src)], IIC_MOV>;
   1057 }
   1058 } // SchedRW
   1059 
   1060 let SchedRW = [WriteStore] in {
   1061 def MOV8mi  : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src),
   1062                    "mov{b}\t{$src, $dst|$dst, $src}",
   1063                    [(store (i8 imm:$src), addr:$dst)], IIC_MOV_MEM>;
   1064 def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src),
   1065                    "mov{w}\t{$src, $dst|$dst, $src}",
   1066                    [(store (i16 imm:$src), addr:$dst)], IIC_MOV_MEM>, OpSize;
   1067 def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
   1068                    "mov{l}\t{$src, $dst|$dst, $src}",
   1069                    [(store (i32 imm:$src), addr:$dst)], IIC_MOV_MEM>;
   1070 def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
   1071                       "mov{q}\t{$src, $dst|$dst, $src}",
   1072                       [(store i64immSExt32:$src, addr:$dst)], IIC_MOV_MEM>;
   1073 } // SchedRW
   1074 
   1075 /// moffs8, moffs16 and moffs32 versions of moves.  The immediate is a
   1076 /// 32-bit offset from the PC.  These are only valid in x86-32 mode.
   1077 let SchedRW = [WriteALU] in {
   1078 def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src),
   1079                    "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
   1080                    Requires<[In32BitMode]>;
   1081 def MOV16o16a : Ii32 <0xA1, RawFrm, (outs), (ins offset16:$src),
   1082                       "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>, OpSize,
   1083                      Requires<[In32BitMode]>;
   1084 def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins offset32:$src),
   1085                       "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
   1086                      Requires<[In32BitMode]>;
   1087 def MOV8ao8 : Ii32 <0xA2, RawFrm, (outs offset8:$dst), (ins),
   1088                    "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>,
   1089                   Requires<[In32BitMode]>;
   1090 def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins),
   1091                       "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>, OpSize,
   1092                      Requires<[In32BitMode]>;
   1093 def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins),
   1094                       "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
   1095                      Requires<[In32BitMode]>;
   1096 }
   1097 
   1098 // These forms all have full 64-bit absolute addresses in their instructions
   1099 // and use the movabs mnemonic to indicate this specific form.
   1100 def MOV64o8a : RIi64_NOREX<0xA0, RawFrm, (outs), (ins offset64:$src),
   1101                      "movabs{b}\t{$src, %al|al, $src}", []>,
   1102                      Requires<[In64BitMode]>;
   1103 def MOV64o16a : RIi64_NOREX<0xA1, RawFrm, (outs), (ins offset64:$src),
   1104                      "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize,
   1105                      Requires<[In64BitMode]>;
   1106 def MOV64o32a : RIi64_NOREX<0xA1, RawFrm, (outs), (ins offset64:$src),
   1107                      "movabs{l}\t{$src, %eax|eax, $src}", []>,
   1108                      Requires<[In64BitMode]>;
   1109 def MOV64o64a : RIi64<0xA1, RawFrm, (outs), (ins offset64:$src),
   1110                      "movabs{q}\t{$src, %rax|rax, $src}", []>,
   1111                      Requires<[In64BitMode]>;
   1112 
   1113 def MOV64ao8 : RIi64_NOREX<0xA2, RawFrm, (outs offset64:$dst), (ins),
   1114                      "movabs{b}\t{%al, $dst|$dst, al}", []>,
   1115                      Requires<[In64BitMode]>;
   1116 def MOV64ao16 : RIi64_NOREX<0xA3, RawFrm, (outs offset64:$dst), (ins),
   1117                      "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize,
   1118                      Requires<[In64BitMode]>;
   1119 def MOV64ao32 : RIi64_NOREX<0xA3, RawFrm, (outs offset64:$dst), (ins),
   1120                      "movabs{l}\t{%eax, $dst|$dst, eax}", []>,
   1121                      Requires<[In64BitMode]>;
   1122 def MOV64ao64 : RIi64<0xA3, RawFrm, (outs offset64:$dst), (ins),
   1123                      "movabs{q}\t{%rax, $dst|$dst, rax}", []>,
   1124                      Requires<[In64BitMode]>;
   1125 
   1126 let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in {
   1127 def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src),
   1128                    "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1129 def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
   1130                     "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV>, OpSize;
   1131 def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
   1132                     "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1133 def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
   1134                      "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
   1135 }
   1136 
   1137 let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
   1138 def MOV8rm  : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
   1139                 "mov{b}\t{$src, $dst|$dst, $src}",
   1140                 [(set GR8:$dst, (loadi8 addr:$src))], IIC_MOV_MEM>;
   1141 def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
   1142                 "mov{w}\t{$src, $dst|$dst, $src}",
   1143                 [(set GR16:$dst, (loadi16 addr:$src))], IIC_MOV_MEM>, OpSize;
   1144 def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1145                 "mov{l}\t{$src, $dst|$dst, $src}",
   1146                 [(set GR32:$dst, (loadi32 addr:$src))], IIC_MOV_MEM>;
   1147 def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1148                  "mov{q}\t{$src, $dst|$dst, $src}",
   1149                  [(set GR64:$dst, (load addr:$src))], IIC_MOV_MEM>;
   1150 }
   1151 
   1152 let SchedRW = [WriteStore] in {
   1153 def MOV8mr  : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src),
   1154                 "mov{b}\t{$src, $dst|$dst, $src}",
   1155                 [(store GR8:$src, addr:$dst)], IIC_MOV_MEM>;
   1156 def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
   1157                 "mov{w}\t{$src, $dst|$dst, $src}",
   1158                 [(store GR16:$src, addr:$dst)], IIC_MOV_MEM>, OpSize;
   1159 def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
   1160                 "mov{l}\t{$src, $dst|$dst, $src}",
   1161                 [(store GR32:$src, addr:$dst)], IIC_MOV_MEM>;
   1162 def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
   1163                  "mov{q}\t{$src, $dst|$dst, $src}",
   1164                  [(store GR64:$src, addr:$dst)], IIC_MOV_MEM>;
   1165 } // SchedRW
   1166 
   1167 // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so
   1168 // that they can be used for copying and storing h registers, which can't be
   1169 // encoded when a REX prefix is present.
   1170 let isCodeGenOnly = 1 in {
   1171 let neverHasSideEffects = 1 in
   1172 def MOV8rr_NOREX : I<0x88, MRMDestReg,
   1173                      (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
   1174                      "mov{b}\t{$src, $dst|$dst, $src}  # NOREX", [], IIC_MOV>,
   1175                    Sched<[WriteMove]>;
   1176 let mayStore = 1 in
   1177 def MOV8mr_NOREX : I<0x88, MRMDestMem,
   1178                      (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
   1179                      "mov{b}\t{$src, $dst|$dst, $src}  # NOREX", [],
   1180                      IIC_MOV_MEM>, Sched<[WriteStore]>;
   1181 let mayLoad = 1, neverHasSideEffects = 1,
   1182     canFoldAsLoad = 1, isReMaterializable = 1 in
   1183 def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
   1184                      (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
   1185                      "mov{b}\t{$src, $dst|$dst, $src}  # NOREX", [],
   1186                      IIC_MOV_MEM>, Sched<[WriteLoad]>;
   1187 }
   1188 
   1189 
   1190 // Condition code ops, incl. set if equal/not equal/...
   1191 let SchedRW = [WriteALU] in {
   1192 let Defs = [EFLAGS], Uses = [AH] in
   1193 def SAHF     : I<0x9E, RawFrm, (outs),  (ins), "sahf",
   1194                  [(set EFLAGS, (X86sahf AH))], IIC_AHF>;
   1195 let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in
   1196 def LAHF     : I<0x9F, RawFrm, (outs),  (ins), "lahf", [],
   1197                 IIC_AHF>;  // AH = flags
   1198 } // SchedRW
   1199 
   1200 //===----------------------------------------------------------------------===//
   1201 // Bit tests instructions: BT, BTS, BTR, BTC.
   1202 
   1203 let Defs = [EFLAGS] in {
   1204 let SchedRW = [WriteALU] in {
   1205 def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
   1206                "bt{w}\t{$src2, $src1|$src1, $src2}",
   1207                [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))], IIC_BT_RR>,
   1208                OpSize, TB;
   1209 def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
   1210                "bt{l}\t{$src2, $src1|$src1, $src2}",
   1211                [(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))], IIC_BT_RR>, TB;
   1212 def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
   1213                "bt{q}\t{$src2, $src1|$src1, $src2}",
   1214                [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))], IIC_BT_RR>, TB;
   1215 } // SchedRW
   1216 
   1217 // Unlike with the register+register form, the memory+register form of the
   1218 // bt instruction does not ignore the high bits of the index. From ISel's
   1219 // perspective, this is pretty bizarre. Make these instructions disassembly
   1220 // only for now.
   1221 
   1222 let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteALULd] in {
   1223   def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
   1224                  "bt{w}\t{$src2, $src1|$src1, $src2}",
   1225   //               [(X86bt (loadi16 addr:$src1), GR16:$src2),
   1226   //                (implicit EFLAGS)]
   1227                  [], IIC_BT_MR
   1228                  >, OpSize, TB, Requires<[FastBTMem]>;
   1229   def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
   1230                  "bt{l}\t{$src2, $src1|$src1, $src2}",
   1231   //               [(X86bt (loadi32 addr:$src1), GR32:$src2),
   1232   //                (implicit EFLAGS)]
   1233                  [], IIC_BT_MR
   1234                  >, TB, Requires<[FastBTMem]>;
   1235   def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
   1236                  "bt{q}\t{$src2, $src1|$src1, $src2}",
   1237   //               [(X86bt (loadi64 addr:$src1), GR64:$src2),
   1238   //                (implicit EFLAGS)]
   1239                   [], IIC_BT_MR
   1240                   >, TB;
   1241 }
   1242 
   1243 let SchedRW = [WriteALU] in {
   1244 def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2),
   1245                 "bt{w}\t{$src2, $src1|$src1, $src2}",
   1246                 [(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))],
   1247                 IIC_BT_RI>, OpSize, TB;
   1248 def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2),
   1249                 "bt{l}\t{$src2, $src1|$src1, $src2}",
   1250                 [(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))],
   1251                 IIC_BT_RI>, TB;
   1252 def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
   1253                 "bt{q}\t{$src2, $src1|$src1, $src2}",
   1254                 [(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))],
   1255                 IIC_BT_RI>, TB;
   1256 } // SchedRW
   1257 
   1258 // Note that these instructions don't need FastBTMem because that
   1259 // only applies when the other operand is in a register. When it's
   1260 // an immediate, bt is still fast.
   1261 let SchedRW = [WriteALU] in {
   1262 def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
   1263                 "bt{w}\t{$src2, $src1|$src1, $src2}",
   1264                 [(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2))
   1265                  ], IIC_BT_MI>, OpSize, TB;
   1266 def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
   1267                 "bt{l}\t{$src2, $src1|$src1, $src2}",
   1268                 [(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2))
   1269                  ], IIC_BT_MI>, TB;
   1270 def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
   1271                 "bt{q}\t{$src2, $src1|$src1, $src2}",
   1272                 [(set EFLAGS, (X86bt (loadi64 addr:$src1),
   1273                                      i64immSExt8:$src2))], IIC_BT_MI>, TB;
   1274 } // SchedRW
   1275 
   1276 let hasSideEffects = 0 in {
   1277 let SchedRW = [WriteALU] in {
   1278 def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
   1279                 "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
   1280                 OpSize, TB;
   1281 def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
   1282                 "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
   1283 def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
   1284                  "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
   1285 } // SchedRW
   1286 
   1287 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1288 def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
   1289                 "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
   1290                 OpSize, TB;
   1291 def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
   1292                 "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1293 def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
   1294                  "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1295 }
   1296 
   1297 let SchedRW = [WriteALU] in {
   1298 def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2),
   1299                     "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
   1300                     OpSize, TB;
   1301 def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2),
   1302                     "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1303 def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
   1304                     "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1305 } // SchedRW
   1306 
   1307 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1308 def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
   1309                     "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
   1310                     OpSize, TB;
   1311 def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
   1312                     "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1313 def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
   1314                     "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1315 }
   1316 
   1317 let SchedRW = [WriteALU] in {
   1318 def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
   1319                 "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
   1320                 OpSize, TB;
   1321 def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
   1322                 "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
   1323 def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
   1324                  "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
   1325 } // SchedRW
   1326 
   1327 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1328 def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
   1329                 "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
   1330                 OpSize, TB;
   1331 def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
   1332                 "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1333 def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
   1334                  "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1335 }
   1336 
   1337 let SchedRW = [WriteALU] in {
   1338 def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2),
   1339                     "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
   1340                     OpSize, TB;
   1341 def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2),
   1342                     "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1343 def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2),
   1344                     "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1345 } // SchedRW
   1346 
   1347 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1348 def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
   1349                     "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
   1350                     OpSize, TB;
   1351 def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
   1352                     "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1353 def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
   1354                     "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1355 }
   1356 
   1357 let SchedRW = [WriteALU] in {
   1358 def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
   1359                 "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>,
   1360                 OpSize, TB;
   1361 def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
   1362                 "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
   1363 def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
   1364                  "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB;
   1365 } // SchedRW
   1366 
   1367 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1368 def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
   1369                 "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>,
   1370                 OpSize, TB;
   1371 def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
   1372                 "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1373 def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
   1374                  "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB;
   1375 }
   1376 
   1377 let SchedRW = [WriteALU] in {
   1378 def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2),
   1379                     "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>,
   1380                     OpSize, TB;
   1381 def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2),
   1382                     "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1383 def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2),
   1384                     "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB;
   1385 } // SchedRW
   1386 
   1387 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1388 def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
   1389                     "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>,
   1390                     OpSize, TB;
   1391 def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
   1392                     "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1393 def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
   1394                     "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB;
   1395 }
   1396 } // hasSideEffects = 0
   1397 } // Defs = [EFLAGS]
   1398 
   1399 
   1400 //===----------------------------------------------------------------------===//
   1401 // Atomic support
   1402 //
   1403 
   1404 // Atomic swap. These are just normal xchg instructions. But since a memory
   1405 // operand is referenced, the atomicity is ensured.
   1406 multiclass ATOMIC_SWAP<bits<8> opc8, bits<8> opc, string mnemonic, string frag,
   1407                        InstrItinClass itin> {
   1408   let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in {
   1409     def NAME#8rm  : I<opc8, MRMSrcMem, (outs GR8:$dst),
   1410                       (ins GR8:$val, i8mem:$ptr),
   1411                       !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
   1412                       [(set
   1413                          GR8:$dst,
   1414                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
   1415                       itin>;
   1416     def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst),
   1417                       (ins GR16:$val, i16mem:$ptr),
   1418                       !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
   1419                       [(set
   1420                          GR16:$dst,
   1421                          (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
   1422                       itin>, OpSize;
   1423     def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst),
   1424                       (ins GR32:$val, i32mem:$ptr),
   1425                       !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
   1426                       [(set
   1427                          GR32:$dst,
   1428                          (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
   1429                       itin>;
   1430     def NAME#64rm : RI<opc, MRMSrcMem, (outs GR64:$dst),
   1431                        (ins GR64:$val, i64mem:$ptr),
   1432                        !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
   1433                        [(set
   1434                          GR64:$dst,
   1435                          (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
   1436                        itin>;
   1437   }
   1438 }
   1439 
   1440 defm XCHG    : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap", IIC_XCHG_MEM>;
   1441 
   1442 // Swap between registers.
   1443 let SchedRW = [WriteALU] in {
   1444 let Constraints = "$val = $dst" in {
   1445 def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src),
   1446                 "xchg{b}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>;
   1447 def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src),
   1448                  "xchg{w}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>, OpSize;
   1449 def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src),
   1450                  "xchg{l}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>;
   1451 def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst), (ins GR64:$val,GR64:$src),
   1452                   "xchg{q}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>;
   1453 }
   1454 
   1455 // Swap between EAX and other registers.
   1456 def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src),
   1457                   "xchg{w}\t{$src, %ax|ax, $src}", [], IIC_XCHG_REG>, OpSize;
   1458 def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src),
   1459                   "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>,
   1460                   Requires<[In32BitMode]>;
   1461 // Uses GR32_NOAX in 64-bit mode to prevent encoding using the 0x90 NOP encoding.
   1462 // xchg %eax, %eax needs to clear upper 32-bits of RAX so is not a NOP.
   1463 def XCHG32ar64 : I<0x90, AddRegFrm, (outs), (ins GR32_NOAX:$src),
   1464                    "xchg{l}\t{$src, %eax|eax, $src}", [], IIC_XCHG_REG>,
   1465                    Requires<[In64BitMode]>;
   1466 def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src),
   1467                   "xchg{q}\t{$src, %rax|rax, $src}", [], IIC_XCHG_REG>;
   1468 } // SchedRW
   1469 
   1470 let SchedRW = [WriteALU] in {
   1471 def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
   1472                 "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB;
   1473 def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
   1474                  "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB,
   1475                  OpSize;
   1476 def XADD32rr  : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
   1477                  "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB;
   1478 def XADD64rr  : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
   1479                    "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB;
   1480 } // SchedRW
   1481 
   1482 let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in {
   1483 def XADD8rm   : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
   1484                  "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB;
   1485 def XADD16rm  : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
   1486                  "xadd{w}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB,
   1487                  OpSize;
   1488 def XADD32rm  : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
   1489                  "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB;
   1490 def XADD64rm  : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
   1491                    "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB;
   1492 
   1493 }
   1494 
   1495 let SchedRW = [WriteALU] in {
   1496 def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
   1497                    "cmpxchg{b}\t{$src, $dst|$dst, $src}", [],
   1498                    IIC_CMPXCHG_REG8>, TB;
   1499 def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
   1500                     "cmpxchg{w}\t{$src, $dst|$dst, $src}", [],
   1501                     IIC_CMPXCHG_REG>, TB, OpSize;
   1502 def CMPXCHG32rr  : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
   1503                      "cmpxchg{l}\t{$src, $dst|$dst, $src}", [],
   1504                      IIC_CMPXCHG_REG>, TB;
   1505 def CMPXCHG64rr  : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
   1506                       "cmpxchg{q}\t{$src, $dst|$dst, $src}", [],
   1507                       IIC_CMPXCHG_REG>, TB;
   1508 } // SchedRW
   1509 
   1510 let SchedRW = [WriteALULd, WriteRMW] in {
   1511 let mayLoad = 1, mayStore = 1 in {
   1512 def CMPXCHG8rm   : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
   1513                      "cmpxchg{b}\t{$src, $dst|$dst, $src}", [],
   1514                      IIC_CMPXCHG_MEM8>, TB;
   1515 def CMPXCHG16rm  : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
   1516                      "cmpxchg{w}\t{$src, $dst|$dst, $src}", [],
   1517                      IIC_CMPXCHG_MEM>, TB, OpSize;
   1518 def CMPXCHG32rm  : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
   1519                      "cmpxchg{l}\t{$src, $dst|$dst, $src}", [],
   1520                      IIC_CMPXCHG_MEM>, TB;
   1521 def CMPXCHG64rm  : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
   1522                       "cmpxchg{q}\t{$src, $dst|$dst, $src}", [],
   1523                       IIC_CMPXCHG_MEM>, TB;
   1524 }
   1525 
   1526 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
   1527 def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
   1528                   "cmpxchg8b\t$dst", [], IIC_CMPXCHG_8B>, TB;
   1529 
   1530 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
   1531 def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
   1532                     "cmpxchg16b\t$dst", [], IIC_CMPXCHG_16B>,
   1533                     TB, Requires<[HasCmpxchg16b]>;
   1534 } // SchedRW
   1535 
   1536 
   1537 // Lock instruction prefix
   1538 def LOCK_PREFIX : I<0xF0, RawFrm, (outs),  (ins), "lock", []>;
   1539 
   1540 // Rex64 instruction prefix
   1541 def REX64_PREFIX : I<0x48, RawFrm, (outs),  (ins), "rex64", []>;
   1542 
   1543 // Data16 instruction prefix
   1544 def DATA16_PREFIX : I<0x66, RawFrm, (outs),  (ins), "data16", []>;
   1545 
   1546 // Repeat string operation instruction prefixes
   1547 // These uses the DF flag in the EFLAGS register to inc or dec ECX
   1548 let Defs = [ECX], Uses = [ECX,EFLAGS] in {
   1549 // Repeat (used with INS, OUTS, MOVS, LODS and STOS)
   1550 def REP_PREFIX : I<0xF3, RawFrm, (outs),  (ins), "rep", []>;
   1551 // Repeat while not equal (used with CMPS and SCAS)
   1552 def REPNE_PREFIX : I<0xF2, RawFrm, (outs),  (ins), "repne", []>;
   1553 }
   1554 
   1555 
   1556 // String manipulation instructions
   1557 let SchedRW = [WriteMicrocoded] in {
   1558 def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", [], IIC_LODS>;
   1559 def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", [], IIC_LODS>, OpSize;
   1560 def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", [], IIC_LODS>;
   1561 def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", [], IIC_LODS>;
   1562 }
   1563 
   1564 let SchedRW = [WriteSystem] in {
   1565 def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", [], IIC_OUTS>;
   1566 def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", [], IIC_OUTS>, OpSize;
   1567 def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", [], IIC_OUTS>;
   1568 }
   1569 
   1570 // Flag instructions
   1571 let SchedRW = [WriteALU] in {
   1572 def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>;
   1573 def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>;
   1574 def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>;
   1575 def STI : I<0xFB, RawFrm, (outs), (ins), "sti", [], IIC_STI>;
   1576 def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", [], IIC_CLD>;
   1577 def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>;
   1578 def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>;
   1579 
   1580 def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB;
   1581 }
   1582 
   1583 // Table lookup instructions
   1584 def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>,
   1585            Sched<[WriteLoad]>;
   1586 
   1587 let SchedRW = [WriteMicrocoded] in {
   1588 // ASCII Adjust After Addition
   1589 // sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
   1590 def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", [], IIC_AAA>,
   1591             Requires<[In32BitMode]>;
   1592 
   1593 // ASCII Adjust AX Before Division
   1594 // sets AL, AH and EFLAGS and uses AL and AH
   1595 def AAD8i8 : Ii8<0xD5, RawFrm, (outs), (ins i8imm:$src),
   1596                  "aad\t$src", [], IIC_AAD>, Requires<[In32BitMode]>;
   1597 
   1598 // ASCII Adjust AX After Multiply
   1599 // sets AL, AH and EFLAGS and uses AL
   1600 def AAM8i8 : Ii8<0xD4, RawFrm, (outs), (ins i8imm:$src),
   1601                  "aam\t$src", [], IIC_AAM>, Requires<[In32BitMode]>;
   1602 
   1603 // ASCII Adjust AL After Subtraction - sets
   1604 // sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
   1605 def AAS : I<0x3F, RawFrm, (outs), (ins), "aas", [], IIC_AAS>,
   1606             Requires<[In32BitMode]>;
   1607 
   1608 // Decimal Adjust AL after Addition
   1609 // sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
   1610 def DAA : I<0x27, RawFrm, (outs), (ins), "daa", [], IIC_DAA>,
   1611             Requires<[In32BitMode]>;
   1612 
   1613 // Decimal Adjust AL after Subtraction
   1614 // sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
   1615 def DAS : I<0x2F, RawFrm, (outs), (ins), "das", [], IIC_DAS>,
   1616             Requires<[In32BitMode]>;
   1617 } // SchedRW
   1618 
   1619 let SchedRW = [WriteSystem] in {
   1620 // Check Array Index Against Bounds
   1621 def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
   1622                    "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, OpSize,
   1623                    Requires<[In32BitMode]>;
   1624 def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1625                    "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>,
   1626                    Requires<[In32BitMode]>;
   1627 
   1628 // Adjust RPL Field of Segment Selector
   1629 def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
   1630                  "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_REG>,
   1631                  Requires<[In32BitMode]>;
   1632 def ARPL16mr : I<0x63, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
   1633                  "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_MEM>,
   1634                  Requires<[In32BitMode]>;
   1635 } // SchedRW
   1636 
   1637 //===----------------------------------------------------------------------===//
   1638 // MOVBE Instructions
   1639 //
   1640 let Predicates = [HasMOVBE] in {
   1641   let SchedRW = [WriteALULd] in {
   1642   def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
   1643                     "movbe{w}\t{$src, $dst|$dst, $src}",
   1644                     [(set GR16:$dst, (bswap (loadi16 addr:$src)))], IIC_MOVBE>,
   1645                     OpSize, T8;
   1646   def MOVBE32rm : I<0xF0, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1647                     "movbe{l}\t{$src, $dst|$dst, $src}",
   1648                     [(set GR32:$dst, (bswap (loadi32 addr:$src)))], IIC_MOVBE>,
   1649                     T8;
   1650   def MOVBE64rm : RI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1651                      "movbe{q}\t{$src, $dst|$dst, $src}",
   1652                      [(set GR64:$dst, (bswap (loadi64 addr:$src)))], IIC_MOVBE>,
   1653                      T8;
   1654   }
   1655   let SchedRW = [WriteStore] in {
   1656   def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
   1657                     "movbe{w}\t{$src, $dst|$dst, $src}",
   1658                     [(store (bswap GR16:$src), addr:$dst)], IIC_MOVBE>,
   1659                     OpSize, T8;
   1660   def MOVBE32mr : I<0xF1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
   1661                     "movbe{l}\t{$src, $dst|$dst, $src}",
   1662                     [(store (bswap GR32:$src), addr:$dst)], IIC_MOVBE>,
   1663                     T8;
   1664   def MOVBE64mr : RI<0xF1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
   1665                      "movbe{q}\t{$src, $dst|$dst, $src}",
   1666                      [(store (bswap GR64:$src), addr:$dst)], IIC_MOVBE>,
   1667                      T8;
   1668   }
   1669 }
   1670 
   1671 //===----------------------------------------------------------------------===//
   1672 // RDRAND Instruction
   1673 //
   1674 let Predicates = [HasRDRAND], Defs = [EFLAGS] in {
   1675   def RDRAND16r : I<0xC7, MRM6r, (outs GR16:$dst), (ins),
   1676                     "rdrand{w}\t$dst",
   1677                     [(set GR16:$dst, EFLAGS, (X86rdrand))]>, OpSize, TB;
   1678   def RDRAND32r : I<0xC7, MRM6r, (outs GR32:$dst), (ins),
   1679                     "rdrand{l}\t$dst",
   1680                     [(set GR32:$dst, EFLAGS, (X86rdrand))]>, TB;
   1681   def RDRAND64r : RI<0xC7, MRM6r, (outs GR64:$dst), (ins),
   1682                      "rdrand{q}\t$dst",
   1683                      [(set GR64:$dst, EFLAGS, (X86rdrand))]>, TB;
   1684 }
   1685 
   1686 //===----------------------------------------------------------------------===//
   1687 // RDSEED Instruction
   1688 //
   1689 let Predicates = [HasRDSEED], Defs = [EFLAGS] in {
   1690   def RDSEED16r : I<0xC7, MRM7r, (outs GR16:$dst), (ins),
   1691                     "rdseed{w}\t$dst",
   1692                     [(set GR16:$dst, EFLAGS, (X86rdseed))]>, OpSize, TB;
   1693   def RDSEED32r : I<0xC7, MRM7r, (outs GR32:$dst), (ins),
   1694                     "rdseed{l}\t$dst",
   1695                     [(set GR32:$dst, EFLAGS, (X86rdseed))]>, TB;
   1696   def RDSEED64r : RI<0xC7, MRM7r, (outs GR64:$dst), (ins),
   1697                      "rdseed{q}\t$dst",
   1698                      [(set GR64:$dst, EFLAGS, (X86rdseed))]>, TB;
   1699 }
   1700 
   1701 //===----------------------------------------------------------------------===//
   1702 // LZCNT Instruction
   1703 //
   1704 let Predicates = [HasLZCNT], Defs = [EFLAGS] in {
   1705   def LZCNT16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
   1706                     "lzcnt{w}\t{$src, $dst|$dst, $src}",
   1707                     [(set GR16:$dst, (ctlz GR16:$src)), (implicit EFLAGS)]>, XS,
   1708                     OpSize;
   1709   def LZCNT16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
   1710                     "lzcnt{w}\t{$src, $dst|$dst, $src}",
   1711                     [(set GR16:$dst, (ctlz (loadi16 addr:$src))),
   1712                      (implicit EFLAGS)]>, XS, OpSize;
   1713 
   1714   def LZCNT32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
   1715                     "lzcnt{l}\t{$src, $dst|$dst, $src}",
   1716                     [(set GR32:$dst, (ctlz GR32:$src)), (implicit EFLAGS)]>, XS;
   1717   def LZCNT32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1718                     "lzcnt{l}\t{$src, $dst|$dst, $src}",
   1719                     [(set GR32:$dst, (ctlz (loadi32 addr:$src))),
   1720                      (implicit EFLAGS)]>, XS;
   1721 
   1722   def LZCNT64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
   1723                      "lzcnt{q}\t{$src, $dst|$dst, $src}",
   1724                      [(set GR64:$dst, (ctlz GR64:$src)), (implicit EFLAGS)]>,
   1725                      XS;
   1726   def LZCNT64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1727                      "lzcnt{q}\t{$src, $dst|$dst, $src}",
   1728                      [(set GR64:$dst, (ctlz (loadi64 addr:$src))),
   1729                       (implicit EFLAGS)]>, XS;
   1730 }
   1731 
   1732 //===----------------------------------------------------------------------===//
   1733 // BMI Instructions
   1734 //
   1735 let Predicates = [HasBMI], Defs = [EFLAGS] in {
   1736   def TZCNT16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
   1737                     "tzcnt{w}\t{$src, $dst|$dst, $src}",
   1738                     [(set GR16:$dst, (cttz GR16:$src)), (implicit EFLAGS)]>, XS,
   1739                     OpSize;
   1740   def TZCNT16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
   1741                     "tzcnt{w}\t{$src, $dst|$dst, $src}",
   1742                     [(set GR16:$dst, (cttz (loadi16 addr:$src))),
   1743                      (implicit EFLAGS)]>, XS, OpSize;
   1744 
   1745   def TZCNT32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
   1746                     "tzcnt{l}\t{$src, $dst|$dst, $src}",
   1747                     [(set GR32:$dst, (cttz GR32:$src)), (implicit EFLAGS)]>, XS;
   1748   def TZCNT32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
   1749                     "tzcnt{l}\t{$src, $dst|$dst, $src}",
   1750                     [(set GR32:$dst, (cttz (loadi32 addr:$src))),
   1751                      (implicit EFLAGS)]>, XS;
   1752 
   1753   def TZCNT64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
   1754                      "tzcnt{q}\t{$src, $dst|$dst, $src}",
   1755                      [(set GR64:$dst, (cttz GR64:$src)), (implicit EFLAGS)]>,
   1756                      XS;
   1757   def TZCNT64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
   1758                      "tzcnt{q}\t{$src, $dst|$dst, $src}",
   1759                      [(set GR64:$dst, (cttz (loadi64 addr:$src))),
   1760                       (implicit EFLAGS)]>, XS;
   1761 }
   1762 
   1763 multiclass bmi_bls<string mnemonic, Format RegMRM, Format MemMRM,
   1764                   RegisterClass RC, X86MemOperand x86memop, SDNode OpNode,
   1765                   PatFrag ld_frag> {
   1766   def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src),
   1767              !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
   1768              [(set RC:$dst, (OpNode RC:$src)), (implicit EFLAGS)]>, T8, VEX_4V;
   1769   def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src),
   1770              !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
   1771              [(set RC:$dst, (OpNode (ld_frag addr:$src))), (implicit EFLAGS)]>,
   1772              T8, VEX_4V;
   1773 }
   1774 
   1775 let Predicates = [HasBMI], Defs = [EFLAGS] in {
   1776   defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem,
   1777                         X86blsr, loadi32>;
   1778   defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem,
   1779                         X86blsr, loadi64>, VEX_W;
   1780   defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem,
   1781                           X86blsmsk, loadi32>;
   1782   defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem,
   1783                           X86blsmsk, loadi64>, VEX_W;
   1784   defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem,
   1785                         X86blsi, loadi32>;
   1786   defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem,
   1787                         X86blsi, loadi64>, VEX_W;
   1788 }
   1789 
   1790 multiclass bmi_bextr_bzhi<bits<8> opc, string mnemonic, RegisterClass RC,
   1791                           X86MemOperand x86memop, Intrinsic Int,
   1792                           PatFrag ld_frag> {
   1793   def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
   1794              !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1795              [(set RC:$dst, (Int RC:$src1, RC:$src2)), (implicit EFLAGS)]>,
   1796              T8, VEX_4VOp3;
   1797   def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, RC:$src2),
   1798              !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1799              [(set RC:$dst, (Int (ld_frag addr:$src1), RC:$src2)),
   1800               (implicit EFLAGS)]>, T8, VEX_4VOp3;
   1801 }
   1802 
   1803 let Predicates = [HasBMI], Defs = [EFLAGS] in {
   1804   defm BEXTR32 : bmi_bextr_bzhi<0xF7, "bextr{l}", GR32, i32mem,
   1805                                 int_x86_bmi_bextr_32, loadi32>;
   1806   defm BEXTR64 : bmi_bextr_bzhi<0xF7, "bextr{q}", GR64, i64mem,
   1807                                 int_x86_bmi_bextr_64, loadi64>, VEX_W;
   1808 }
   1809 
   1810 let Predicates = [HasBMI2], Defs = [EFLAGS] in {
   1811   defm BZHI32 : bmi_bextr_bzhi<0xF5, "bzhi{l}", GR32, i32mem,
   1812                                int_x86_bmi_bzhi_32, loadi32>;
   1813   defm BZHI64 : bmi_bextr_bzhi<0xF5, "bzhi{q}", GR64, i64mem,
   1814                                int_x86_bmi_bzhi_64, loadi64>, VEX_W;
   1815 }
   1816 
   1817 multiclass bmi_pdep_pext<string mnemonic, RegisterClass RC,
   1818                          X86MemOperand x86memop, Intrinsic Int,
   1819                          PatFrag ld_frag> {
   1820   def rr : I<0xF5, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
   1821              !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1822              [(set RC:$dst, (Int RC:$src1, RC:$src2))]>,
   1823              VEX_4V;
   1824   def rm : I<0xF5, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
   1825              !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1826              [(set RC:$dst, (Int RC:$src1, (ld_frag addr:$src2)))]>, VEX_4V;
   1827 }
   1828 
   1829 let Predicates = [HasBMI2] in {
   1830   defm PDEP32 : bmi_pdep_pext<"pdep{l}", GR32, i32mem,
   1831                                int_x86_bmi_pdep_32, loadi32>, T8XD;
   1832   defm PDEP64 : bmi_pdep_pext<"pdep{q}", GR64, i64mem,
   1833                                int_x86_bmi_pdep_64, loadi64>, T8XD, VEX_W;
   1834   defm PEXT32 : bmi_pdep_pext<"pext{l}", GR32, i32mem,
   1835                                int_x86_bmi_pext_32, loadi32>, T8XS;
   1836   defm PEXT64 : bmi_pdep_pext<"pext{q}", GR64, i64mem,
   1837                                int_x86_bmi_pext_64, loadi64>, T8XS, VEX_W;
   1838 }
   1839 
   1840 //===----------------------------------------------------------------------===//
   1841 // Subsystems.
   1842 //===----------------------------------------------------------------------===//
   1843 
   1844 include "X86InstrArithmetic.td"
   1845 include "X86InstrCMovSetCC.td"
   1846 include "X86InstrExtension.td"
   1847 include "X86InstrControl.td"
   1848 include "X86InstrShiftRotate.td"
   1849 
   1850 // X87 Floating Point Stack.
   1851 include "X86InstrFPStack.td"
   1852 
   1853 // SIMD support (SSE, MMX and AVX)
   1854 include "X86InstrFragmentsSIMD.td"
   1855 
   1856 // FMA - Fused Multiply-Add support (requires FMA)
   1857 include "X86InstrFMA.td"
   1858 
   1859 // XOP
   1860 include "X86InstrXOP.td"
   1861 
   1862 // SSE, MMX and 3DNow! vector support.
   1863 include "X86InstrSSE.td"
   1864 include "X86InstrAVX512.td"
   1865 include "X86InstrMMX.td"
   1866 include "X86Instr3DNow.td"
   1867 
   1868 include "X86InstrVMX.td"
   1869 include "X86InstrSVM.td"
   1870 
   1871 include "X86InstrTSX.td"
   1872 
   1873 // System instructions.
   1874 include "X86InstrSystem.td"
   1875 
   1876 // Compiler Pseudo Instructions and Pat Patterns
   1877 include "X86InstrCompiler.td"
   1878 
   1879 //===----------------------------------------------------------------------===//
   1880 // Assembler Mnemonic Aliases
   1881 //===----------------------------------------------------------------------===//
   1882 
   1883 def : MnemonicAlias<"call", "calll", "att">, Requires<[In32BitMode]>;
   1884 def : MnemonicAlias<"call", "callq", "att">, Requires<[In64BitMode]>;
   1885 
   1886 def : MnemonicAlias<"cbw",  "cbtw", "att">;
   1887 def : MnemonicAlias<"cwde", "cwtl", "att">;
   1888 def : MnemonicAlias<"cwd",  "cwtd", "att">;
   1889 def : MnemonicAlias<"cdq",  "cltd", "att">;
   1890 def : MnemonicAlias<"cdqe", "cltq", "att">;
   1891 def : MnemonicAlias<"cqo",  "cqto", "att">;
   1892 
   1893 // lret maps to lretl, it is not ambiguous with lretq.
   1894 def : MnemonicAlias<"lret", "lretl", "att">;
   1895 
   1896 def : MnemonicAlias<"leavel", "leave", "att">, Requires<[In32BitMode]>;
   1897 def : MnemonicAlias<"leaveq", "leave", "att">, Requires<[In64BitMode]>;
   1898 
   1899 def : MnemonicAlias<"loopz",  "loope",  "att">;
   1900 def : MnemonicAlias<"loopnz", "loopne", "att">;
   1901 
   1902 def : MnemonicAlias<"pop",   "popl",  "att">, Requires<[In32BitMode]>;
   1903 def : MnemonicAlias<"pop",   "popq",  "att">, Requires<[In64BitMode]>;
   1904 def : MnemonicAlias<"popf",  "popfl", "att">, Requires<[In32BitMode]>;
   1905 def : MnemonicAlias<"popf",  "popfq", "att">, Requires<[In64BitMode]>;
   1906 def : MnemonicAlias<"popfd", "popfl", "att">;
   1907 
   1908 // FIXME: This is wrong for "push reg".  "push %bx" should turn into pushw in
   1909 // all modes.  However: "push (addr)" and "push $42" should default to
   1910 // pushl/pushq depending on the current mode.  Similar for "pop %bx"
   1911 def : MnemonicAlias<"push",   "pushl",  "att">, Requires<[In32BitMode]>;
   1912 def : MnemonicAlias<"push",   "pushq",  "att">, Requires<[In64BitMode]>;
   1913 def : MnemonicAlias<"pushf",  "pushfl", "att">, Requires<[In32BitMode]>;
   1914 def : MnemonicAlias<"pushf",  "pushfq", "att">, Requires<[In64BitMode]>;
   1915 def : MnemonicAlias<"pushfd", "pushfl", "att">;
   1916 
   1917 def : MnemonicAlias<"popad",   "popa", "intel">, Requires<[In32BitMode]>;
   1918 def : MnemonicAlias<"pushad",  "pusha", "intel">, Requires<[In32BitMode]>;
   1919 
   1920 def : MnemonicAlias<"repe",  "rep",   "att">;
   1921 def : MnemonicAlias<"repz",  "rep",   "att">;
   1922 def : MnemonicAlias<"repnz", "repne", "att">;
   1923 
   1924 def : MnemonicAlias<"retl", "ret", "att">, Requires<[In32BitMode]>;
   1925 def : MnemonicAlias<"retq", "ret", "att">, Requires<[In64BitMode]>;
   1926 
   1927 def : MnemonicAlias<"salb", "shlb", "att">;
   1928 def : MnemonicAlias<"salw", "shlw", "att">;
   1929 def : MnemonicAlias<"sall", "shll", "att">;
   1930 def : MnemonicAlias<"salq", "shlq", "att">;
   1931 
   1932 def : MnemonicAlias<"smovb", "movsb", "att">;
   1933 def : MnemonicAlias<"smovw", "movsw", "att">;
   1934 def : MnemonicAlias<"smovl", "movsl", "att">;
   1935 def : MnemonicAlias<"smovq", "movsq", "att">;
   1936 
   1937 def : MnemonicAlias<"ud2a",  "ud2",  "att">;
   1938 def : MnemonicAlias<"verrw", "verr", "att">;
   1939 
   1940 // System instruction aliases.
   1941 def : MnemonicAlias<"iret",    "iretl",    "att">;
   1942 def : MnemonicAlias<"sysret",  "sysretl",  "att">;
   1943 def : MnemonicAlias<"sysexit", "sysexitl", "att">;
   1944 
   1945 def : MnemonicAlias<"lgdtl", "lgdt", "att">, Requires<[In32BitMode]>;
   1946 def : MnemonicAlias<"lgdtq", "lgdt", "att">, Requires<[In64BitMode]>;
   1947 def : MnemonicAlias<"lidtl", "lidt", "att">, Requires<[In32BitMode]>;
   1948 def : MnemonicAlias<"lidtq", "lidt", "att">, Requires<[In64BitMode]>;
   1949 def : MnemonicAlias<"sgdtl", "sgdt", "att">, Requires<[In32BitMode]>;
   1950 def : MnemonicAlias<"sgdtq", "sgdt", "att">, Requires<[In64BitMode]>;
   1951 def : MnemonicAlias<"sidtl", "sidt", "att">, Requires<[In32BitMode]>;
   1952 def : MnemonicAlias<"sidtq", "sidt", "att">, Requires<[In64BitMode]>;
   1953 
   1954 
   1955 // Floating point stack aliases.
   1956 def : MnemonicAlias<"fcmovz",   "fcmove",   "att">;
   1957 def : MnemonicAlias<"fcmova",   "fcmovnbe", "att">;
   1958 def : MnemonicAlias<"fcmovnae", "fcmovb",   "att">;
   1959 def : MnemonicAlias<"fcmovna",  "fcmovbe",  "att">;
   1960 def : MnemonicAlias<"fcmovae",  "fcmovnb",  "att">;
   1961 def : MnemonicAlias<"fcomip",   "fcompi",   "att">;
   1962 def : MnemonicAlias<"fildq",    "fildll",   "att">;
   1963 def : MnemonicAlias<"fistpq",   "fistpll",  "att">;
   1964 def : MnemonicAlias<"fisttpq",  "fisttpll", "att">;
   1965 def : MnemonicAlias<"fldcww",   "fldcw",    "att">;
   1966 def : MnemonicAlias<"fnstcww",  "fnstcw",   "att">;
   1967 def : MnemonicAlias<"fnstsww",  "fnstsw",   "att">;
   1968 def : MnemonicAlias<"fucomip",  "fucompi",  "att">;
   1969 def : MnemonicAlias<"fwait",    "wait",     "att">;
   1970 
   1971 
   1972 class CondCodeAlias<string Prefix,string Suffix, string OldCond, string NewCond,
   1973                     string VariantName>
   1974   : MnemonicAlias<!strconcat(Prefix, OldCond, Suffix),
   1975                   !strconcat(Prefix, NewCond, Suffix), VariantName>;
   1976 
   1977 /// IntegerCondCodeMnemonicAlias - This multiclass defines a bunch of
   1978 /// MnemonicAlias's that canonicalize the condition code in a mnemonic, for
   1979 /// example "setz" -> "sete".
   1980 multiclass IntegerCondCodeMnemonicAlias<string Prefix, string Suffix,
   1981                                         string V = ""> {
   1982   def C   : CondCodeAlias<Prefix, Suffix, "c",   "b",  V>; // setc   -> setb
   1983   def Z   : CondCodeAlias<Prefix, Suffix, "z" ,  "e",  V>; // setz   -> sete
   1984   def NA  : CondCodeAlias<Prefix, Suffix, "na",  "be", V>; // setna  -> setbe
   1985   def NB  : CondCodeAlias<Prefix, Suffix, "nb",  "ae", V>; // setnb  -> setae
   1986   def NC  : CondCodeAlias<Prefix, Suffix, "nc",  "ae", V>; // setnc  -> setae
   1987   def NG  : CondCodeAlias<Prefix, Suffix, "ng",  "le", V>; // setng  -> setle
   1988   def NL  : CondCodeAlias<Prefix, Suffix, "nl",  "ge", V>; // setnl  -> setge
   1989   def NZ  : CondCodeAlias<Prefix, Suffix, "nz",  "ne", V>; // setnz  -> setne
   1990   def PE  : CondCodeAlias<Prefix, Suffix, "pe",  "p",  V>; // setpe  -> setp
   1991   def PO  : CondCodeAlias<Prefix, Suffix, "po",  "np", V>; // setpo  -> setnp
   1992 
   1993   def NAE : CondCodeAlias<Prefix, Suffix, "nae", "b",  V>; // setnae -> setb
   1994   def NBE : CondCodeAlias<Prefix, Suffix, "nbe", "a",  V>; // setnbe -> seta
   1995   def NGE : CondCodeAlias<Prefix, Suffix, "nge", "l",  V>; // setnge -> setl
   1996   def NLE : CondCodeAlias<Prefix, Suffix, "nle", "g",  V>; // setnle -> setg
   1997 }
   1998 
   1999 // Aliases for set<CC>
   2000 defm : IntegerCondCodeMnemonicAlias<"set", "">;
   2001 // Aliases for j<CC>
   2002 defm : IntegerCondCodeMnemonicAlias<"j", "">;
   2003 // Aliases for cmov<CC>{w,l,q}
   2004 defm : IntegerCondCodeMnemonicAlias<"cmov", "w", "att">;
   2005 defm : IntegerCondCodeMnemonicAlias<"cmov", "l", "att">;
   2006 defm : IntegerCondCodeMnemonicAlias<"cmov", "q", "att">;
   2007 // No size suffix for intel-style asm.
   2008 defm : IntegerCondCodeMnemonicAlias<"cmov", "", "intel">;
   2009 
   2010 
   2011 //===----------------------------------------------------------------------===//
   2012 // Assembler Instruction Aliases
   2013 //===----------------------------------------------------------------------===//
   2014 
   2015 // aad/aam default to base 10 if no operand is specified.
   2016 def : InstAlias<"aad", (AAD8i8 10)>;
   2017 def : InstAlias<"aam", (AAM8i8 10)>;
   2018 
   2019 // Disambiguate the mem/imm form of bt-without-a-suffix as btl.
   2020 // Likewise for btc/btr/bts.
   2021 def : InstAlias<"bt {$imm, $mem|$mem, $imm}",
   2022                 (BT32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
   2023 def : InstAlias<"btc {$imm, $mem|$mem, $imm}",
   2024                 (BTC32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
   2025 def : InstAlias<"btr {$imm, $mem|$mem, $imm}",
   2026                 (BTR32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
   2027 def : InstAlias<"bts {$imm, $mem|$mem, $imm}",
   2028                 (BTS32mi8 i32mem:$mem, i32i8imm:$imm), 0>;
   2029 
   2030 // clr aliases.
   2031 def : InstAlias<"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg), 0>;
   2032 def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg), 0>;
   2033 def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg), 0>;
   2034 def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg), 0>;
   2035 
   2036 // div and idiv aliases for explicit A register.
   2037 def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8r  GR8 :$src)>;
   2038 def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16r GR16:$src)>;
   2039 def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32r GR32:$src)>;
   2040 def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64r GR64:$src)>;
   2041 def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8m  i8mem :$src)>;
   2042 def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16m i16mem:$src)>;
   2043 def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32m i32mem:$src)>;
   2044 def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64m i64mem:$src)>;
   2045 def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8r  GR8 :$src)>;
   2046 def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16r GR16:$src)>;
   2047 def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32r GR32:$src)>;
   2048 def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64r GR64:$src)>;
   2049 def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8m  i8mem :$src)>;
   2050 def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16m i16mem:$src)>;
   2051 def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32m i32mem:$src)>;
   2052 def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64m i64mem:$src)>;
   2053 
   2054 
   2055 
   2056 // Various unary fpstack operations default to operating on on ST1.
   2057 // For example, "fxch" -> "fxch %st(1)"
   2058 def : InstAlias<"faddp",        (ADD_FPrST0  ST1), 0>;
   2059 def : InstAlias<"fsub{|r}p",    (SUBR_FPrST0 ST1), 0>;
   2060 def : InstAlias<"fsub{r|}p",    (SUB_FPrST0  ST1), 0>;
   2061 def : InstAlias<"fmulp",        (MUL_FPrST0  ST1), 0>;
   2062 def : InstAlias<"fdiv{|r}p",    (DIVR_FPrST0 ST1), 0>;
   2063 def : InstAlias<"fdiv{r|}p",    (DIV_FPrST0  ST1), 0>;
   2064 def : InstAlias<"fxch",         (XCH_F       ST1), 0>;
   2065 def : InstAlias<"fcom",         (COM_FST0r   ST1), 0>;
   2066 def : InstAlias<"fcomp",        (COMP_FST0r  ST1), 0>;
   2067 def : InstAlias<"fcomi",        (COM_FIr     ST1), 0>;
   2068 def : InstAlias<"fcompi",       (COM_FIPr    ST1), 0>;
   2069 def : InstAlias<"fucom",        (UCOM_Fr     ST1), 0>;
   2070 def : InstAlias<"fucomp",       (UCOM_FPr    ST1), 0>;
   2071 def : InstAlias<"fucomi",       (UCOM_FIr    ST1), 0>;
   2072 def : InstAlias<"fucompi",      (UCOM_FIPr   ST1), 0>;
   2073 
   2074 // Handle fmul/fadd/fsub/fdiv instructions with explicitly written st(0) op.
   2075 // For example, "fadd %st(4), %st(0)" -> "fadd %st(4)".  We also disambiguate
   2076 // instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with
   2077 // gas.
   2078 multiclass FpUnaryAlias<string Mnemonic, Instruction Inst, bit EmitAlias = 1> {
   2079  def : InstAlias<!strconcat(Mnemonic, "\t{$op, %st(0)|st(0), $op}"),
   2080                  (Inst RST:$op), EmitAlias>;
   2081  def : InstAlias<!strconcat(Mnemonic, "\t{%st(0), %st(0)|st(0), st(0)}"),
   2082                  (Inst ST0), EmitAlias>;
   2083 }
   2084 
   2085 defm : FpUnaryAlias<"fadd",   ADD_FST0r>;
   2086 defm : FpUnaryAlias<"faddp",  ADD_FPrST0, 0>;
   2087 defm : FpUnaryAlias<"fsub",   SUB_FST0r>;
   2088 defm : FpUnaryAlias<"fsub{|r}p",  SUBR_FPrST0>;
   2089 defm : FpUnaryAlias<"fsubr",  SUBR_FST0r>;
   2090 defm : FpUnaryAlias<"fsub{r|}p", SUB_FPrST0>;
   2091 defm : FpUnaryAlias<"fmul",   MUL_FST0r>;
   2092 defm : FpUnaryAlias<"fmulp",  MUL_FPrST0>;
   2093 defm : FpUnaryAlias<"fdiv",   DIV_FST0r>;
   2094 defm : FpUnaryAlias<"fdiv{|r}p",  DIVR_FPrST0>;
   2095 defm : FpUnaryAlias<"fdivr",  DIVR_FST0r>;
   2096 defm : FpUnaryAlias<"fdiv{r|}p", DIV_FPrST0>;
   2097 defm : FpUnaryAlias<"fcomi",   COM_FIr, 0>;
   2098 defm : FpUnaryAlias<"fucomi",  UCOM_FIr, 0>;
   2099 defm : FpUnaryAlias<"fcompi",   COM_FIPr>;
   2100 defm : FpUnaryAlias<"fucompi",  UCOM_FIPr>;
   2101 
   2102 
   2103 // Handle "f{mulp,addp} st(0), $op" the same as "f{mulp,addp} $op", since they
   2104 // commute.  We also allow fdiv[r]p/fsubrp even though they don't commute,
   2105 // solely because gas supports it.
   2106 def : InstAlias<"faddp\t{%st(0), $op|$op, st(0)}", (ADD_FPrST0 RST:$op), 0>;
   2107 def : InstAlias<"fmulp\t{%st(0), $op|$op, st(0)}", (MUL_FPrST0 RST:$op)>;
   2108 def : InstAlias<"fsub{|r}p\t{%st(0), $op|$op, st(0)}", (SUBR_FPrST0 RST:$op)>;
   2109 def : InstAlias<"fsub{r|}p\t{%st(0), $op|$op, st(0)}", (SUB_FPrST0 RST:$op)>;
   2110 def : InstAlias<"fdiv{|r}p\t{%st(0), $op|$op, st(0)}", (DIVR_FPrST0 RST:$op)>;
   2111 def : InstAlias<"fdiv{r|}p\t{%st(0), $op|$op, st(0)}", (DIV_FPrST0 RST:$op)>;
   2112 
   2113 // We accept "fnstsw %eax" even though it only writes %ax.
   2114 def : InstAlias<"fnstsw\t{%eax|eax}", (FNSTSW16r)>;
   2115 def : InstAlias<"fnstsw\t{%al|al}" , (FNSTSW16r)>;
   2116 def : InstAlias<"fnstsw"     , (FNSTSW16r)>;
   2117 
   2118 // lcall and ljmp aliases.  This seems to be an odd mapping in 64-bit mode, but
   2119 // this is compatible with what GAS does.
   2120 def : InstAlias<"lcall $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
   2121 def : InstAlias<"ljmp $seg, $off",  (FARJMP32i  i32imm:$off, i16imm:$seg)>;
   2122 def : InstAlias<"lcall *$dst",      (FARCALL32m opaque48mem:$dst)>;
   2123 def : InstAlias<"ljmp *$dst",       (FARJMP32m  opaque48mem:$dst)>;
   2124 
   2125 // "imul <imm>, B" is an alias for "imul <imm>, B, B".
   2126 def : InstAlias<"imulw $imm, $r", (IMUL16rri  GR16:$r, GR16:$r, i16imm:$imm)>;
   2127 def : InstAlias<"imulw $imm, $r", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm)>;
   2128 def : InstAlias<"imull $imm, $r", (IMUL32rri  GR32:$r, GR32:$r, i32imm:$imm)>;
   2129 def : InstAlias<"imull $imm, $r", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm)>;
   2130 def : InstAlias<"imulq $imm, $r",(IMUL64rri32 GR64:$r, GR64:$r,i64i32imm:$imm)>;
   2131 def : InstAlias<"imulq $imm, $r", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm)>;
   2132 
   2133 // inb %dx -> inb %al, %dx
   2134 def : InstAlias<"inb\t{%dx|dx}", (IN8rr), 0>;
   2135 def : InstAlias<"inw\t{%dx|dx}", (IN16rr), 0>;
   2136 def : InstAlias<"inl\t{%dx|dx}", (IN32rr), 0>;
   2137 def : InstAlias<"inb\t$port", (IN8ri i8imm:$port), 0>;
   2138 def : InstAlias<"inw\t$port", (IN16ri i8imm:$port), 0>;
   2139 def : InstAlias<"inl\t$port", (IN32ri i8imm:$port), 0>;
   2140 
   2141 
   2142 // jmp and call aliases for lcall and ljmp.  jmp $42,$5 -> ljmp
   2143 def : InstAlias<"call $seg, $off",  (FARCALL32i i32imm:$off, i16imm:$seg)>;
   2144 def : InstAlias<"jmp $seg, $off",   (FARJMP32i  i32imm:$off, i16imm:$seg)>;
   2145 def : InstAlias<"callw $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>;
   2146 def : InstAlias<"jmpw $seg, $off",  (FARJMP16i  i16imm:$off, i16imm:$seg)>;
   2147 def : InstAlias<"calll $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
   2148 def : InstAlias<"jmpl $seg, $off",  (FARJMP32i  i32imm:$off, i16imm:$seg)>;
   2149 
   2150 // Force mov without a suffix with a segment and mem to prefer the 'l' form of
   2151 // the move.  All segment/mem forms are equivalent, this has the shortest
   2152 // encoding.
   2153 def : InstAlias<"mov $mem, $seg", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem)>;
   2154 def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg)>;
   2155 
   2156 // Match 'movq <largeimm>, <reg>' as an alias for movabsq.
   2157 def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm)>;
   2158 
   2159 // Match 'movq GR64, MMX' as an alias for movd.
   2160 def : InstAlias<"movq $src, $dst",
   2161                 (MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>;
   2162 def : InstAlias<"movq $src, $dst",
   2163                 (MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>;
   2164 
   2165 // movsd with no operands (as opposed to the SSE scalar move of a double) is an
   2166 // alias for movsl. (as in rep; movsd)
   2167 def : InstAlias<"movsd", (MOVSD), 0>;
   2168 
   2169 // movsx aliases
   2170 def : InstAlias<"movsx $src, $dst", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>;
   2171 def : InstAlias<"movsx $src, $dst", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>;
   2172 def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>;
   2173 def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>;
   2174 def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>;
   2175 def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>;
   2176 def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>;
   2177 
   2178 // movzx aliases
   2179 def : InstAlias<"movzx $src, $dst", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>;
   2180 def : InstAlias<"movzx $src, $dst", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>;
   2181 def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>;
   2182 def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>;
   2183 def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>;
   2184 def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>;
   2185 // Note: No GR32->GR64 movzx form.
   2186 
   2187 // outb %dx -> outb %al, %dx
   2188 def : InstAlias<"outb\t{%dx|dx}", (OUT8rr), 0>;
   2189 def : InstAlias<"outw\t{%dx|dx}", (OUT16rr), 0>;
   2190 def : InstAlias<"outl\t{%dx|dx}", (OUT32rr), 0>;
   2191 def : InstAlias<"outb\t$port", (OUT8ir i8imm:$port), 0>;
   2192 def : InstAlias<"outw\t$port", (OUT16ir i8imm:$port), 0>;
   2193 def : InstAlias<"outl\t$port", (OUT32ir i8imm:$port), 0>;
   2194 
   2195 // 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
   2196 // effect (both store to a 16-bit mem).  Force to sldtw to avoid ambiguity
   2197 // errors, since its encoding is the most compact.
   2198 def : InstAlias<"sldt $mem", (SLDT16m i16mem:$mem)>;
   2199 
   2200 // shld/shrd op,op -> shld op, op, CL
   2201 def : InstAlias<"shld{w}\t{$r2, $r1|$r1, $r2}", (SHLD16rrCL GR16:$r1, GR16:$r2), 0>;
   2202 def : InstAlias<"shld{l}\t{$r2, $r1|$r1, $r2}", (SHLD32rrCL GR32:$r1, GR32:$r2), 0>;
   2203 def : InstAlias<"shld{q}\t{$r2, $r1|$r1, $r2}", (SHLD64rrCL GR64:$r1, GR64:$r2), 0>;
   2204 def : InstAlias<"shrd{w}\t{$r2, $r1|$r1, $r2}", (SHRD16rrCL GR16:$r1, GR16:$r2), 0>;
   2205 def : InstAlias<"shrd{l}\t{$r2, $r1|$r1, $r2}", (SHRD32rrCL GR32:$r1, GR32:$r2), 0>;
   2206 def : InstAlias<"shrd{q}\t{$r2, $r1|$r1, $r2}", (SHRD64rrCL GR64:$r1, GR64:$r2), 0>;
   2207 
   2208 def : InstAlias<"shld{w}\t{$reg, $mem|$mem, $reg}", (SHLD16mrCL i16mem:$mem, GR16:$reg), 0>;
   2209 def : InstAlias<"shld{l}\t{$reg, $mem|$mem, $reg}", (SHLD32mrCL i32mem:$mem, GR32:$reg), 0>;
   2210 def : InstAlias<"shld{q}\t{$reg, $mem|$mem, $reg}", (SHLD64mrCL i64mem:$mem, GR64:$reg), 0>;
   2211 def : InstAlias<"shrd{w}\t{$reg, $mem|$mem, $reg}", (SHRD16mrCL i16mem:$mem, GR16:$reg), 0>;
   2212 def : InstAlias<"shrd{l}\t{$reg, $mem|$mem, $reg}", (SHRD32mrCL i32mem:$mem, GR32:$reg), 0>;
   2213 def : InstAlias<"shrd{q}\t{$reg, $mem|$mem, $reg}", (SHRD64mrCL i64mem:$mem, GR64:$reg), 0>;
   2214 
   2215 /*  FIXME: This is disabled because the asm matcher is currently incapable of
   2216  *  matching a fixed immediate like $1.
   2217 // "shl X, $1" is an alias for "shl X".
   2218 multiclass ShiftRotateByOneAlias<string Mnemonic, string Opc> {
   2219  def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
   2220                  (!cast<Instruction>(!strconcat(Opc, "8r1")) GR8:$op)>;
   2221  def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
   2222                  (!cast<Instruction>(!strconcat(Opc, "16r1")) GR16:$op)>;
   2223  def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
   2224                  (!cast<Instruction>(!strconcat(Opc, "32r1")) GR32:$op)>;
   2225  def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
   2226                  (!cast<Instruction>(!strconcat(Opc, "64r1")) GR64:$op)>;
   2227  def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
   2228                  (!cast<Instruction>(!strconcat(Opc, "8m1")) i8mem:$op)>;
   2229  def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
   2230                  (!cast<Instruction>(!strconcat(Opc, "16m1")) i16mem:$op)>;
   2231  def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
   2232                  (!cast<Instruction>(!strconcat(Opc, "32m1")) i32mem:$op)>;
   2233  def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
   2234                  (!cast<Instruction>(!strconcat(Opc, "64m1")) i64mem:$op)>;
   2235 }
   2236 
   2237 defm : ShiftRotateByOneAlias<"rcl", "RCL">;
   2238 defm : ShiftRotateByOneAlias<"rcr", "RCR">;
   2239 defm : ShiftRotateByOneAlias<"rol", "ROL">;
   2240 defm : ShiftRotateByOneAlias<"ror", "ROR">;
   2241 FIXME */
   2242 
   2243 // test: We accept "testX <reg>, <mem>" and "testX <mem>, <reg>" as synonyms.
   2244 def : InstAlias<"test{b}\t{$val, $mem|$mem, $val}", (TEST8rm  GR8 :$val, i8mem :$mem)>;
   2245 def : InstAlias<"test{w}\t{$val, $mem|$mem, $val}", (TEST16rm GR16:$val, i16mem:$mem)>;
   2246 def : InstAlias<"test{l}\t{$val, $mem|$mem, $val}", (TEST32rm GR32:$val, i32mem:$mem)>;
   2247 def : InstAlias<"test{q}\t{$val, $mem|$mem, $val}", (TEST64rm GR64:$val, i64mem:$mem)>;
   2248 
   2249 // xchg: We accept "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as synonyms.
   2250 def : InstAlias<"xchg{b}\t{$mem, $val|$val, $mem}", (XCHG8rm  GR8 :$val, i8mem :$mem)>;
   2251 def : InstAlias<"xchg{w}\t{$mem, $val|$val, $mem}", (XCHG16rm GR16:$val, i16mem:$mem)>;
   2252 def : InstAlias<"xchg{l}\t{$mem, $val|$val, $mem}", (XCHG32rm GR32:$val, i32mem:$mem)>;
   2253 def : InstAlias<"xchg{q}\t{$mem, $val|$val, $mem}", (XCHG64rm GR64:$val, i64mem:$mem)>;
   2254 
   2255 // xchg: We accept "xchgX <reg>, %eax" and "xchgX %eax, <reg>" as synonyms.
   2256 def : InstAlias<"xchg{w}\t{%ax, $src|$src, ax}", (XCHG16ar GR16:$src)>;
   2257 def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}", (XCHG32ar GR32:$src)>, Requires<[In32BitMode]>;
   2258 def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}", (XCHG32ar64 GR32_NOAX:$src)>, Requires<[In64BitMode]>;
   2259 def : InstAlias<"xchg{q}\t{%rax, $src|$src, rax}", (XCHG64ar GR64:$src)>;
   2260