Home | History | Annotate | Download | only in X86
      1 //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
     11 // before calls to SSE encoded functions. This avoids transition latency
     12 // penalty when tranfering control between AVX encoded instructions and old
     13 // SSE encoding mode.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "x86-vzeroupper"
     18 #include "X86.h"
     19 #include "X86InstrInfo.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/CodeGen/MachineFunctionPass.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Target/TargetInstrInfo.h"
     28 using namespace llvm;
     29 
     30 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
     31 
     32 namespace {
     33   struct VZeroUpperInserter : public MachineFunctionPass {
     34     static char ID;
     35     VZeroUpperInserter() : MachineFunctionPass(ID) {}
     36 
     37     virtual bool runOnMachineFunction(MachineFunction &MF);
     38 
     39     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
     40 
     41     virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
     42 
     43   private:
     44     const TargetInstrInfo *TII; // Machine instruction info.
     45 
     46     // Any YMM register live-in to this function?
     47     bool FnHasLiveInYmm;
     48 
     49     // BBState - Contains the state of each MBB: unknown, clean, dirty
     50     SmallVector<uint8_t, 8> BBState;
     51 
     52     // BBSolved - Keep track of all MBB which had been already analyzed
     53     // and there is no further processing required.
     54     BitVector BBSolved;
     55 
     56     // Machine Basic Blocks are classified according this pass:
     57     //
     58     //  ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
     59     //    until the MBB exit there isn't a instruction using YMM to change
     60     //    the state to dirty, or one of the incoming predecessors is unknown
     61     //    and there's not a dirty predecessor between them.
     62     //
     63     //  ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
     64     //    instructions using YMM and be marked ST_CLEAN, as long as the state
     65     //    is cleaned by a vzeroupper before any call.
     66     //
     67     //  ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
     68     //    vzeroupper instruction.
     69     //
     70     //  ST_INIT - Placeholder for an empty state set
     71     //
     72     enum {
     73       ST_UNKNOWN = 0,
     74       ST_CLEAN   = 1,
     75       ST_DIRTY   = 2,
     76       ST_INIT    = 3
     77     };
     78 
     79     // computeState - Given two states, compute the resulting state, in
     80     // the following way
     81     //
     82     //  1) One dirty state yields another dirty state
     83     //  2) All states must be clean for the result to be clean
     84     //  3) If none above and one unknown, the result state is also unknown
     85     //
     86     static unsigned computeState(unsigned PrevState, unsigned CurState) {
     87       if (PrevState == ST_INIT)
     88         return CurState;
     89 
     90       if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
     91         return ST_DIRTY;
     92 
     93       if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
     94         return ST_CLEAN;
     95 
     96       return ST_UNKNOWN;
     97     }
     98 
     99   };
    100   char VZeroUpperInserter::ID = 0;
    101 }
    102 
    103 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
    104   return new VZeroUpperInserter();
    105 }
    106 
    107 static bool isYmmReg(unsigned Reg) {
    108   return (Reg >= X86::YMM0 && Reg <= X86::YMM31);
    109 }
    110 
    111 static bool isZmmReg(unsigned Reg) {
    112   return (Reg >= X86::ZMM0 && Reg <= X86::ZMM31);
    113 }
    114 
    115 static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
    116   for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
    117        E = MRI.livein_end(); I != E; ++I)
    118     if (isYmmReg(I->first) || isZmmReg(I->first))
    119       return true;
    120 
    121   return false;
    122 }
    123 
    124 static bool clobbersAllYmmRegs(const MachineOperand &MO) {
    125   for (unsigned reg = X86::YMM0; reg < X86::YMM31; ++reg) {
    126     if (!MO.clobbersPhysReg(reg))
    127       return false;
    128   }
    129   for (unsigned reg = X86::ZMM0; reg < X86::ZMM31; ++reg) {
    130     if (!MO.clobbersPhysReg(reg))
    131       return false;
    132   }
    133   return true;
    134 }
    135 
    136 static bool hasYmmReg(MachineInstr *MI) {
    137   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    138     const MachineOperand &MO = MI->getOperand(i);
    139     if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
    140       return true;
    141     if (!MO.isReg())
    142       continue;
    143     if (MO.isDebug())
    144       continue;
    145     if (isYmmReg(MO.getReg()))
    146       return true;
    147   }
    148   return false;
    149 }
    150 
    151 /// runOnMachineFunction - Loop over all of the basic blocks, inserting
    152 /// vzero upper instructions before function calls.
    153 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
    154   TII = MF.getTarget().getInstrInfo();
    155   MachineRegisterInfo &MRI = MF.getRegInfo();
    156   bool EverMadeChange = false;
    157 
    158   // Fast check: if the function doesn't use any ymm registers, we don't need
    159   // to insert any VZEROUPPER instructions.  This is constant-time, so it is
    160   // cheap in the common case of no ymm use.
    161   bool YMMUsed = false;
    162   const TargetRegisterClass *RC = &X86::VR256RegClass;
    163   for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
    164        i != e; i++) {
    165     if (!MRI.reg_nodbg_empty(*i)) {
    166       YMMUsed = true;
    167       break;
    168     }
    169   }
    170   if (!YMMUsed)
    171     return EverMadeChange;
    172 
    173   // Pre-compute the existence of any live-in YMM registers to this function
    174   FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
    175 
    176   assert(BBState.empty());
    177   BBState.resize(MF.getNumBlockIDs(), 0);
    178   BBSolved.resize(MF.getNumBlockIDs(), 0);
    179 
    180   // Each BB state depends on all predecessors, loop over until everything
    181   // converges.  (Once we converge, we can implicitly mark everything that is
    182   // still ST_UNKNOWN as ST_CLEAN.)
    183   while (1) {
    184     bool MadeChange = false;
    185 
    186     // Process all basic blocks.
    187     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    188       MadeChange |= processBasicBlock(MF, *I);
    189 
    190     // If this iteration over the code changed anything, keep iterating.
    191     if (!MadeChange) break;
    192     EverMadeChange = true;
    193   }
    194 
    195   BBState.clear();
    196   BBSolved.clear();
    197   return EverMadeChange;
    198 }
    199 
    200 /// processBasicBlock - Loop over all of the instructions in the basic block,
    201 /// inserting vzero upper instructions before function calls.
    202 bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
    203                                            MachineBasicBlock &BB) {
    204   bool Changed = false;
    205   unsigned BBNum = BB.getNumber();
    206 
    207   // Don't process already solved BBs
    208   if (BBSolved[BBNum])
    209     return false; // No changes
    210 
    211   // Check the state of all predecessors
    212   unsigned EntryState = ST_INIT;
    213   for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
    214        PE = BB.pred_end(); PI != PE; ++PI) {
    215     EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
    216     if (EntryState == ST_DIRTY)
    217       break;
    218   }
    219 
    220 
    221   // The entry MBB for the function may set the initial state to dirty if
    222   // the function receives any YMM incoming arguments
    223   if (&BB == MF.begin()) {
    224     EntryState = ST_CLEAN;
    225     if (FnHasLiveInYmm)
    226       EntryState = ST_DIRTY;
    227   }
    228 
    229   // The current state is initialized according to the predecessors
    230   unsigned CurState = EntryState;
    231   bool BBHasCall = false;
    232 
    233   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    234     MachineInstr *MI = I;
    235     DebugLoc dl = I->getDebugLoc();
    236     bool isControlFlow = MI->isCall() || MI->isReturn();
    237 
    238     // Shortcut: don't need to check regular instructions in dirty state.
    239     if (!isControlFlow && CurState == ST_DIRTY)
    240       continue;
    241 
    242     if (hasYmmReg(MI)) {
    243       // We found a ymm-using instruction; this could be an AVX instruction,
    244       // or it could be control flow.
    245       CurState = ST_DIRTY;
    246       continue;
    247     }
    248 
    249     // Check for control-flow out of the current function (which might
    250     // indirectly execute SSE instructions).
    251     if (!isControlFlow)
    252       continue;
    253 
    254     BBHasCall = true;
    255 
    256     // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
    257     // registers. This instruction has zero latency. In addition, the processor
    258     // changes back to Clean state, after which execution of Intel SSE
    259     // instructions or Intel AVX instructions has no transition penalty. Add
    260     // the VZEROUPPER instruction before any function call/return that might
    261     // execute SSE code.
    262     // FIXME: In some cases, we may want to move the VZEROUPPER into a
    263     // predecessor block.
    264     if (CurState == ST_DIRTY) {
    265       // Only insert the VZEROUPPER in case the entry state isn't unknown.
    266       // When unknown, only compute the information within the block to have
    267       // it available in the exit if possible, but don't change the block.
    268       if (EntryState != ST_UNKNOWN) {
    269         BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
    270         ++NumVZU;
    271       }
    272 
    273       // After the inserted VZEROUPPER the state becomes clean again, but
    274       // other YMM may appear before other subsequent calls or even before
    275       // the end of the BB.
    276       CurState = ST_CLEAN;
    277     }
    278   }
    279 
    280   DEBUG(dbgs() << "MBB #" << BBNum
    281                << ", current state: " << CurState << '\n');
    282 
    283   // A BB can only be considered solved when we both have done all the
    284   // necessary transformations, and have computed the exit state.  This happens
    285   // in two cases:
    286   //  1) We know the entry state: this immediately implies the exit state and
    287   //     all the necessary transformations.
    288   //  2) There are no calls, and and a non-call instruction marks this block:
    289   //     no transformations are necessary, and we know the exit state.
    290   if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
    291     BBSolved[BBNum] = true;
    292 
    293   if (CurState != BBState[BBNum])
    294     Changed = true;
    295 
    296   BBState[BBNum] = CurState;
    297   return Changed;
    298 }
    299