Home | History | Annotate | Download | only in IPO
      1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
     11 // practice, this means looking for internal functions that have pointer
     12 // arguments.  If it can prove, through the use of alias analysis, that an
     13 // argument is *only* loaded, then it can pass the value into the function
     14 // instead of the address of the value.  This can cause recursive simplification
     15 // of code and lead to the elimination of allocas (especially in C++ template
     16 // code like the STL).
     17 //
     18 // This pass also handles aggregate arguments that are passed into a function,
     19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
     20 // by default it refuses to scalarize aggregates which would require passing in
     21 // more than three operands to the function, because passing thousands of
     22 // operands for a large array or structure is unprofitable! This limit can be
     23 // configured or disabled, however.
     24 //
     25 // Note that this transformation could also be done for arguments that are only
     26 // stored to (returning the value instead), but does not currently.  This case
     27 // would be best handled when and if LLVM begins supporting multiple return
     28 // values from functions.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #define DEBUG_TYPE "argpromotion"
     33 #include "llvm/Transforms/IPO.h"
     34 #include "llvm/ADT/DepthFirstIterator.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/ADT/StringExtras.h"
     37 #include "llvm/Analysis/AliasAnalysis.h"
     38 #include "llvm/Analysis/CallGraph.h"
     39 #include "llvm/Analysis/CallGraphSCCPass.h"
     40 #include "llvm/IR/Constants.h"
     41 #include "llvm/IR/DerivedTypes.h"
     42 #include "llvm/IR/Instructions.h"
     43 #include "llvm/IR/LLVMContext.h"
     44 #include "llvm/IR/Module.h"
     45 #include "llvm/Support/CFG.h"
     46 #include "llvm/Support/CallSite.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include <set>
     50 using namespace llvm;
     51 
     52 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
     53 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
     54 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
     55 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
     56 
     57 namespace {
     58   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
     59   ///
     60   struct ArgPromotion : public CallGraphSCCPass {
     61     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     62       AU.addRequired<AliasAnalysis>();
     63       CallGraphSCCPass::getAnalysisUsage(AU);
     64     }
     65 
     66     virtual bool runOnSCC(CallGraphSCC &SCC);
     67     static char ID; // Pass identification, replacement for typeid
     68     explicit ArgPromotion(unsigned maxElements = 3)
     69         : CallGraphSCCPass(ID), maxElements(maxElements) {
     70       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     /// A vector used to hold the indices of a single GEP instruction
     74     typedef std::vector<uint64_t> IndicesVector;
     75 
     76   private:
     77     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
     78     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
     79     CallGraphNode *DoPromotion(Function *F,
     80                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
     81                                SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
     82     /// The maximum number of elements to expand, or 0 for unlimited.
     83     unsigned maxElements;
     84   };
     85 }
     86 
     87 char ArgPromotion::ID = 0;
     88 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
     89                 "Promote 'by reference' arguments to scalars", false, false)
     90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     91 INITIALIZE_AG_DEPENDENCY(CallGraph)
     92 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
     93                 "Promote 'by reference' arguments to scalars", false, false)
     94 
     95 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
     96   return new ArgPromotion(maxElements);
     97 }
     98 
     99 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
    100   bool Changed = false, LocalChange;
    101 
    102   do {  // Iterate until we stop promoting from this SCC.
    103     LocalChange = false;
    104     // Attempt to promote arguments from all functions in this SCC.
    105     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    106       if (CallGraphNode *CGN = PromoteArguments(*I)) {
    107         LocalChange = true;
    108         SCC.ReplaceNode(*I, CGN);
    109       }
    110     }
    111     Changed |= LocalChange;               // Remember that we changed something.
    112   } while (LocalChange);
    113 
    114   return Changed;
    115 }
    116 
    117 /// PromoteArguments - This method checks the specified function to see if there
    118 /// are any promotable arguments and if it is safe to promote the function (for
    119 /// example, all callers are direct).  If safe to promote some arguments, it
    120 /// calls the DoPromotion method.
    121 ///
    122 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
    123   Function *F = CGN->getFunction();
    124 
    125   // Make sure that it is local to this module.
    126   if (!F || !F->hasLocalLinkage()) return 0;
    127 
    128   // First check: see if there are any pointer arguments!  If not, quick exit.
    129   SmallVector<Argument*, 16> PointerArgs;
    130   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
    131     if (I->getType()->isPointerTy())
    132       PointerArgs.push_back(I);
    133   if (PointerArgs.empty()) return 0;
    134 
    135   // Second check: make sure that all callers are direct callers.  We can't
    136   // transform functions that have indirect callers.  Also see if the function
    137   // is self-recursive.
    138   bool isSelfRecursive = false;
    139   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
    140        UI != E; ++UI) {
    141     CallSite CS(*UI);
    142     // Must be a direct call.
    143     if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
    144 
    145     if (CS.getInstruction()->getParent()->getParent() == F)
    146       isSelfRecursive = true;
    147   }
    148 
    149   // Check to see which arguments are promotable.  If an argument is promotable,
    150   // add it to ArgsToPromote.
    151   SmallPtrSet<Argument*, 8> ArgsToPromote;
    152   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
    153   for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
    154     Argument *PtrArg = PointerArgs[i];
    155     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
    156 
    157     // If this is a byval argument, and if the aggregate type is small, just
    158     // pass the elements, which is always safe.
    159     if (PtrArg->hasByValAttr()) {
    160       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    161         if (maxElements > 0 && STy->getNumElements() > maxElements) {
    162           DEBUG(dbgs() << "argpromotion disable promoting argument '"
    163                 << PtrArg->getName() << "' because it would require adding more"
    164                 << " than " << maxElements << " arguments to the function.\n");
    165           continue;
    166         }
    167 
    168         // If all the elements are single-value types, we can promote it.
    169         bool AllSimple = true;
    170         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    171           if (!STy->getElementType(i)->isSingleValueType()) {
    172             AllSimple = false;
    173             break;
    174           }
    175         }
    176 
    177         // Safe to transform, don't even bother trying to "promote" it.
    178         // Passing the elements as a scalar will allow scalarrepl to hack on
    179         // the new alloca we introduce.
    180         if (AllSimple) {
    181           ByValArgsToTransform.insert(PtrArg);
    182           continue;
    183         }
    184       }
    185     }
    186 
    187     // If the argument is a recursive type and we're in a recursive
    188     // function, we could end up infinitely peeling the function argument.
    189     if (isSelfRecursive) {
    190       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    191         bool RecursiveType = false;
    192         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    193           if (STy->getElementType(i) == PtrArg->getType()) {
    194             RecursiveType = true;
    195             break;
    196           }
    197         }
    198         if (RecursiveType)
    199           continue;
    200       }
    201     }
    202 
    203     // Otherwise, see if we can promote the pointer to its value.
    204     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValAttr()))
    205       ArgsToPromote.insert(PtrArg);
    206   }
    207 
    208   // No promotable pointer arguments.
    209   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    210     return 0;
    211 
    212   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
    213 }
    214 
    215 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
    216 /// all callees pass in a valid pointer for the specified function argument.
    217 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
    218   Function *Callee = Arg->getParent();
    219 
    220   unsigned ArgNo = Arg->getArgNo();
    221 
    222   // Look at all call sites of the function.  At this pointer we know we only
    223   // have direct callees.
    224   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
    225        UI != E; ++UI) {
    226     CallSite CS(*UI);
    227     assert(CS && "Should only have direct calls!");
    228 
    229     if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
    230       return false;
    231   }
    232   return true;
    233 }
    234 
    235 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
    236 /// that is greater than or equal to the size of prefix, and each of the
    237 /// elements in Prefix is the same as the corresponding elements in Longer.
    238 ///
    239 /// This means it also returns true when Prefix and Longer are equal!
    240 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
    241                      const ArgPromotion::IndicesVector &Longer) {
    242   if (Prefix.size() > Longer.size())
    243     return false;
    244   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
    245 }
    246 
    247 
    248 /// Checks if Indices, or a prefix of Indices, is in Set.
    249 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
    250                      std::set<ArgPromotion::IndicesVector> &Set) {
    251     std::set<ArgPromotion::IndicesVector>::iterator Low;
    252     Low = Set.upper_bound(Indices);
    253     if (Low != Set.begin())
    254       Low--;
    255     // Low is now the last element smaller than or equal to Indices. This means
    256     // it points to a prefix of Indices (possibly Indices itself), if such
    257     // prefix exists.
    258     //
    259     // This load is safe if any prefix of its operands is safe to load.
    260     return Low != Set.end() && IsPrefix(*Low, Indices);
    261 }
    262 
    263 /// Mark the given indices (ToMark) as safe in the given set of indices
    264 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
    265 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
    266 /// already. Furthermore, any indices that Indices is itself a prefix of, are
    267 /// removed from Safe (since they are implicitely safe because of Indices now).
    268 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
    269                             std::set<ArgPromotion::IndicesVector> &Safe) {
    270   std::set<ArgPromotion::IndicesVector>::iterator Low;
    271   Low = Safe.upper_bound(ToMark);
    272   // Guard against the case where Safe is empty
    273   if (Low != Safe.begin())
    274     Low--;
    275   // Low is now the last element smaller than or equal to Indices. This
    276   // means it points to a prefix of Indices (possibly Indices itself), if
    277   // such prefix exists.
    278   if (Low != Safe.end()) {
    279     if (IsPrefix(*Low, ToMark))
    280       // If there is already a prefix of these indices (or exactly these
    281       // indices) marked a safe, don't bother adding these indices
    282       return;
    283 
    284     // Increment Low, so we can use it as a "insert before" hint
    285     ++Low;
    286   }
    287   // Insert
    288   Low = Safe.insert(Low, ToMark);
    289   ++Low;
    290   // If there we're a prefix of longer index list(s), remove those
    291   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
    292   while (Low != End && IsPrefix(ToMark, *Low)) {
    293     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
    294     ++Low;
    295     Safe.erase(Remove);
    296   }
    297 }
    298 
    299 /// isSafeToPromoteArgument - As you might guess from the name of this method,
    300 /// it checks to see if it is both safe and useful to promote the argument.
    301 /// This method limits promotion of aggregates to only promote up to three
    302 /// elements of the aggregate in order to avoid exploding the number of
    303 /// arguments passed in.
    304 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
    305   typedef std::set<IndicesVector> GEPIndicesSet;
    306 
    307   // Quick exit for unused arguments
    308   if (Arg->use_empty())
    309     return true;
    310 
    311   // We can only promote this argument if all of the uses are loads, or are GEP
    312   // instructions (with constant indices) that are subsequently loaded.
    313   //
    314   // Promoting the argument causes it to be loaded in the caller
    315   // unconditionally. This is only safe if we can prove that either the load
    316   // would have happened in the callee anyway (ie, there is a load in the entry
    317   // block) or the pointer passed in at every call site is guaranteed to be
    318   // valid.
    319   // In the former case, invalid loads can happen, but would have happened
    320   // anyway, in the latter case, invalid loads won't happen. This prevents us
    321   // from introducing an invalid load that wouldn't have happened in the
    322   // original code.
    323   //
    324   // This set will contain all sets of indices that are loaded in the entry
    325   // block, and thus are safe to unconditionally load in the caller.
    326   GEPIndicesSet SafeToUnconditionallyLoad;
    327 
    328   // This set contains all the sets of indices that we are planning to promote.
    329   // This makes it possible to limit the number of arguments added.
    330   GEPIndicesSet ToPromote;
    331 
    332   // If the pointer is always valid, any load with first index 0 is valid.
    333   if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
    334     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    335 
    336   // First, iterate the entry block and mark loads of (geps of) arguments as
    337   // safe.
    338   BasicBlock *EntryBlock = Arg->getParent()->begin();
    339   // Declare this here so we can reuse it
    340   IndicesVector Indices;
    341   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
    342        I != E; ++I)
    343     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    344       Value *V = LI->getPointerOperand();
    345       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
    346         V = GEP->getPointerOperand();
    347         if (V == Arg) {
    348           // This load actually loads (part of) Arg? Check the indices then.
    349           Indices.reserve(GEP->getNumIndices());
    350           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    351                II != IE; ++II)
    352             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
    353               Indices.push_back(CI->getSExtValue());
    354             else
    355               // We found a non-constant GEP index for this argument? Bail out
    356               // right away, can't promote this argument at all.
    357               return false;
    358 
    359           // Indices checked out, mark them as safe
    360           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
    361           Indices.clear();
    362         }
    363       } else if (V == Arg) {
    364         // Direct loads are equivalent to a GEP with a single 0 index.
    365         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
    366       }
    367     }
    368 
    369   // Now, iterate all uses of the argument to see if there are any uses that are
    370   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
    371   SmallVector<LoadInst*, 16> Loads;
    372   IndicesVector Operands;
    373   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
    374        UI != E; ++UI) {
    375     User *U = *UI;
    376     Operands.clear();
    377     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    378       // Don't hack volatile/atomic loads
    379       if (!LI->isSimple()) return false;
    380       Loads.push_back(LI);
    381       // Direct loads are equivalent to a GEP with a zero index and then a load.
    382       Operands.push_back(0);
    383     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    384       if (GEP->use_empty()) {
    385         // Dead GEP's cause trouble later.  Just remove them if we run into
    386         // them.
    387         getAnalysis<AliasAnalysis>().deleteValue(GEP);
    388         GEP->eraseFromParent();
    389         // TODO: This runs the above loop over and over again for dead GEPs
    390         // Couldn't we just do increment the UI iterator earlier and erase the
    391         // use?
    392         return isSafeToPromoteArgument(Arg, isByVal);
    393       }
    394 
    395       // Ensure that all of the indices are constants.
    396       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
    397         i != e; ++i)
    398         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
    399           Operands.push_back(C->getSExtValue());
    400         else
    401           return false;  // Not a constant operand GEP!
    402 
    403       // Ensure that the only users of the GEP are load instructions.
    404       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
    405            UI != E; ++UI)
    406         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
    407           // Don't hack volatile/atomic loads
    408           if (!LI->isSimple()) return false;
    409           Loads.push_back(LI);
    410         } else {
    411           // Other uses than load?
    412           return false;
    413         }
    414     } else {
    415       return false;  // Not a load or a GEP.
    416     }
    417 
    418     // Now, see if it is safe to promote this load / loads of this GEP. Loading
    419     // is safe if Operands, or a prefix of Operands, is marked as safe.
    420     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
    421       return false;
    422 
    423     // See if we are already promoting a load with these indices. If not, check
    424     // to make sure that we aren't promoting too many elements.  If so, nothing
    425     // to do.
    426     if (ToPromote.find(Operands) == ToPromote.end()) {
    427       if (maxElements > 0 && ToPromote.size() == maxElements) {
    428         DEBUG(dbgs() << "argpromotion not promoting argument '"
    429               << Arg->getName() << "' because it would require adding more "
    430               << "than " << maxElements << " arguments to the function.\n");
    431         // We limit aggregate promotion to only promoting up to a fixed number
    432         // of elements of the aggregate.
    433         return false;
    434       }
    435       ToPromote.insert(Operands);
    436     }
    437   }
    438 
    439   if (Loads.empty()) return true;  // No users, this is a dead argument.
    440 
    441   // Okay, now we know that the argument is only used by load instructions and
    442   // it is safe to unconditionally perform all of them. Use alias analysis to
    443   // check to see if the pointer is guaranteed to not be modified from entry of
    444   // the function to each of the load instructions.
    445 
    446   // Because there could be several/many load instructions, remember which
    447   // blocks we know to be transparent to the load.
    448   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
    449 
    450   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    451 
    452   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
    453     // Check to see if the load is invalidated from the start of the block to
    454     // the load itself.
    455     LoadInst *Load = Loads[i];
    456     BasicBlock *BB = Load->getParent();
    457 
    458     AliasAnalysis::Location Loc = AA.getLocation(Load);
    459     if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
    460       return false;  // Pointer is invalidated!
    461 
    462     // Now check every path from the entry block to the load for transparency.
    463     // To do this, we perform a depth first search on the inverse CFG from the
    464     // loading block.
    465     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    466       BasicBlock *P = *PI;
    467       for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
    468              I = idf_ext_begin(P, TranspBlocks),
    469              E = idf_ext_end(P, TranspBlocks); I != E; ++I)
    470         if (AA.canBasicBlockModify(**I, Loc))
    471           return false;
    472     }
    473   }
    474 
    475   // If the path from the entry of the function to each load is free of
    476   // instructions that potentially invalidate the load, we can make the
    477   // transformation!
    478   return true;
    479 }
    480 
    481 /// DoPromotion - This method actually performs the promotion of the specified
    482 /// arguments, and returns the new function.  At this point, we know that it's
    483 /// safe to do so.
    484 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
    485                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
    486                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
    487 
    488   // Start by computing a new prototype for the function, which is the same as
    489   // the old function, but has modified arguments.
    490   FunctionType *FTy = F->getFunctionType();
    491   std::vector<Type*> Params;
    492 
    493   typedef std::set<IndicesVector> ScalarizeTable;
    494 
    495   // ScalarizedElements - If we are promoting a pointer that has elements
    496   // accessed out of it, keep track of which elements are accessed so that we
    497   // can add one argument for each.
    498   //
    499   // Arguments that are directly loaded will have a zero element value here, to
    500   // handle cases where there are both a direct load and GEP accesses.
    501   //
    502   std::map<Argument*, ScalarizeTable> ScalarizedElements;
    503 
    504   // OriginalLoads - Keep track of a representative load instruction from the
    505   // original function so that we can tell the alias analysis implementation
    506   // what the new GEP/Load instructions we are inserting look like.
    507   std::map<IndicesVector, LoadInst*> OriginalLoads;
    508 
    509   // Attribute - Keep track of the parameter attributes for the arguments
    510   // that we are *not* promoting. For the ones that we do promote, the parameter
    511   // attributes are lost
    512   SmallVector<AttributeSet, 8> AttributesVec;
    513   const AttributeSet &PAL = F->getAttributes();
    514 
    515   // Add any return attributes.
    516   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
    517     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    518                                               PAL.getRetAttributes()));
    519 
    520   // First, determine the new argument list
    521   unsigned ArgIndex = 1;
    522   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
    523        ++I, ++ArgIndex) {
    524     if (ByValArgsToTransform.count(I)) {
    525       // Simple byval argument? Just add all the struct element types.
    526       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    527       StructType *STy = cast<StructType>(AgTy);
    528       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    529         Params.push_back(STy->getElementType(i));
    530       ++NumByValArgsPromoted;
    531     } else if (!ArgsToPromote.count(I)) {
    532       // Unchanged argument
    533       Params.push_back(I->getType());
    534       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
    535       if (attrs.hasAttributes(ArgIndex)) {
    536         AttrBuilder B(attrs, ArgIndex);
    537         AttributesVec.
    538           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    539       }
    540     } else if (I->use_empty()) {
    541       // Dead argument (which are always marked as promotable)
    542       ++NumArgumentsDead;
    543     } else {
    544       // Okay, this is being promoted. This means that the only uses are loads
    545       // or GEPs which are only used by loads
    546 
    547       // In this table, we will track which indices are loaded from the argument
    548       // (where direct loads are tracked as no indices).
    549       ScalarizeTable &ArgIndices = ScalarizedElements[I];
    550       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    551            ++UI) {
    552         Instruction *User = cast<Instruction>(*UI);
    553         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
    554         IndicesVector Indices;
    555         Indices.reserve(User->getNumOperands() - 1);
    556         // Since loads will only have a single operand, and GEPs only a single
    557         // non-index operand, this will record direct loads without any indices,
    558         // and gep+loads with the GEP indices.
    559         for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
    560              II != IE; ++II)
    561           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
    562         // GEPs with a single 0 index can be merged with direct loads
    563         if (Indices.size() == 1 && Indices.front() == 0)
    564           Indices.clear();
    565         ArgIndices.insert(Indices);
    566         LoadInst *OrigLoad;
    567         if (LoadInst *L = dyn_cast<LoadInst>(User))
    568           OrigLoad = L;
    569         else
    570           // Take any load, we will use it only to update Alias Analysis
    571           OrigLoad = cast<LoadInst>(User->use_back());
    572         OriginalLoads[Indices] = OrigLoad;
    573       }
    574 
    575       // Add a parameter to the function for each element passed in.
    576       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    577              E = ArgIndices.end(); SI != E; ++SI) {
    578         // not allowed to dereference ->begin() if size() is 0
    579         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
    580         assert(Params.back());
    581       }
    582 
    583       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
    584         ++NumArgumentsPromoted;
    585       else
    586         ++NumAggregatesPromoted;
    587     }
    588   }
    589 
    590   // Add any function attributes.
    591   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    592     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
    593                                               PAL.getFnAttributes()));
    594 
    595   Type *RetTy = FTy->getReturnType();
    596 
    597   // Construct the new function type using the new arguments.
    598   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
    599 
    600   // Create the new function body and insert it into the module.
    601   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
    602   NF->copyAttributesFrom(F);
    603 
    604 
    605   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
    606         << "From: " << *F);
    607 
    608   // Recompute the parameter attributes list based on the new arguments for
    609   // the function.
    610   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
    611   AttributesVec.clear();
    612 
    613   F->getParent()->getFunctionList().insert(F, NF);
    614   NF->takeName(F);
    615 
    616   // Get the alias analysis information that we need to update to reflect our
    617   // changes.
    618   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    619 
    620   // Get the callgraph information that we need to update to reflect our
    621   // changes.
    622   CallGraph &CG = getAnalysis<CallGraph>();
    623 
    624   // Get a new callgraph node for NF.
    625   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
    626 
    627   // Loop over all of the callers of the function, transforming the call sites
    628   // to pass in the loaded pointers.
    629   //
    630   SmallVector<Value*, 16> Args;
    631   while (!F->use_empty()) {
    632     CallSite CS(F->use_back());
    633     assert(CS.getCalledFunction() == F);
    634     Instruction *Call = CS.getInstruction();
    635     const AttributeSet &CallPAL = CS.getAttributes();
    636 
    637     // Add any return attributes.
    638     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
    639       AttributesVec.push_back(AttributeSet::get(F->getContext(),
    640                                                 CallPAL.getRetAttributes()));
    641 
    642     // Loop over the operands, inserting GEP and loads in the caller as
    643     // appropriate.
    644     CallSite::arg_iterator AI = CS.arg_begin();
    645     ArgIndex = 1;
    646     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    647          I != E; ++I, ++AI, ++ArgIndex)
    648       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    649         Args.push_back(*AI);          // Unmodified argument
    650 
    651         if (CallPAL.hasAttributes(ArgIndex)) {
    652           AttrBuilder B(CallPAL, ArgIndex);
    653           AttributesVec.
    654             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    655         }
    656       } else if (ByValArgsToTransform.count(I)) {
    657         // Emit a GEP and load for each element of the struct.
    658         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    659         StructType *STy = cast<StructType>(AgTy);
    660         Value *Idxs[2] = {
    661               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    662         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    663           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    664           Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
    665                                                  (*AI)->getName()+"."+utostr(i),
    666                                                  Call);
    667           // TODO: Tell AA about the new values?
    668           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
    669         }
    670       } else if (!I->use_empty()) {
    671         // Non-dead argument: insert GEPs and loads as appropriate.
    672         ScalarizeTable &ArgIndices = ScalarizedElements[I];
    673         // Store the Value* version of the indices in here, but declare it now
    674         // for reuse.
    675         std::vector<Value*> Ops;
    676         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    677                E = ArgIndices.end(); SI != E; ++SI) {
    678           Value *V = *AI;
    679           LoadInst *OrigLoad = OriginalLoads[*SI];
    680           if (!SI->empty()) {
    681             Ops.reserve(SI->size());
    682             Type *ElTy = V->getType();
    683             for (IndicesVector::const_iterator II = SI->begin(),
    684                  IE = SI->end(); II != IE; ++II) {
    685               // Use i32 to index structs, and i64 for others (pointers/arrays).
    686               // This satisfies GEP constraints.
    687               Type *IdxTy = (ElTy->isStructTy() ?
    688                     Type::getInt32Ty(F->getContext()) :
    689                     Type::getInt64Ty(F->getContext()));
    690               Ops.push_back(ConstantInt::get(IdxTy, *II));
    691               // Keep track of the type we're currently indexing.
    692               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
    693             }
    694             // And create a GEP to extract those indices.
    695             V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
    696             Ops.clear();
    697             AA.copyValue(OrigLoad->getOperand(0), V);
    698           }
    699           // Since we're replacing a load make sure we take the alignment
    700           // of the previous load.
    701           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
    702           newLoad->setAlignment(OrigLoad->getAlignment());
    703           // Transfer the TBAA info too.
    704           newLoad->setMetadata(LLVMContext::MD_tbaa,
    705                                OrigLoad->getMetadata(LLVMContext::MD_tbaa));
    706           Args.push_back(newLoad);
    707           AA.copyValue(OrigLoad, Args.back());
    708         }
    709       }
    710 
    711     // Push any varargs arguments on the list.
    712     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
    713       Args.push_back(*AI);
    714       if (CallPAL.hasAttributes(ArgIndex)) {
    715         AttrBuilder B(CallPAL, ArgIndex);
    716         AttributesVec.
    717           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    718       }
    719     }
    720 
    721     // Add any function attributes.
    722     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    723       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    724                                                 CallPAL.getFnAttributes()));
    725 
    726     Instruction *New;
    727     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    728       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    729                                Args, "", Call);
    730       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    731       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
    732                                                             AttributesVec));
    733     } else {
    734       New = CallInst::Create(NF, Args, "", Call);
    735       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    736       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
    737                                                           AttributesVec));
    738       if (cast<CallInst>(Call)->isTailCall())
    739         cast<CallInst>(New)->setTailCall();
    740     }
    741     Args.clear();
    742     AttributesVec.clear();
    743 
    744     // Update the alias analysis implementation to know that we are replacing
    745     // the old call with a new one.
    746     AA.replaceWithNewValue(Call, New);
    747 
    748     // Update the callgraph to know that the callsite has been transformed.
    749     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    750     CalleeNode->replaceCallEdge(Call, New, NF_CGN);
    751 
    752     if (!Call->use_empty()) {
    753       Call->replaceAllUsesWith(New);
    754       New->takeName(Call);
    755     }
    756 
    757     // Finally, remove the old call from the program, reducing the use-count of
    758     // F.
    759     Call->eraseFromParent();
    760   }
    761 
    762   // Since we have now created the new function, splice the body of the old
    763   // function right into the new function, leaving the old rotting hulk of the
    764   // function empty.
    765   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    766 
    767   // Loop over the argument list, transferring uses of the old arguments over to
    768   // the new arguments, also transferring over the names as well.
    769   //
    770   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    771        I2 = NF->arg_begin(); I != E; ++I) {
    772     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    773       // If this is an unmodified argument, move the name and users over to the
    774       // new version.
    775       I->replaceAllUsesWith(I2);
    776       I2->takeName(I);
    777       AA.replaceWithNewValue(I, I2);
    778       ++I2;
    779       continue;
    780     }
    781 
    782     if (ByValArgsToTransform.count(I)) {
    783       // In the callee, we create an alloca, and store each of the new incoming
    784       // arguments into the alloca.
    785       Instruction *InsertPt = NF->begin()->begin();
    786 
    787       // Just add all the struct element types.
    788       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    789       Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
    790       StructType *STy = cast<StructType>(AgTy);
    791       Value *Idxs[2] = {
    792             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    793 
    794       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    795         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    796         Value *Idx =
    797           GetElementPtrInst::Create(TheAlloca, Idxs,
    798                                     TheAlloca->getName()+"."+Twine(i),
    799                                     InsertPt);
    800         I2->setName(I->getName()+"."+Twine(i));
    801         new StoreInst(I2++, Idx, InsertPt);
    802       }
    803 
    804       // Anything that used the arg should now use the alloca.
    805       I->replaceAllUsesWith(TheAlloca);
    806       TheAlloca->takeName(I);
    807       AA.replaceWithNewValue(I, TheAlloca);
    808       continue;
    809     }
    810 
    811     if (I->use_empty()) {
    812       AA.deleteValue(I);
    813       continue;
    814     }
    815 
    816     // Otherwise, if we promoted this argument, then all users are load
    817     // instructions (or GEPs with only load users), and all loads should be
    818     // using the new argument that we added.
    819     ScalarizeTable &ArgIndices = ScalarizedElements[I];
    820 
    821     while (!I->use_empty()) {
    822       if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
    823         assert(ArgIndices.begin()->empty() &&
    824                "Load element should sort to front!");
    825         I2->setName(I->getName()+".val");
    826         LI->replaceAllUsesWith(I2);
    827         AA.replaceWithNewValue(LI, I2);
    828         LI->eraseFromParent();
    829         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
    830               << "' in function '" << F->getName() << "'\n");
    831       } else {
    832         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
    833         IndicesVector Operands;
    834         Operands.reserve(GEP->getNumIndices());
    835         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    836              II != IE; ++II)
    837           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
    838 
    839         // GEPs with a single 0 index can be merged with direct loads
    840         if (Operands.size() == 1 && Operands.front() == 0)
    841           Operands.clear();
    842 
    843         Function::arg_iterator TheArg = I2;
    844         for (ScalarizeTable::iterator It = ArgIndices.begin();
    845              *It != Operands; ++It, ++TheArg) {
    846           assert(It != ArgIndices.end() && "GEP not handled??");
    847         }
    848 
    849         std::string NewName = I->getName();
    850         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    851             NewName += "." + utostr(Operands[i]);
    852         }
    853         NewName += ".val";
    854         TheArg->setName(NewName);
    855 
    856         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
    857               << "' of function '" << NF->getName() << "'\n");
    858 
    859         // All of the uses must be load instructions.  Replace them all with
    860         // the argument specified by ArgNo.
    861         while (!GEP->use_empty()) {
    862           LoadInst *L = cast<LoadInst>(GEP->use_back());
    863           L->replaceAllUsesWith(TheArg);
    864           AA.replaceWithNewValue(L, TheArg);
    865           L->eraseFromParent();
    866         }
    867         AA.deleteValue(GEP);
    868         GEP->eraseFromParent();
    869       }
    870     }
    871 
    872     // Increment I2 past all of the arguments added for this promoted pointer.
    873     std::advance(I2, ArgIndices.size());
    874   }
    875 
    876   // Tell the alias analysis that the old function is about to disappear.
    877   AA.replaceWithNewValue(F, NF);
    878 
    879 
    880   NF_CGN->stealCalledFunctionsFrom(CG[F]);
    881 
    882   // Now that the old function is dead, delete it.  If there is a dangling
    883   // reference to the CallgraphNode, just leave the dead function around for
    884   // someone else to nuke.
    885   CallGraphNode *CGN = CG[F];
    886   if (CGN->getNumReferences() == 0)
    887     delete CG.removeFunctionFromModule(CGN);
    888   else
    889     F->setLinkage(Function::ExternalLinkage);
    890 
    891   return NF_CGN;
    892 }
    893