1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // A hash is computed from the function, based on its type and number of 13 // basic blocks. 14 // 15 // Once all hashes are computed, we perform an expensive equality comparison 16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's 17 // important that the hash function be high quality. The equality comparison 18 // iterates through each instruction in each basic block. 19 // 20 // When a match is found the functions are folded. If both functions are 21 // overridable, we move the functionality into a new internal function and 22 // leave two overridable thunks to it. 23 // 24 //===----------------------------------------------------------------------===// 25 // 26 // Future work: 27 // 28 // * virtual functions. 29 // 30 // Many functions have their address taken by the virtual function table for 31 // the object they belong to. However, as long as it's only used for a lookup 32 // and call, this is irrelevant, and we'd like to fold such functions. 33 // 34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each 35 // bucket. 36 // 37 // * be smarter about bitcasts. 38 // 39 // In order to fold functions, we will sometimes add either bitcast instructions 40 // or bitcast constant expressions. Unfortunately, this can confound further 41 // analysis since the two functions differ where one has a bitcast and the 42 // other doesn't. We should learn to look through bitcasts. 43 // 44 //===----------------------------------------------------------------------===// 45 46 #define DEBUG_TYPE "mergefunc" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/FoldingSet.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/SmallSet.h" 52 #include "llvm/ADT/Statistic.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/CallSite.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/ValueHandle.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include <vector> 68 using namespace llvm; 69 70 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 71 STATISTIC(NumThunksWritten, "Number of thunks generated"); 72 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 73 STATISTIC(NumDoubleWeak, "Number of new functions created"); 74 75 /// Returns the type id for a type to be hashed. We turn pointer types into 76 /// integers here because the actual compare logic below considers pointers and 77 /// integers of the same size as equal. 78 static Type::TypeID getTypeIDForHash(Type *Ty) { 79 if (Ty->isPointerTy()) 80 return Type::IntegerTyID; 81 return Ty->getTypeID(); 82 } 83 84 /// Creates a hash-code for the function which is the same for any two 85 /// functions that will compare equal, without looking at the instructions 86 /// inside the function. 87 static unsigned profileFunction(const Function *F) { 88 FunctionType *FTy = F->getFunctionType(); 89 90 FoldingSetNodeID ID; 91 ID.AddInteger(F->size()); 92 ID.AddInteger(F->getCallingConv()); 93 ID.AddBoolean(F->hasGC()); 94 ID.AddBoolean(FTy->isVarArg()); 95 ID.AddInteger(getTypeIDForHash(FTy->getReturnType())); 96 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 97 ID.AddInteger(getTypeIDForHash(FTy->getParamType(i))); 98 return ID.ComputeHash(); 99 } 100 101 namespace { 102 103 /// ComparableFunction - A struct that pairs together functions with a 104 /// DataLayout so that we can keep them together as elements in the DenseSet. 105 class ComparableFunction { 106 public: 107 static const ComparableFunction EmptyKey; 108 static const ComparableFunction TombstoneKey; 109 static DataLayout * const LookupOnly; 110 111 ComparableFunction(Function *Func, DataLayout *TD) 112 : Func(Func), Hash(profileFunction(Func)), TD(TD) {} 113 114 Function *getFunc() const { return Func; } 115 unsigned getHash() const { return Hash; } 116 DataLayout *getTD() const { return TD; } 117 118 // Drops AssertingVH reference to the function. Outside of debug mode, this 119 // does nothing. 120 void release() { 121 assert(Func && 122 "Attempted to release function twice, or release empty/tombstone!"); 123 Func = NULL; 124 } 125 126 private: 127 explicit ComparableFunction(unsigned Hash) 128 : Func(NULL), Hash(Hash), TD(NULL) {} 129 130 AssertingVH<Function> Func; 131 unsigned Hash; 132 DataLayout *TD; 133 }; 134 135 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0); 136 const ComparableFunction ComparableFunction::TombstoneKey = 137 ComparableFunction(1); 138 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1); 139 140 } 141 142 namespace llvm { 143 template <> 144 struct DenseMapInfo<ComparableFunction> { 145 static ComparableFunction getEmptyKey() { 146 return ComparableFunction::EmptyKey; 147 } 148 static ComparableFunction getTombstoneKey() { 149 return ComparableFunction::TombstoneKey; 150 } 151 static unsigned getHashValue(const ComparableFunction &CF) { 152 return CF.getHash(); 153 } 154 static bool isEqual(const ComparableFunction &LHS, 155 const ComparableFunction &RHS); 156 }; 157 } 158 159 namespace { 160 161 /// FunctionComparator - Compares two functions to determine whether or not 162 /// they will generate machine code with the same behaviour. DataLayout is 163 /// used if available. The comparator always fails conservatively (erring on the 164 /// side of claiming that two functions are different). 165 class FunctionComparator { 166 public: 167 FunctionComparator(const DataLayout *TD, const Function *F1, 168 const Function *F2) 169 : F1(F1), F2(F2), TD(TD) {} 170 171 /// Test whether the two functions have equivalent behaviour. 172 bool compare(); 173 174 private: 175 /// Test whether two basic blocks have equivalent behaviour. 176 bool compare(const BasicBlock *BB1, const BasicBlock *BB2); 177 178 /// Assign or look up previously assigned numbers for the two values, and 179 /// return whether the numbers are equal. Numbers are assigned in the order 180 /// visited. 181 bool enumerate(const Value *V1, const Value *V2); 182 183 /// Compare two Instructions for equivalence, similar to 184 /// Instruction::isSameOperationAs but with modifications to the type 185 /// comparison. 186 bool isEquivalentOperation(const Instruction *I1, 187 const Instruction *I2) const; 188 189 /// Compare two GEPs for equivalent pointer arithmetic. 190 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); 191 bool isEquivalentGEP(const GetElementPtrInst *GEP1, 192 const GetElementPtrInst *GEP2) { 193 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); 194 } 195 196 /// Compare two Types, treating all pointer types as equal. 197 bool isEquivalentType(Type *Ty1, Type *Ty2) const; 198 199 // The two functions undergoing comparison. 200 const Function *F1, *F2; 201 202 const DataLayout *TD; 203 204 DenseMap<const Value *, const Value *> id_map; 205 DenseSet<const Value *> seen_values; 206 }; 207 208 } 209 210 // Any two pointers in the same address space are equivalent, intptr_t and 211 // pointers are equivalent. Otherwise, standard type equivalence rules apply. 212 bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const { 213 if (Ty1 == Ty2) 214 return true; 215 if (Ty1->getTypeID() != Ty2->getTypeID()) { 216 if (TD) { 217 LLVMContext &Ctx = Ty1->getContext(); 218 if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true; 219 if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true; 220 } 221 return false; 222 } 223 224 switch (Ty1->getTypeID()) { 225 default: 226 llvm_unreachable("Unknown type!"); 227 // Fall through in Release mode. 228 case Type::IntegerTyID: 229 case Type::VectorTyID: 230 // Ty1 == Ty2 would have returned true earlier. 231 return false; 232 233 case Type::VoidTyID: 234 case Type::FloatTyID: 235 case Type::DoubleTyID: 236 case Type::X86_FP80TyID: 237 case Type::FP128TyID: 238 case Type::PPC_FP128TyID: 239 case Type::LabelTyID: 240 case Type::MetadataTyID: 241 return true; 242 243 case Type::PointerTyID: { 244 PointerType *PTy1 = cast<PointerType>(Ty1); 245 PointerType *PTy2 = cast<PointerType>(Ty2); 246 return PTy1->getAddressSpace() == PTy2->getAddressSpace(); 247 } 248 249 case Type::StructTyID: { 250 StructType *STy1 = cast<StructType>(Ty1); 251 StructType *STy2 = cast<StructType>(Ty2); 252 if (STy1->getNumElements() != STy2->getNumElements()) 253 return false; 254 255 if (STy1->isPacked() != STy2->isPacked()) 256 return false; 257 258 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { 259 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) 260 return false; 261 } 262 return true; 263 } 264 265 case Type::FunctionTyID: { 266 FunctionType *FTy1 = cast<FunctionType>(Ty1); 267 FunctionType *FTy2 = cast<FunctionType>(Ty2); 268 if (FTy1->getNumParams() != FTy2->getNumParams() || 269 FTy1->isVarArg() != FTy2->isVarArg()) 270 return false; 271 272 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) 273 return false; 274 275 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { 276 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) 277 return false; 278 } 279 return true; 280 } 281 282 case Type::ArrayTyID: { 283 ArrayType *ATy1 = cast<ArrayType>(Ty1); 284 ArrayType *ATy2 = cast<ArrayType>(Ty2); 285 return ATy1->getNumElements() == ATy2->getNumElements() && 286 isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); 287 } 288 } 289 } 290 291 // Determine whether the two operations are the same except that pointer-to-A 292 // and pointer-to-B are equivalent. This should be kept in sync with 293 // Instruction::isSameOperationAs. 294 bool FunctionComparator::isEquivalentOperation(const Instruction *I1, 295 const Instruction *I2) const { 296 // Differences from Instruction::isSameOperationAs: 297 // * replace type comparison with calls to isEquivalentType. 298 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top 299 // * because of the above, we don't test for the tail bit on calls later on 300 if (I1->getOpcode() != I2->getOpcode() || 301 I1->getNumOperands() != I2->getNumOperands() || 302 !isEquivalentType(I1->getType(), I2->getType()) || 303 !I1->hasSameSubclassOptionalData(I2)) 304 return false; 305 306 // We have two instructions of identical opcode and #operands. Check to see 307 // if all operands are the same type 308 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) 309 if (!isEquivalentType(I1->getOperand(i)->getType(), 310 I2->getOperand(i)->getType())) 311 return false; 312 313 // Check special state that is a part of some instructions. 314 if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) 315 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && 316 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() && 317 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && 318 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); 319 if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) 320 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && 321 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() && 322 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && 323 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); 324 if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) 325 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); 326 if (const CallInst *CI = dyn_cast<CallInst>(I1)) 327 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && 328 CI->getAttributes() == cast<CallInst>(I2)->getAttributes(); 329 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) 330 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && 331 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes(); 332 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) 333 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices(); 334 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) 335 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); 336 if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) 337 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && 338 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); 339 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) 340 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && 341 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() && 342 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); 343 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) 344 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && 345 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && 346 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && 347 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); 348 349 return true; 350 } 351 352 // Determine whether two GEP operations perform the same underlying arithmetic. 353 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, 354 const GEPOperator *GEP2) { 355 // When we have target data, we can reduce the GEP down to the value in bytes 356 // added to the address. 357 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1; 358 APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0); 359 if (TD && 360 GEP1->accumulateConstantOffset(*TD, Offset1) && 361 GEP2->accumulateConstantOffset(*TD, Offset2)) { 362 return Offset1 == Offset2; 363 } 364 365 if (GEP1->getPointerOperand()->getType() != 366 GEP2->getPointerOperand()->getType()) 367 return false; 368 369 if (GEP1->getNumOperands() != GEP2->getNumOperands()) 370 return false; 371 372 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { 373 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) 374 return false; 375 } 376 377 return true; 378 } 379 380 // Compare two values used by the two functions under pair-wise comparison. If 381 // this is the first time the values are seen, they're added to the mapping so 382 // that we will detect mismatches on next use. 383 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) { 384 // Check for function @f1 referring to itself and function @f2 referring to 385 // itself, or referring to each other, or both referring to either of them. 386 // They're all equivalent if the two functions are otherwise equivalent. 387 if (V1 == F1 && V2 == F2) 388 return true; 389 if (V1 == F2 && V2 == F1) 390 return true; 391 392 if (const Constant *C1 = dyn_cast<Constant>(V1)) { 393 if (V1 == V2) return true; 394 const Constant *C2 = dyn_cast<Constant>(V2); 395 if (!C2) return false; 396 // TODO: constant expressions with GEP or references to F1 or F2. 397 if (C1->isNullValue() && C2->isNullValue() && 398 isEquivalentType(C1->getType(), C2->getType())) 399 return true; 400 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1 401 // then they must have equal bit patterns. 402 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) && 403 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType()); 404 } 405 406 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2)) 407 return V1 == V2; 408 409 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply 410 // check whether it's equal to V2. When there is no mapping then we need to 411 // ensure that V2 isn't already equivalent to something else. For this 412 // purpose, we track the V2 values in a set. 413 414 const Value *&map_elem = id_map[V1]; 415 if (map_elem) 416 return map_elem == V2; 417 if (!seen_values.insert(V2).second) 418 return false; 419 map_elem = V2; 420 return true; 421 } 422 423 // Test whether two basic blocks have equivalent behaviour. 424 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) { 425 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); 426 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); 427 428 do { 429 if (!enumerate(F1I, F2I)) 430 return false; 431 432 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { 433 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); 434 if (!GEP2) 435 return false; 436 437 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) 438 return false; 439 440 if (!isEquivalentGEP(GEP1, GEP2)) 441 return false; 442 } else { 443 if (!isEquivalentOperation(F1I, F2I)) 444 return false; 445 446 assert(F1I->getNumOperands() == F2I->getNumOperands()); 447 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { 448 Value *OpF1 = F1I->getOperand(i); 449 Value *OpF2 = F2I->getOperand(i); 450 451 if (!enumerate(OpF1, OpF2)) 452 return false; 453 454 if (OpF1->getValueID() != OpF2->getValueID() || 455 !isEquivalentType(OpF1->getType(), OpF2->getType())) 456 return false; 457 } 458 } 459 460 ++F1I, ++F2I; 461 } while (F1I != F1E && F2I != F2E); 462 463 return F1I == F1E && F2I == F2E; 464 } 465 466 // Test whether the two functions have equivalent behaviour. 467 bool FunctionComparator::compare() { 468 // We need to recheck everything, but check the things that weren't included 469 // in the hash first. 470 471 if (F1->getAttributes() != F2->getAttributes()) 472 return false; 473 474 if (F1->hasGC() != F2->hasGC()) 475 return false; 476 477 if (F1->hasGC() && F1->getGC() != F2->getGC()) 478 return false; 479 480 if (F1->hasSection() != F2->hasSection()) 481 return false; 482 483 if (F1->hasSection() && F1->getSection() != F2->getSection()) 484 return false; 485 486 if (F1->isVarArg() != F2->isVarArg()) 487 return false; 488 489 // TODO: if it's internal and only used in direct calls, we could handle this 490 // case too. 491 if (F1->getCallingConv() != F2->getCallingConv()) 492 return false; 493 494 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) 495 return false; 496 497 assert(F1->arg_size() == F2->arg_size() && 498 "Identically typed functions have different numbers of args!"); 499 500 // Visit the arguments so that they get enumerated in the order they're 501 // passed in. 502 for (Function::const_arg_iterator f1i = F1->arg_begin(), 503 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { 504 if (!enumerate(f1i, f2i)) 505 llvm_unreachable("Arguments repeat!"); 506 } 507 508 // We do a CFG-ordered walk since the actual ordering of the blocks in the 509 // linked list is immaterial. Our walk starts at the entry block for both 510 // functions, then takes each block from each terminator in order. As an 511 // artifact, this also means that unreachable blocks are ignored. 512 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; 513 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 514 515 F1BBs.push_back(&F1->getEntryBlock()); 516 F2BBs.push_back(&F2->getEntryBlock()); 517 518 VisitedBBs.insert(F1BBs[0]); 519 while (!F1BBs.empty()) { 520 const BasicBlock *F1BB = F1BBs.pop_back_val(); 521 const BasicBlock *F2BB = F2BBs.pop_back_val(); 522 523 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB)) 524 return false; 525 526 const TerminatorInst *F1TI = F1BB->getTerminator(); 527 const TerminatorInst *F2TI = F2BB->getTerminator(); 528 529 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); 530 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { 531 if (!VisitedBBs.insert(F1TI->getSuccessor(i))) 532 continue; 533 534 F1BBs.push_back(F1TI->getSuccessor(i)); 535 F2BBs.push_back(F2TI->getSuccessor(i)); 536 } 537 } 538 return true; 539 } 540 541 namespace { 542 543 /// MergeFunctions finds functions which will generate identical machine code, 544 /// by considering all pointer types to be equivalent. Once identified, 545 /// MergeFunctions will fold them by replacing a call to one to a call to a 546 /// bitcast of the other. 547 /// 548 class MergeFunctions : public ModulePass { 549 public: 550 static char ID; 551 MergeFunctions() 552 : ModulePass(ID), HasGlobalAliases(false) { 553 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 554 } 555 556 bool runOnModule(Module &M); 557 558 private: 559 typedef DenseSet<ComparableFunction> FnSetType; 560 561 /// A work queue of functions that may have been modified and should be 562 /// analyzed again. 563 std::vector<WeakVH> Deferred; 564 565 /// Insert a ComparableFunction into the FnSet, or merge it away if it's 566 /// equal to one that's already present. 567 bool insert(ComparableFunction &NewF); 568 569 /// Remove a Function from the FnSet and queue it up for a second sweep of 570 /// analysis. 571 void remove(Function *F); 572 573 /// Find the functions that use this Value and remove them from FnSet and 574 /// queue the functions. 575 void removeUsers(Value *V); 576 577 /// Replace all direct calls of Old with calls of New. Will bitcast New if 578 /// necessary to make types match. 579 void replaceDirectCallers(Function *Old, Function *New); 580 581 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 582 /// be converted into a thunk. In either case, it should never be visited 583 /// again. 584 void mergeTwoFunctions(Function *F, Function *G); 585 586 /// Replace G with a thunk or an alias to F. Deletes G. 587 void writeThunkOrAlias(Function *F, Function *G); 588 589 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 590 /// of G with bitcast(F). Deletes G. 591 void writeThunk(Function *F, Function *G); 592 593 /// Replace G with an alias to F. Deletes G. 594 void writeAlias(Function *F, Function *G); 595 596 /// The set of all distinct functions. Use the insert() and remove() methods 597 /// to modify it. 598 FnSetType FnSet; 599 600 /// DataLayout for more accurate GEP comparisons. May be NULL. 601 DataLayout *TD; 602 603 /// Whether or not the target supports global aliases. 604 bool HasGlobalAliases; 605 }; 606 607 } // end anonymous namespace 608 609 char MergeFunctions::ID = 0; 610 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 611 612 ModulePass *llvm::createMergeFunctionsPass() { 613 return new MergeFunctions(); 614 } 615 616 bool MergeFunctions::runOnModule(Module &M) { 617 bool Changed = false; 618 TD = getAnalysisIfAvailable<DataLayout>(); 619 620 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 621 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) 622 Deferred.push_back(WeakVH(I)); 623 } 624 FnSet.resize(Deferred.size()); 625 626 do { 627 std::vector<WeakVH> Worklist; 628 Deferred.swap(Worklist); 629 630 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 631 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 632 633 // Insert only strong functions and merge them. Strong function merging 634 // always deletes one of them. 635 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 636 E = Worklist.end(); I != E; ++I) { 637 if (!*I) continue; 638 Function *F = cast<Function>(*I); 639 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 640 !F->mayBeOverridden()) { 641 ComparableFunction CF = ComparableFunction(F, TD); 642 Changed |= insert(CF); 643 } 644 } 645 646 // Insert only weak functions and merge them. By doing these second we 647 // create thunks to the strong function when possible. When two weak 648 // functions are identical, we create a new strong function with two weak 649 // weak thunks to it which are identical but not mergable. 650 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 651 E = Worklist.end(); I != E; ++I) { 652 if (!*I) continue; 653 Function *F = cast<Function>(*I); 654 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 655 F->mayBeOverridden()) { 656 ComparableFunction CF = ComparableFunction(F, TD); 657 Changed |= insert(CF); 658 } 659 } 660 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n'); 661 } while (!Deferred.empty()); 662 663 FnSet.clear(); 664 665 return Changed; 666 } 667 668 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS, 669 const ComparableFunction &RHS) { 670 if (LHS.getFunc() == RHS.getFunc() && 671 LHS.getHash() == RHS.getHash()) 672 return true; 673 if (!LHS.getFunc() || !RHS.getFunc()) 674 return false; 675 676 // One of these is a special "underlying pointer comparison only" object. 677 if (LHS.getTD() == ComparableFunction::LookupOnly || 678 RHS.getTD() == ComparableFunction::LookupOnly) 679 return false; 680 681 assert(LHS.getTD() == RHS.getTD() && 682 "Comparing functions for different targets"); 683 684 return FunctionComparator(LHS.getTD(), LHS.getFunc(), 685 RHS.getFunc()).compare(); 686 } 687 688 // Replace direct callers of Old with New. 689 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 690 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 691 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 692 UI != UE;) { 693 Value::use_iterator TheIter = UI; 694 ++UI; 695 CallSite CS(*TheIter); 696 if (CS && CS.isCallee(TheIter)) { 697 remove(CS.getInstruction()->getParent()->getParent()); 698 TheIter.getUse().set(BitcastNew); 699 } 700 } 701 } 702 703 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 704 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 705 if (HasGlobalAliases && G->hasUnnamedAddr()) { 706 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 707 G->hasWeakLinkage()) { 708 writeAlias(F, G); 709 return; 710 } 711 } 712 713 writeThunk(F, G); 714 } 715 716 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 717 // of G with bitcast(F). Deletes G. 718 void MergeFunctions::writeThunk(Function *F, Function *G) { 719 if (!G->mayBeOverridden()) { 720 // Redirect direct callers of G to F. 721 replaceDirectCallers(G, F); 722 } 723 724 // If G was internal then we may have replaced all uses of G with F. If so, 725 // stop here and delete G. There's no need for a thunk. 726 if (G->hasLocalLinkage() && G->use_empty()) { 727 G->eraseFromParent(); 728 return; 729 } 730 731 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 732 G->getParent()); 733 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 734 IRBuilder<false> Builder(BB); 735 736 SmallVector<Value *, 16> Args; 737 unsigned i = 0; 738 FunctionType *FFTy = F->getFunctionType(); 739 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 740 AI != AE; ++AI) { 741 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i))); 742 ++i; 743 } 744 745 CallInst *CI = Builder.CreateCall(F, Args); 746 CI->setTailCall(); 747 CI->setCallingConv(F->getCallingConv()); 748 if (NewG->getReturnType()->isVoidTy()) { 749 Builder.CreateRetVoid(); 750 } else { 751 Type *RetTy = NewG->getReturnType(); 752 if (CI->getType()->isIntegerTy() && RetTy->isPointerTy()) 753 Builder.CreateRet(Builder.CreateIntToPtr(CI, RetTy)); 754 else if (CI->getType()->isPointerTy() && RetTy->isIntegerTy()) 755 Builder.CreateRet(Builder.CreatePtrToInt(CI, RetTy)); 756 else 757 Builder.CreateRet(Builder.CreateBitCast(CI, RetTy)); 758 } 759 760 NewG->copyAttributesFrom(G); 761 NewG->takeName(G); 762 removeUsers(G); 763 G->replaceAllUsesWith(NewG); 764 G->eraseFromParent(); 765 766 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 767 ++NumThunksWritten; 768 } 769 770 // Replace G with an alias to F and delete G. 771 void MergeFunctions::writeAlias(Function *F, Function *G) { 772 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); 773 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "", 774 BitcastF, G->getParent()); 775 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 776 GA->takeName(G); 777 GA->setVisibility(G->getVisibility()); 778 removeUsers(G); 779 G->replaceAllUsesWith(GA); 780 G->eraseFromParent(); 781 782 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 783 ++NumAliasesWritten; 784 } 785 786 // Merge two equivalent functions. Upon completion, Function G is deleted. 787 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 788 if (F->mayBeOverridden()) { 789 assert(G->mayBeOverridden()); 790 791 if (HasGlobalAliases) { 792 // Make them both thunks to the same internal function. 793 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 794 F->getParent()); 795 H->copyAttributesFrom(F); 796 H->takeName(F); 797 removeUsers(F); 798 F->replaceAllUsesWith(H); 799 800 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 801 802 writeAlias(F, G); 803 writeAlias(F, H); 804 805 F->setAlignment(MaxAlignment); 806 F->setLinkage(GlobalValue::PrivateLinkage); 807 } else { 808 // We can't merge them. Instead, pick one and update all direct callers 809 // to call it and hope that we improve the instruction cache hit rate. 810 replaceDirectCallers(G, F); 811 } 812 813 ++NumDoubleWeak; 814 } else { 815 writeThunkOrAlias(F, G); 816 } 817 818 ++NumFunctionsMerged; 819 } 820 821 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one 822 // that was already inserted. 823 bool MergeFunctions::insert(ComparableFunction &NewF) { 824 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); 825 if (Result.second) { 826 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n'); 827 return false; 828 } 829 830 const ComparableFunction &OldF = *Result.first; 831 832 // Never thunk a strong function to a weak function. 833 assert(!OldF.getFunc()->mayBeOverridden() || 834 NewF.getFunc()->mayBeOverridden()); 835 836 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == " 837 << NewF.getFunc()->getName() << '\n'); 838 839 Function *DeleteF = NewF.getFunc(); 840 NewF.release(); 841 mergeTwoFunctions(OldF.getFunc(), DeleteF); 842 return true; 843 } 844 845 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred 846 // so that we'll look at it in the next round. 847 void MergeFunctions::remove(Function *F) { 848 // We need to make sure we remove F, not a function "equal" to F per the 849 // function equality comparator. 850 // 851 // The special "lookup only" ComparableFunction bypasses the expensive 852 // function comparison in favour of a pointer comparison on the underlying 853 // Function*'s. 854 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly); 855 if (FnSet.erase(CF)) { 856 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n"); 857 Deferred.push_back(F); 858 } 859 } 860 861 // For each instruction used by the value, remove() the function that contains 862 // the instruction. This should happen right before a call to RAUW. 863 void MergeFunctions::removeUsers(Value *V) { 864 std::vector<Value *> Worklist; 865 Worklist.push_back(V); 866 while (!Worklist.empty()) { 867 Value *V = Worklist.back(); 868 Worklist.pop_back(); 869 870 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); 871 UI != UE; ++UI) { 872 Use &U = UI.getUse(); 873 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 874 remove(I->getParent()->getParent()); 875 } else if (isa<GlobalValue>(U.getUser())) { 876 // do nothing 877 } else if (Constant *C = dyn_cast<Constant>(U.getUser())) { 878 for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end(); 879 CUI != CUE; ++CUI) 880 Worklist.push_back(*CUI); 881 } 882 } 883 } 884 } 885