Home | History | Annotate | Download | only in IPO
      1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for equivalent functions that are mergable and folds them.
     11 //
     12 // A hash is computed from the function, based on its type and number of
     13 // basic blocks.
     14 //
     15 // Once all hashes are computed, we perform an expensive equality comparison
     16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
     17 // important that the hash function be high quality. The equality comparison
     18 // iterates through each instruction in each basic block.
     19 //
     20 // When a match is found the functions are folded. If both functions are
     21 // overridable, we move the functionality into a new internal function and
     22 // leave two overridable thunks to it.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 //
     26 // Future work:
     27 //
     28 // * virtual functions.
     29 //
     30 // Many functions have their address taken by the virtual function table for
     31 // the object they belong to. However, as long as it's only used for a lookup
     32 // and call, this is irrelevant, and we'd like to fold such functions.
     33 //
     34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
     35 // bucket.
     36 //
     37 // * be smarter about bitcasts.
     38 //
     39 // In order to fold functions, we will sometimes add either bitcast instructions
     40 // or bitcast constant expressions. Unfortunately, this can confound further
     41 // analysis since the two functions differ where one has a bitcast and the
     42 // other doesn't. We should learn to look through bitcasts.
     43 //
     44 //===----------------------------------------------------------------------===//
     45 
     46 #define DEBUG_TYPE "mergefunc"
     47 #include "llvm/Transforms/IPO.h"
     48 #include "llvm/ADT/DenseSet.h"
     49 #include "llvm/ADT/FoldingSet.h"
     50 #include "llvm/ADT/STLExtras.h"
     51 #include "llvm/ADT/SmallSet.h"
     52 #include "llvm/ADT/Statistic.h"
     53 #include "llvm/IR/Constants.h"
     54 #include "llvm/IR/DataLayout.h"
     55 #include "llvm/IR/IRBuilder.h"
     56 #include "llvm/IR/InlineAsm.h"
     57 #include "llvm/IR/Instructions.h"
     58 #include "llvm/IR/LLVMContext.h"
     59 #include "llvm/IR/Module.h"
     60 #include "llvm/IR/Operator.h"
     61 #include "llvm/Pass.h"
     62 #include "llvm/Support/CallSite.h"
     63 #include "llvm/Support/Debug.h"
     64 #include "llvm/Support/ErrorHandling.h"
     65 #include "llvm/Support/ValueHandle.h"
     66 #include "llvm/Support/raw_ostream.h"
     67 #include <vector>
     68 using namespace llvm;
     69 
     70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
     71 STATISTIC(NumThunksWritten, "Number of thunks generated");
     72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
     73 STATISTIC(NumDoubleWeak, "Number of new functions created");
     74 
     75 /// Returns the type id for a type to be hashed. We turn pointer types into
     76 /// integers here because the actual compare logic below considers pointers and
     77 /// integers of the same size as equal.
     78 static Type::TypeID getTypeIDForHash(Type *Ty) {
     79   if (Ty->isPointerTy())
     80     return Type::IntegerTyID;
     81   return Ty->getTypeID();
     82 }
     83 
     84 /// Creates a hash-code for the function which is the same for any two
     85 /// functions that will compare equal, without looking at the instructions
     86 /// inside the function.
     87 static unsigned profileFunction(const Function *F) {
     88   FunctionType *FTy = F->getFunctionType();
     89 
     90   FoldingSetNodeID ID;
     91   ID.AddInteger(F->size());
     92   ID.AddInteger(F->getCallingConv());
     93   ID.AddBoolean(F->hasGC());
     94   ID.AddBoolean(FTy->isVarArg());
     95   ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
     96   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
     97     ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
     98   return ID.ComputeHash();
     99 }
    100 
    101 namespace {
    102 
    103 /// ComparableFunction - A struct that pairs together functions with a
    104 /// DataLayout so that we can keep them together as elements in the DenseSet.
    105 class ComparableFunction {
    106 public:
    107   static const ComparableFunction EmptyKey;
    108   static const ComparableFunction TombstoneKey;
    109   static DataLayout * const LookupOnly;
    110 
    111   ComparableFunction(Function *Func, DataLayout *TD)
    112     : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
    113 
    114   Function *getFunc() const { return Func; }
    115   unsigned getHash() const { return Hash; }
    116   DataLayout *getTD() const { return TD; }
    117 
    118   // Drops AssertingVH reference to the function. Outside of debug mode, this
    119   // does nothing.
    120   void release() {
    121     assert(Func &&
    122            "Attempted to release function twice, or release empty/tombstone!");
    123     Func = NULL;
    124   }
    125 
    126 private:
    127   explicit ComparableFunction(unsigned Hash)
    128     : Func(NULL), Hash(Hash), TD(NULL) {}
    129 
    130   AssertingVH<Function> Func;
    131   unsigned Hash;
    132   DataLayout *TD;
    133 };
    134 
    135 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
    136 const ComparableFunction ComparableFunction::TombstoneKey =
    137     ComparableFunction(1);
    138 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
    139 
    140 }
    141 
    142 namespace llvm {
    143   template <>
    144   struct DenseMapInfo<ComparableFunction> {
    145     static ComparableFunction getEmptyKey() {
    146       return ComparableFunction::EmptyKey;
    147     }
    148     static ComparableFunction getTombstoneKey() {
    149       return ComparableFunction::TombstoneKey;
    150     }
    151     static unsigned getHashValue(const ComparableFunction &CF) {
    152       return CF.getHash();
    153     }
    154     static bool isEqual(const ComparableFunction &LHS,
    155                         const ComparableFunction &RHS);
    156   };
    157 }
    158 
    159 namespace {
    160 
    161 /// FunctionComparator - Compares two functions to determine whether or not
    162 /// they will generate machine code with the same behaviour. DataLayout is
    163 /// used if available. The comparator always fails conservatively (erring on the
    164 /// side of claiming that two functions are different).
    165 class FunctionComparator {
    166 public:
    167   FunctionComparator(const DataLayout *TD, const Function *F1,
    168                      const Function *F2)
    169     : F1(F1), F2(F2), TD(TD) {}
    170 
    171   /// Test whether the two functions have equivalent behaviour.
    172   bool compare();
    173 
    174 private:
    175   /// Test whether two basic blocks have equivalent behaviour.
    176   bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
    177 
    178   /// Assign or look up previously assigned numbers for the two values, and
    179   /// return whether the numbers are equal. Numbers are assigned in the order
    180   /// visited.
    181   bool enumerate(const Value *V1, const Value *V2);
    182 
    183   /// Compare two Instructions for equivalence, similar to
    184   /// Instruction::isSameOperationAs but with modifications to the type
    185   /// comparison.
    186   bool isEquivalentOperation(const Instruction *I1,
    187                              const Instruction *I2) const;
    188 
    189   /// Compare two GEPs for equivalent pointer arithmetic.
    190   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
    191   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
    192                        const GetElementPtrInst *GEP2) {
    193     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
    194   }
    195 
    196   /// Compare two Types, treating all pointer types as equal.
    197   bool isEquivalentType(Type *Ty1, Type *Ty2) const;
    198 
    199   // The two functions undergoing comparison.
    200   const Function *F1, *F2;
    201 
    202   const DataLayout *TD;
    203 
    204   DenseMap<const Value *, const Value *> id_map;
    205   DenseSet<const Value *> seen_values;
    206 };
    207 
    208 }
    209 
    210 // Any two pointers in the same address space are equivalent, intptr_t and
    211 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
    212 bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const {
    213   if (Ty1 == Ty2)
    214     return true;
    215   if (Ty1->getTypeID() != Ty2->getTypeID()) {
    216     if (TD) {
    217       LLVMContext &Ctx = Ty1->getContext();
    218       if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
    219       if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
    220     }
    221     return false;
    222   }
    223 
    224   switch (Ty1->getTypeID()) {
    225   default:
    226     llvm_unreachable("Unknown type!");
    227     // Fall through in Release mode.
    228   case Type::IntegerTyID:
    229   case Type::VectorTyID:
    230     // Ty1 == Ty2 would have returned true earlier.
    231     return false;
    232 
    233   case Type::VoidTyID:
    234   case Type::FloatTyID:
    235   case Type::DoubleTyID:
    236   case Type::X86_FP80TyID:
    237   case Type::FP128TyID:
    238   case Type::PPC_FP128TyID:
    239   case Type::LabelTyID:
    240   case Type::MetadataTyID:
    241     return true;
    242 
    243   case Type::PointerTyID: {
    244     PointerType *PTy1 = cast<PointerType>(Ty1);
    245     PointerType *PTy2 = cast<PointerType>(Ty2);
    246     return PTy1->getAddressSpace() == PTy2->getAddressSpace();
    247   }
    248 
    249   case Type::StructTyID: {
    250     StructType *STy1 = cast<StructType>(Ty1);
    251     StructType *STy2 = cast<StructType>(Ty2);
    252     if (STy1->getNumElements() != STy2->getNumElements())
    253       return false;
    254 
    255     if (STy1->isPacked() != STy2->isPacked())
    256       return false;
    257 
    258     for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
    259       if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
    260         return false;
    261     }
    262     return true;
    263   }
    264 
    265   case Type::FunctionTyID: {
    266     FunctionType *FTy1 = cast<FunctionType>(Ty1);
    267     FunctionType *FTy2 = cast<FunctionType>(Ty2);
    268     if (FTy1->getNumParams() != FTy2->getNumParams() ||
    269         FTy1->isVarArg() != FTy2->isVarArg())
    270       return false;
    271 
    272     if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
    273       return false;
    274 
    275     for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
    276       if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
    277         return false;
    278     }
    279     return true;
    280   }
    281 
    282   case Type::ArrayTyID: {
    283     ArrayType *ATy1 = cast<ArrayType>(Ty1);
    284     ArrayType *ATy2 = cast<ArrayType>(Ty2);
    285     return ATy1->getNumElements() == ATy2->getNumElements() &&
    286            isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
    287   }
    288   }
    289 }
    290 
    291 // Determine whether the two operations are the same except that pointer-to-A
    292 // and pointer-to-B are equivalent. This should be kept in sync with
    293 // Instruction::isSameOperationAs.
    294 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
    295                                                const Instruction *I2) const {
    296   // Differences from Instruction::isSameOperationAs:
    297   //  * replace type comparison with calls to isEquivalentType.
    298   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
    299   //  * because of the above, we don't test for the tail bit on calls later on
    300   if (I1->getOpcode() != I2->getOpcode() ||
    301       I1->getNumOperands() != I2->getNumOperands() ||
    302       !isEquivalentType(I1->getType(), I2->getType()) ||
    303       !I1->hasSameSubclassOptionalData(I2))
    304     return false;
    305 
    306   // We have two instructions of identical opcode and #operands.  Check to see
    307   // if all operands are the same type
    308   for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
    309     if (!isEquivalentType(I1->getOperand(i)->getType(),
    310                           I2->getOperand(i)->getType()))
    311       return false;
    312 
    313   // Check special state that is a part of some instructions.
    314   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    315     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
    316            LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
    317            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
    318            LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
    319   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    320     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
    321            SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
    322            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
    323            SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
    324   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    325     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
    326   if (const CallInst *CI = dyn_cast<CallInst>(I1))
    327     return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
    328            CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
    329   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    330     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
    331            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
    332   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    333     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
    334   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    335     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
    336   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    337     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
    338            FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
    339   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    340     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
    341            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
    342            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
    343   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    344     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
    345            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
    346            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
    347            RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
    348 
    349   return true;
    350 }
    351 
    352 // Determine whether two GEP operations perform the same underlying arithmetic.
    353 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
    354                                          const GEPOperator *GEP2) {
    355   // When we have target data, we can reduce the GEP down to the value in bytes
    356   // added to the address.
    357   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
    358   APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
    359   if (TD &&
    360       GEP1->accumulateConstantOffset(*TD, Offset1) &&
    361       GEP2->accumulateConstantOffset(*TD, Offset2)) {
    362     return Offset1 == Offset2;
    363   }
    364 
    365   if (GEP1->getPointerOperand()->getType() !=
    366       GEP2->getPointerOperand()->getType())
    367     return false;
    368 
    369   if (GEP1->getNumOperands() != GEP2->getNumOperands())
    370     return false;
    371 
    372   for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
    373     if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
    374       return false;
    375   }
    376 
    377   return true;
    378 }
    379 
    380 // Compare two values used by the two functions under pair-wise comparison. If
    381 // this is the first time the values are seen, they're added to the mapping so
    382 // that we will detect mismatches on next use.
    383 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
    384   // Check for function @f1 referring to itself and function @f2 referring to
    385   // itself, or referring to each other, or both referring to either of them.
    386   // They're all equivalent if the two functions are otherwise equivalent.
    387   if (V1 == F1 && V2 == F2)
    388     return true;
    389   if (V1 == F2 && V2 == F1)
    390     return true;
    391 
    392   if (const Constant *C1 = dyn_cast<Constant>(V1)) {
    393     if (V1 == V2) return true;
    394     const Constant *C2 = dyn_cast<Constant>(V2);
    395     if (!C2) return false;
    396     // TODO: constant expressions with GEP or references to F1 or F2.
    397     if (C1->isNullValue() && C2->isNullValue() &&
    398         isEquivalentType(C1->getType(), C2->getType()))
    399       return true;
    400     // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
    401     // then they must have equal bit patterns.
    402     return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
    403       C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
    404   }
    405 
    406   if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
    407     return V1 == V2;
    408 
    409   // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
    410   // check whether it's equal to V2. When there is no mapping then we need to
    411   // ensure that V2 isn't already equivalent to something else. For this
    412   // purpose, we track the V2 values in a set.
    413 
    414   const Value *&map_elem = id_map[V1];
    415   if (map_elem)
    416     return map_elem == V2;
    417   if (!seen_values.insert(V2).second)
    418     return false;
    419   map_elem = V2;
    420   return true;
    421 }
    422 
    423 // Test whether two basic blocks have equivalent behaviour.
    424 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
    425   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
    426   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
    427 
    428   do {
    429     if (!enumerate(F1I, F2I))
    430       return false;
    431 
    432     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
    433       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
    434       if (!GEP2)
    435         return false;
    436 
    437       if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
    438         return false;
    439 
    440       if (!isEquivalentGEP(GEP1, GEP2))
    441         return false;
    442     } else {
    443       if (!isEquivalentOperation(F1I, F2I))
    444         return false;
    445 
    446       assert(F1I->getNumOperands() == F2I->getNumOperands());
    447       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
    448         Value *OpF1 = F1I->getOperand(i);
    449         Value *OpF2 = F2I->getOperand(i);
    450 
    451         if (!enumerate(OpF1, OpF2))
    452           return false;
    453 
    454         if (OpF1->getValueID() != OpF2->getValueID() ||
    455             !isEquivalentType(OpF1->getType(), OpF2->getType()))
    456           return false;
    457       }
    458     }
    459 
    460     ++F1I, ++F2I;
    461   } while (F1I != F1E && F2I != F2E);
    462 
    463   return F1I == F1E && F2I == F2E;
    464 }
    465 
    466 // Test whether the two functions have equivalent behaviour.
    467 bool FunctionComparator::compare() {
    468   // We need to recheck everything, but check the things that weren't included
    469   // in the hash first.
    470 
    471   if (F1->getAttributes() != F2->getAttributes())
    472     return false;
    473 
    474   if (F1->hasGC() != F2->hasGC())
    475     return false;
    476 
    477   if (F1->hasGC() && F1->getGC() != F2->getGC())
    478     return false;
    479 
    480   if (F1->hasSection() != F2->hasSection())
    481     return false;
    482 
    483   if (F1->hasSection() && F1->getSection() != F2->getSection())
    484     return false;
    485 
    486   if (F1->isVarArg() != F2->isVarArg())
    487     return false;
    488 
    489   // TODO: if it's internal and only used in direct calls, we could handle this
    490   // case too.
    491   if (F1->getCallingConv() != F2->getCallingConv())
    492     return false;
    493 
    494   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
    495     return false;
    496 
    497   assert(F1->arg_size() == F2->arg_size() &&
    498          "Identically typed functions have different numbers of args!");
    499 
    500   // Visit the arguments so that they get enumerated in the order they're
    501   // passed in.
    502   for (Function::const_arg_iterator f1i = F1->arg_begin(),
    503          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
    504     if (!enumerate(f1i, f2i))
    505       llvm_unreachable("Arguments repeat!");
    506   }
    507 
    508   // We do a CFG-ordered walk since the actual ordering of the blocks in the
    509   // linked list is immaterial. Our walk starts at the entry block for both
    510   // functions, then takes each block from each terminator in order. As an
    511   // artifact, this also means that unreachable blocks are ignored.
    512   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
    513   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
    514 
    515   F1BBs.push_back(&F1->getEntryBlock());
    516   F2BBs.push_back(&F2->getEntryBlock());
    517 
    518   VisitedBBs.insert(F1BBs[0]);
    519   while (!F1BBs.empty()) {
    520     const BasicBlock *F1BB = F1BBs.pop_back_val();
    521     const BasicBlock *F2BB = F2BBs.pop_back_val();
    522 
    523     if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
    524       return false;
    525 
    526     const TerminatorInst *F1TI = F1BB->getTerminator();
    527     const TerminatorInst *F2TI = F2BB->getTerminator();
    528 
    529     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
    530     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
    531       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
    532         continue;
    533 
    534       F1BBs.push_back(F1TI->getSuccessor(i));
    535       F2BBs.push_back(F2TI->getSuccessor(i));
    536     }
    537   }
    538   return true;
    539 }
    540 
    541 namespace {
    542 
    543 /// MergeFunctions finds functions which will generate identical machine code,
    544 /// by considering all pointer types to be equivalent. Once identified,
    545 /// MergeFunctions will fold them by replacing a call to one to a call to a
    546 /// bitcast of the other.
    547 ///
    548 class MergeFunctions : public ModulePass {
    549 public:
    550   static char ID;
    551   MergeFunctions()
    552     : ModulePass(ID), HasGlobalAliases(false) {
    553     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
    554   }
    555 
    556   bool runOnModule(Module &M);
    557 
    558 private:
    559   typedef DenseSet<ComparableFunction> FnSetType;
    560 
    561   /// A work queue of functions that may have been modified and should be
    562   /// analyzed again.
    563   std::vector<WeakVH> Deferred;
    564 
    565   /// Insert a ComparableFunction into the FnSet, or merge it away if it's
    566   /// equal to one that's already present.
    567   bool insert(ComparableFunction &NewF);
    568 
    569   /// Remove a Function from the FnSet and queue it up for a second sweep of
    570   /// analysis.
    571   void remove(Function *F);
    572 
    573   /// Find the functions that use this Value and remove them from FnSet and
    574   /// queue the functions.
    575   void removeUsers(Value *V);
    576 
    577   /// Replace all direct calls of Old with calls of New. Will bitcast New if
    578   /// necessary to make types match.
    579   void replaceDirectCallers(Function *Old, Function *New);
    580 
    581   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
    582   /// be converted into a thunk. In either case, it should never be visited
    583   /// again.
    584   void mergeTwoFunctions(Function *F, Function *G);
    585 
    586   /// Replace G with a thunk or an alias to F. Deletes G.
    587   void writeThunkOrAlias(Function *F, Function *G);
    588 
    589   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
    590   /// of G with bitcast(F). Deletes G.
    591   void writeThunk(Function *F, Function *G);
    592 
    593   /// Replace G with an alias to F. Deletes G.
    594   void writeAlias(Function *F, Function *G);
    595 
    596   /// The set of all distinct functions. Use the insert() and remove() methods
    597   /// to modify it.
    598   FnSetType FnSet;
    599 
    600   /// DataLayout for more accurate GEP comparisons. May be NULL.
    601   DataLayout *TD;
    602 
    603   /// Whether or not the target supports global aliases.
    604   bool HasGlobalAliases;
    605 };
    606 
    607 }  // end anonymous namespace
    608 
    609 char MergeFunctions::ID = 0;
    610 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
    611 
    612 ModulePass *llvm::createMergeFunctionsPass() {
    613   return new MergeFunctions();
    614 }
    615 
    616 bool MergeFunctions::runOnModule(Module &M) {
    617   bool Changed = false;
    618   TD = getAnalysisIfAvailable<DataLayout>();
    619 
    620   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    621     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
    622       Deferred.push_back(WeakVH(I));
    623   }
    624   FnSet.resize(Deferred.size());
    625 
    626   do {
    627     std::vector<WeakVH> Worklist;
    628     Deferred.swap(Worklist);
    629 
    630     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
    631     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
    632 
    633     // Insert only strong functions and merge them. Strong function merging
    634     // always deletes one of them.
    635     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
    636            E = Worklist.end(); I != E; ++I) {
    637       if (!*I) continue;
    638       Function *F = cast<Function>(*I);
    639       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
    640           !F->mayBeOverridden()) {
    641         ComparableFunction CF = ComparableFunction(F, TD);
    642         Changed |= insert(CF);
    643       }
    644     }
    645 
    646     // Insert only weak functions and merge them. By doing these second we
    647     // create thunks to the strong function when possible. When two weak
    648     // functions are identical, we create a new strong function with two weak
    649     // weak thunks to it which are identical but not mergable.
    650     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
    651            E = Worklist.end(); I != E; ++I) {
    652       if (!*I) continue;
    653       Function *F = cast<Function>(*I);
    654       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
    655           F->mayBeOverridden()) {
    656         ComparableFunction CF = ComparableFunction(F, TD);
    657         Changed |= insert(CF);
    658       }
    659     }
    660     DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
    661   } while (!Deferred.empty());
    662 
    663   FnSet.clear();
    664 
    665   return Changed;
    666 }
    667 
    668 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
    669                                                const ComparableFunction &RHS) {
    670   if (LHS.getFunc() == RHS.getFunc() &&
    671       LHS.getHash() == RHS.getHash())
    672     return true;
    673   if (!LHS.getFunc() || !RHS.getFunc())
    674     return false;
    675 
    676   // One of these is a special "underlying pointer comparison only" object.
    677   if (LHS.getTD() == ComparableFunction::LookupOnly ||
    678       RHS.getTD() == ComparableFunction::LookupOnly)
    679     return false;
    680 
    681   assert(LHS.getTD() == RHS.getTD() &&
    682          "Comparing functions for different targets");
    683 
    684   return FunctionComparator(LHS.getTD(), LHS.getFunc(),
    685                             RHS.getFunc()).compare();
    686 }
    687 
    688 // Replace direct callers of Old with New.
    689 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
    690   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
    691   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
    692        UI != UE;) {
    693     Value::use_iterator TheIter = UI;
    694     ++UI;
    695     CallSite CS(*TheIter);
    696     if (CS && CS.isCallee(TheIter)) {
    697       remove(CS.getInstruction()->getParent()->getParent());
    698       TheIter.getUse().set(BitcastNew);
    699     }
    700   }
    701 }
    702 
    703 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
    704 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
    705   if (HasGlobalAliases && G->hasUnnamedAddr()) {
    706     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
    707         G->hasWeakLinkage()) {
    708       writeAlias(F, G);
    709       return;
    710     }
    711   }
    712 
    713   writeThunk(F, G);
    714 }
    715 
    716 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
    717 // of G with bitcast(F). Deletes G.
    718 void MergeFunctions::writeThunk(Function *F, Function *G) {
    719   if (!G->mayBeOverridden()) {
    720     // Redirect direct callers of G to F.
    721     replaceDirectCallers(G, F);
    722   }
    723 
    724   // If G was internal then we may have replaced all uses of G with F. If so,
    725   // stop here and delete G. There's no need for a thunk.
    726   if (G->hasLocalLinkage() && G->use_empty()) {
    727     G->eraseFromParent();
    728     return;
    729   }
    730 
    731   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
    732                                     G->getParent());
    733   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
    734   IRBuilder<false> Builder(BB);
    735 
    736   SmallVector<Value *, 16> Args;
    737   unsigned i = 0;
    738   FunctionType *FFTy = F->getFunctionType();
    739   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
    740        AI != AE; ++AI) {
    741     Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
    742     ++i;
    743   }
    744 
    745   CallInst *CI = Builder.CreateCall(F, Args);
    746   CI->setTailCall();
    747   CI->setCallingConv(F->getCallingConv());
    748   if (NewG->getReturnType()->isVoidTy()) {
    749     Builder.CreateRetVoid();
    750   } else {
    751     Type *RetTy = NewG->getReturnType();
    752     if (CI->getType()->isIntegerTy() && RetTy->isPointerTy())
    753       Builder.CreateRet(Builder.CreateIntToPtr(CI, RetTy));
    754     else if (CI->getType()->isPointerTy() && RetTy->isIntegerTy())
    755       Builder.CreateRet(Builder.CreatePtrToInt(CI, RetTy));
    756     else
    757       Builder.CreateRet(Builder.CreateBitCast(CI, RetTy));
    758   }
    759 
    760   NewG->copyAttributesFrom(G);
    761   NewG->takeName(G);
    762   removeUsers(G);
    763   G->replaceAllUsesWith(NewG);
    764   G->eraseFromParent();
    765 
    766   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
    767   ++NumThunksWritten;
    768 }
    769 
    770 // Replace G with an alias to F and delete G.
    771 void MergeFunctions::writeAlias(Function *F, Function *G) {
    772   Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
    773   GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
    774                                     BitcastF, G->getParent());
    775   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
    776   GA->takeName(G);
    777   GA->setVisibility(G->getVisibility());
    778   removeUsers(G);
    779   G->replaceAllUsesWith(GA);
    780   G->eraseFromParent();
    781 
    782   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
    783   ++NumAliasesWritten;
    784 }
    785 
    786 // Merge two equivalent functions. Upon completion, Function G is deleted.
    787 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
    788   if (F->mayBeOverridden()) {
    789     assert(G->mayBeOverridden());
    790 
    791     if (HasGlobalAliases) {
    792       // Make them both thunks to the same internal function.
    793       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
    794                                      F->getParent());
    795       H->copyAttributesFrom(F);
    796       H->takeName(F);
    797       removeUsers(F);
    798       F->replaceAllUsesWith(H);
    799 
    800       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
    801 
    802       writeAlias(F, G);
    803       writeAlias(F, H);
    804 
    805       F->setAlignment(MaxAlignment);
    806       F->setLinkage(GlobalValue::PrivateLinkage);
    807     } else {
    808       // We can't merge them. Instead, pick one and update all direct callers
    809       // to call it and hope that we improve the instruction cache hit rate.
    810       replaceDirectCallers(G, F);
    811     }
    812 
    813     ++NumDoubleWeak;
    814   } else {
    815     writeThunkOrAlias(F, G);
    816   }
    817 
    818   ++NumFunctionsMerged;
    819 }
    820 
    821 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
    822 // that was already inserted.
    823 bool MergeFunctions::insert(ComparableFunction &NewF) {
    824   std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
    825   if (Result.second) {
    826     DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
    827     return false;
    828   }
    829 
    830   const ComparableFunction &OldF = *Result.first;
    831 
    832   // Never thunk a strong function to a weak function.
    833   assert(!OldF.getFunc()->mayBeOverridden() ||
    834          NewF.getFunc()->mayBeOverridden());
    835 
    836   DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
    837                << NewF.getFunc()->getName() << '\n');
    838 
    839   Function *DeleteF = NewF.getFunc();
    840   NewF.release();
    841   mergeTwoFunctions(OldF.getFunc(), DeleteF);
    842   return true;
    843 }
    844 
    845 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
    846 // so that we'll look at it in the next round.
    847 void MergeFunctions::remove(Function *F) {
    848   // We need to make sure we remove F, not a function "equal" to F per the
    849   // function equality comparator.
    850   //
    851   // The special "lookup only" ComparableFunction bypasses the expensive
    852   // function comparison in favour of a pointer comparison on the underlying
    853   // Function*'s.
    854   ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
    855   if (FnSet.erase(CF)) {
    856     DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
    857     Deferred.push_back(F);
    858   }
    859 }
    860 
    861 // For each instruction used by the value, remove() the function that contains
    862 // the instruction. This should happen right before a call to RAUW.
    863 void MergeFunctions::removeUsers(Value *V) {
    864   std::vector<Value *> Worklist;
    865   Worklist.push_back(V);
    866   while (!Worklist.empty()) {
    867     Value *V = Worklist.back();
    868     Worklist.pop_back();
    869 
    870     for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
    871          UI != UE; ++UI) {
    872       Use &U = UI.getUse();
    873       if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
    874         remove(I->getParent()->getParent());
    875       } else if (isa<GlobalValue>(U.getUser())) {
    876         // do nothing
    877       } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
    878         for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
    879              CUI != CUE; ++CUI)
    880           Worklist.push_back(*CUI);
    881       }
    882     }
    883   }
    884 }
    885