1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "early-cse" 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include "llvm/Target/TargetLibraryInfo.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include <deque> 30 using namespace llvm; 31 32 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 33 STATISTIC(NumCSE, "Number of instructions CSE'd"); 34 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 35 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 36 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 37 38 static unsigned getHash(const void *V) { 39 return DenseMapInfo<const void*>::getHashValue(V); 40 } 41 42 //===----------------------------------------------------------------------===// 43 // SimpleValue 44 //===----------------------------------------------------------------------===// 45 46 namespace { 47 /// SimpleValue - Instances of this struct represent available values in the 48 /// scoped hash table. 49 struct SimpleValue { 50 Instruction *Inst; 51 52 SimpleValue(Instruction *I) : Inst(I) { 53 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 54 } 55 56 bool isSentinel() const { 57 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || 58 Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); 59 } 60 61 static bool canHandle(Instruction *Inst) { 62 // This can only handle non-void readnone functions. 63 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 64 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 65 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 66 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 67 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 68 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 69 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 70 } 71 }; 72 } 73 74 namespace llvm { 75 // SimpleValue is POD. 76 template<> struct isPodLike<SimpleValue> { 77 static const bool value = true; 78 }; 79 80 template<> struct DenseMapInfo<SimpleValue> { 81 static inline SimpleValue getEmptyKey() { 82 return DenseMapInfo<Instruction*>::getEmptyKey(); 83 } 84 static inline SimpleValue getTombstoneKey() { 85 return DenseMapInfo<Instruction*>::getTombstoneKey(); 86 } 87 static unsigned getHashValue(SimpleValue Val); 88 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 89 }; 90 } 91 92 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 93 Instruction *Inst = Val.Inst; 94 // Hash in all of the operands as pointers. 95 if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) { 96 Value *LHS = BinOp->getOperand(0); 97 Value *RHS = BinOp->getOperand(1); 98 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 99 std::swap(LHS, RHS); 100 101 if (isa<OverflowingBinaryOperator>(BinOp)) { 102 // Hash the overflow behavior 103 unsigned Overflow = 104 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 105 BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction"); 139 140 // Mix in the opcode. 141 return hash_combine(Inst->getOpcode(), 142 hash_combine_range(Inst->value_op_begin(), 143 Inst->value_op_end())); 144 } 145 146 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 147 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 148 149 if (LHS.isSentinel() || RHS.isSentinel()) 150 return LHSI == RHSI; 151 152 if (LHSI->getOpcode() != RHSI->getOpcode()) return false; 153 if (LHSI->isIdenticalTo(RHSI)) return true; 154 155 // If we're not strictly identical, we still might be a commutable instruction 156 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 157 if (!LHSBinOp->isCommutative()) 158 return false; 159 160 assert(isa<BinaryOperator>(RHSI) 161 && "same opcode, but different instruction type?"); 162 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 163 164 // Check overflow attributes 165 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 166 assert(isa<OverflowingBinaryOperator>(RHSBinOp) 167 && "same opcode, but different operator type?"); 168 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 169 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 170 return false; 171 } 172 173 // Commuted equality 174 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 175 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 176 } 177 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 178 assert(isa<CmpInst>(RHSI) 179 && "same opcode, but different instruction type?"); 180 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 181 // Commuted equality 182 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 183 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 184 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 185 } 186 187 return false; 188 } 189 190 //===----------------------------------------------------------------------===// 191 // CallValue 192 //===----------------------------------------------------------------------===// 193 194 namespace { 195 /// CallValue - Instances of this struct represent available call values in 196 /// the scoped hash table. 197 struct CallValue { 198 Instruction *Inst; 199 200 CallValue(Instruction *I) : Inst(I) { 201 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 202 } 203 204 bool isSentinel() const { 205 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || 206 Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); 207 } 208 209 static bool canHandle(Instruction *Inst) { 210 // Don't value number anything that returns void. 211 if (Inst->getType()->isVoidTy()) 212 return false; 213 214 CallInst *CI = dyn_cast<CallInst>(Inst); 215 if (CI == 0 || !CI->onlyReadsMemory()) 216 return false; 217 return true; 218 } 219 }; 220 } 221 222 namespace llvm { 223 // CallValue is POD. 224 template<> struct isPodLike<CallValue> { 225 static const bool value = true; 226 }; 227 228 template<> struct DenseMapInfo<CallValue> { 229 static inline CallValue getEmptyKey() { 230 return DenseMapInfo<Instruction*>::getEmptyKey(); 231 } 232 static inline CallValue getTombstoneKey() { 233 return DenseMapInfo<Instruction*>::getTombstoneKey(); 234 } 235 static unsigned getHashValue(CallValue Val); 236 static bool isEqual(CallValue LHS, CallValue RHS); 237 }; 238 } 239 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 240 Instruction *Inst = Val.Inst; 241 // Hash in all of the operands as pointers. 242 unsigned Res = 0; 243 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) { 244 assert(!Inst->getOperand(i)->getType()->isMetadataTy() && 245 "Cannot value number calls with metadata operands"); 246 Res ^= getHash(Inst->getOperand(i)) << (i & 0xF); 247 } 248 249 // Mix in the opcode. 250 return (Res << 1) ^ Inst->getOpcode(); 251 } 252 253 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 254 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 255 if (LHS.isSentinel() || RHS.isSentinel()) 256 return LHSI == RHSI; 257 return LHSI->isIdenticalTo(RHSI); 258 } 259 260 261 //===----------------------------------------------------------------------===// 262 // EarlyCSE pass. 263 //===----------------------------------------------------------------------===// 264 265 namespace { 266 267 /// EarlyCSE - This pass does a simple depth-first walk over the dominator 268 /// tree, eliminating trivially redundant instructions and using instsimplify 269 /// to canonicalize things as it goes. It is intended to be fast and catch 270 /// obvious cases so that instcombine and other passes are more effective. It 271 /// is expected that a later pass of GVN will catch the interesting/hard 272 /// cases. 273 class EarlyCSE : public FunctionPass { 274 public: 275 const DataLayout *TD; 276 const TargetLibraryInfo *TLI; 277 DominatorTree *DT; 278 typedef RecyclingAllocator<BumpPtrAllocator, 279 ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy; 280 typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>, 281 AllocatorTy> ScopedHTType; 282 283 /// AvailableValues - This scoped hash table contains the current values of 284 /// all of our simple scalar expressions. As we walk down the domtree, we 285 /// look to see if instructions are in this: if so, we replace them with what 286 /// we find, otherwise we insert them so that dominated values can succeed in 287 /// their lookup. 288 ScopedHTType *AvailableValues; 289 290 /// AvailableLoads - This scoped hash table contains the current values 291 /// of loads. This allows us to get efficient access to dominating loads when 292 /// we have a fully redundant load. In addition to the most recent load, we 293 /// keep track of a generation count of the read, which is compared against 294 /// the current generation count. The current generation count is 295 /// incremented after every possibly writing memory operation, which ensures 296 /// that we only CSE loads with other loads that have no intervening store. 297 typedef RecyclingAllocator<BumpPtrAllocator, 298 ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator; 299 typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>, 300 DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType; 301 LoadHTType *AvailableLoads; 302 303 /// AvailableCalls - This scoped hash table contains the current values 304 /// of read-only call values. It uses the same generation count as loads. 305 typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType; 306 CallHTType *AvailableCalls; 307 308 /// CurrentGeneration - This is the current generation of the memory value. 309 unsigned CurrentGeneration; 310 311 static char ID; 312 explicit EarlyCSE() : FunctionPass(ID) { 313 initializeEarlyCSEPass(*PassRegistry::getPassRegistry()); 314 } 315 316 bool runOnFunction(Function &F); 317 318 private: 319 320 // NodeScope - almost a POD, but needs to call the constructors for the 321 // scoped hash tables so that a new scope gets pushed on. These are RAII so 322 // that the scope gets popped when the NodeScope is destroyed. 323 class NodeScope { 324 public: 325 NodeScope(ScopedHTType *availableValues, 326 LoadHTType *availableLoads, 327 CallHTType *availableCalls) : 328 Scope(*availableValues), 329 LoadScope(*availableLoads), 330 CallScope(*availableCalls) {} 331 332 private: 333 NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION; 334 void operator=(const NodeScope&) LLVM_DELETED_FUNCTION; 335 336 ScopedHTType::ScopeTy Scope; 337 LoadHTType::ScopeTy LoadScope; 338 CallHTType::ScopeTy CallScope; 339 }; 340 341 // StackNode - contains all the needed information to create a stack for 342 // doing a depth first tranversal of the tree. This includes scopes for 343 // values, loads, and calls as well as the generation. There is a child 344 // iterator so that the children do not need to be store spearately. 345 class StackNode { 346 public: 347 StackNode(ScopedHTType *availableValues, 348 LoadHTType *availableLoads, 349 CallHTType *availableCalls, 350 unsigned cg, DomTreeNode *n, 351 DomTreeNode::iterator child, DomTreeNode::iterator end) : 352 CurrentGeneration(cg), ChildGeneration(cg), Node(n), 353 ChildIter(child), EndIter(end), 354 Scopes(availableValues, availableLoads, availableCalls), 355 Processed(false) {} 356 357 // Accessors. 358 unsigned currentGeneration() { return CurrentGeneration; } 359 unsigned childGeneration() { return ChildGeneration; } 360 void childGeneration(unsigned generation) { ChildGeneration = generation; } 361 DomTreeNode *node() { return Node; } 362 DomTreeNode::iterator childIter() { return ChildIter; } 363 DomTreeNode *nextChild() { 364 DomTreeNode *child = *ChildIter; 365 ++ChildIter; 366 return child; 367 } 368 DomTreeNode::iterator end() { return EndIter; } 369 bool isProcessed() { return Processed; } 370 void process() { Processed = true; } 371 372 private: 373 StackNode(const StackNode&) LLVM_DELETED_FUNCTION; 374 void operator=(const StackNode&) LLVM_DELETED_FUNCTION; 375 376 // Members. 377 unsigned CurrentGeneration; 378 unsigned ChildGeneration; 379 DomTreeNode *Node; 380 DomTreeNode::iterator ChildIter; 381 DomTreeNode::iterator EndIter; 382 NodeScope Scopes; 383 bool Processed; 384 }; 385 386 bool processNode(DomTreeNode *Node); 387 388 // This transformation requires dominator postdominator info 389 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 390 AU.addRequired<DominatorTree>(); 391 AU.addRequired<TargetLibraryInfo>(); 392 AU.setPreservesCFG(); 393 } 394 }; 395 } 396 397 char EarlyCSE::ID = 0; 398 399 // createEarlyCSEPass - The public interface to this file. 400 FunctionPass *llvm::createEarlyCSEPass() { 401 return new EarlyCSE(); 402 } 403 404 INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false) 405 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 406 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 407 INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false) 408 409 bool EarlyCSE::processNode(DomTreeNode *Node) { 410 BasicBlock *BB = Node->getBlock(); 411 412 // If this block has a single predecessor, then the predecessor is the parent 413 // of the domtree node and all of the live out memory values are still current 414 // in this block. If this block has multiple predecessors, then they could 415 // have invalidated the live-out memory values of our parent value. For now, 416 // just be conservative and invalidate memory if this block has multiple 417 // predecessors. 418 if (BB->getSinglePredecessor() == 0) 419 ++CurrentGeneration; 420 421 /// LastStore - Keep track of the last non-volatile store that we saw... for 422 /// as long as there in no instruction that reads memory. If we see a store 423 /// to the same location, we delete the dead store. This zaps trivial dead 424 /// stores which can occur in bitfield code among other things. 425 StoreInst *LastStore = 0; 426 427 bool Changed = false; 428 429 // See if any instructions in the block can be eliminated. If so, do it. If 430 // not, add them to AvailableValues. 431 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 432 Instruction *Inst = I++; 433 434 // Dead instructions should just be removed. 435 if (isInstructionTriviallyDead(Inst, TLI)) { 436 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 437 Inst->eraseFromParent(); 438 Changed = true; 439 ++NumSimplify; 440 continue; 441 } 442 443 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 444 // its simpler value. 445 if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) { 446 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 447 Inst->replaceAllUsesWith(V); 448 Inst->eraseFromParent(); 449 Changed = true; 450 ++NumSimplify; 451 continue; 452 } 453 454 // If this is a simple instruction that we can value number, process it. 455 if (SimpleValue::canHandle(Inst)) { 456 // See if the instruction has an available value. If so, use it. 457 if (Value *V = AvailableValues->lookup(Inst)) { 458 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 459 Inst->replaceAllUsesWith(V); 460 Inst->eraseFromParent(); 461 Changed = true; 462 ++NumCSE; 463 continue; 464 } 465 466 // Otherwise, just remember that this value is available. 467 AvailableValues->insert(Inst, Inst); 468 continue; 469 } 470 471 // If this is a non-volatile load, process it. 472 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 473 // Ignore volatile loads. 474 if (!LI->isSimple()) { 475 LastStore = 0; 476 continue; 477 } 478 479 // If we have an available version of this load, and if it is the right 480 // generation, replace this instruction. 481 std::pair<Value*, unsigned> InVal = 482 AvailableLoads->lookup(Inst->getOperand(0)); 483 if (InVal.first != 0 && InVal.second == CurrentGeneration) { 484 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: " 485 << *InVal.first << '\n'); 486 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); 487 Inst->eraseFromParent(); 488 Changed = true; 489 ++NumCSELoad; 490 continue; 491 } 492 493 // Otherwise, remember that we have this instruction. 494 AvailableLoads->insert(Inst->getOperand(0), 495 std::pair<Value*, unsigned>(Inst, CurrentGeneration)); 496 LastStore = 0; 497 continue; 498 } 499 500 // If this instruction may read from memory, forget LastStore. 501 if (Inst->mayReadFromMemory()) 502 LastStore = 0; 503 504 // If this is a read-only call, process it. 505 if (CallValue::canHandle(Inst)) { 506 // If we have an available version of this call, and if it is the right 507 // generation, replace this instruction. 508 std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst); 509 if (InVal.first != 0 && InVal.second == CurrentGeneration) { 510 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: " 511 << *InVal.first << '\n'); 512 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); 513 Inst->eraseFromParent(); 514 Changed = true; 515 ++NumCSECall; 516 continue; 517 } 518 519 // Otherwise, remember that we have this instruction. 520 AvailableCalls->insert(Inst, 521 std::pair<Value*, unsigned>(Inst, CurrentGeneration)); 522 continue; 523 } 524 525 // Okay, this isn't something we can CSE at all. Check to see if it is 526 // something that could modify memory. If so, our available memory values 527 // cannot be used so bump the generation count. 528 if (Inst->mayWriteToMemory()) { 529 ++CurrentGeneration; 530 531 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 532 // We do a trivial form of DSE if there are two stores to the same 533 // location with no intervening loads. Delete the earlier store. 534 if (LastStore && 535 LastStore->getPointerOperand() == SI->getPointerOperand()) { 536 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " 537 << *Inst << '\n'); 538 LastStore->eraseFromParent(); 539 Changed = true; 540 ++NumDSE; 541 LastStore = 0; 542 continue; 543 } 544 545 // Okay, we just invalidated anything we knew about loaded values. Try 546 // to salvage *something* by remembering that the stored value is a live 547 // version of the pointer. It is safe to forward from volatile stores 548 // to non-volatile loads, so we don't have to check for volatility of 549 // the store. 550 AvailableLoads->insert(SI->getPointerOperand(), 551 std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration)); 552 553 // Remember that this was the last store we saw for DSE. 554 if (SI->isSimple()) 555 LastStore = SI; 556 } 557 } 558 } 559 560 return Changed; 561 } 562 563 564 bool EarlyCSE::runOnFunction(Function &F) { 565 std::deque<StackNode *> nodesToProcess; 566 567 TD = getAnalysisIfAvailable<DataLayout>(); 568 TLI = &getAnalysis<TargetLibraryInfo>(); 569 DT = &getAnalysis<DominatorTree>(); 570 571 // Tables that the pass uses when walking the domtree. 572 ScopedHTType AVTable; 573 AvailableValues = &AVTable; 574 LoadHTType LoadTable; 575 AvailableLoads = &LoadTable; 576 CallHTType CallTable; 577 AvailableCalls = &CallTable; 578 579 CurrentGeneration = 0; 580 bool Changed = false; 581 582 // Process the root node. 583 nodesToProcess.push_front( 584 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 585 CurrentGeneration, DT->getRootNode(), 586 DT->getRootNode()->begin(), 587 DT->getRootNode()->end())); 588 589 // Save the current generation. 590 unsigned LiveOutGeneration = CurrentGeneration; 591 592 // Process the stack. 593 while (!nodesToProcess.empty()) { 594 // Grab the first item off the stack. Set the current generation, remove 595 // the node from the stack, and process it. 596 StackNode *NodeToProcess = nodesToProcess.front(); 597 598 // Initialize class members. 599 CurrentGeneration = NodeToProcess->currentGeneration(); 600 601 // Check if the node needs to be processed. 602 if (!NodeToProcess->isProcessed()) { 603 // Process the node. 604 Changed |= processNode(NodeToProcess->node()); 605 NodeToProcess->childGeneration(CurrentGeneration); 606 NodeToProcess->process(); 607 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 608 // Push the next child onto the stack. 609 DomTreeNode *child = NodeToProcess->nextChild(); 610 nodesToProcess.push_front( 611 new StackNode(AvailableValues, 612 AvailableLoads, 613 AvailableCalls, 614 NodeToProcess->childGeneration(), child, 615 child->begin(), child->end())); 616 } else { 617 // It has been processed, and there are no more children to process, 618 // so delete it and pop it off the stack. 619 delete NodeToProcess; 620 nodesToProcess.pop_front(); 621 } 622 } // while (!nodes...) 623 624 // Reset the current generation. 625 CurrentGeneration = LiveOutGeneration; 626 627 return Changed; 628 } 629