1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/CallGraph.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/DebugInfo.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/CallSite.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 using namespace llvm; 33 34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 35 bool InsertLifetime) { 36 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 37 } 38 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 39 bool InsertLifetime) { 40 return InlineFunction(CallSite(II), IFI, InsertLifetime); 41 } 42 43 namespace { 44 /// A class for recording information about inlining through an invoke. 45 class InvokeInliningInfo { 46 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 47 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 48 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 49 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 50 SmallVector<Value*, 8> UnwindDestPHIValues; 51 52 public: 53 InvokeInliningInfo(InvokeInst *II) 54 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 55 CallerLPad(0), InnerEHValuesPHI(0) { 56 // If there are PHI nodes in the unwind destination block, we need to keep 57 // track of which values came into them from the invoke before removing 58 // the edge from this block. 59 llvm::BasicBlock *InvokeBB = II->getParent(); 60 BasicBlock::iterator I = OuterResumeDest->begin(); 61 for (; isa<PHINode>(I); ++I) { 62 // Save the value to use for this edge. 63 PHINode *PHI = cast<PHINode>(I); 64 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 65 } 66 67 CallerLPad = cast<LandingPadInst>(I); 68 } 69 70 /// getOuterResumeDest - The outer unwind destination is the target of 71 /// unwind edges introduced for calls within the inlined function. 72 BasicBlock *getOuterResumeDest() const { 73 return OuterResumeDest; 74 } 75 76 BasicBlock *getInnerResumeDest(); 77 78 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 79 80 /// forwardResume - Forward the 'resume' instruction to the caller's landing 81 /// pad block. When the landing pad block has only one predecessor, this is 82 /// a simple branch. When there is more than one predecessor, we need to 83 /// split the landing pad block after the landingpad instruction and jump 84 /// to there. 85 void forwardResume(ResumeInst *RI, 86 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads); 87 88 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 89 /// destination block for the given basic block, using the values for the 90 /// original invoke's source block. 91 void addIncomingPHIValuesFor(BasicBlock *BB) const { 92 addIncomingPHIValuesForInto(BB, OuterResumeDest); 93 } 94 95 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 96 BasicBlock::iterator I = dest->begin(); 97 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 98 PHINode *phi = cast<PHINode>(I); 99 phi->addIncoming(UnwindDestPHIValues[i], src); 100 } 101 } 102 }; 103 } 104 105 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 106 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 107 if (InnerResumeDest) return InnerResumeDest; 108 109 // Split the landing pad. 110 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 111 InnerResumeDest = 112 OuterResumeDest->splitBasicBlock(SplitPoint, 113 OuterResumeDest->getName() + ".body"); 114 115 // The number of incoming edges we expect to the inner landing pad. 116 const unsigned PHICapacity = 2; 117 118 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 119 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 120 BasicBlock::iterator I = OuterResumeDest->begin(); 121 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 122 PHINode *OuterPHI = cast<PHINode>(I); 123 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 124 OuterPHI->getName() + ".lpad-body", 125 InsertPoint); 126 OuterPHI->replaceAllUsesWith(InnerPHI); 127 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 128 } 129 130 // Create a PHI for the exception values. 131 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 132 "eh.lpad-body", InsertPoint); 133 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 134 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 135 136 // All done. 137 return InnerResumeDest; 138 } 139 140 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 141 /// block. When the landing pad block has only one predecessor, this is a simple 142 /// branch. When there is more than one predecessor, we need to split the 143 /// landing pad block after the landingpad instruction and jump to there. 144 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 145 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) { 146 BasicBlock *Dest = getInnerResumeDest(); 147 LandingPadInst *OuterLPad = getLandingPadInst(); 148 BasicBlock *Src = RI->getParent(); 149 150 BranchInst::Create(Dest, Src); 151 152 // Update the PHIs in the destination. They were inserted in an order which 153 // makes this work. 154 addIncomingPHIValuesForInto(Src, Dest); 155 156 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 157 RI->eraseFromParent(); 158 159 // Append the clauses from the outer landing pad instruction into the inlined 160 // landing pad instructions. 161 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 162 E = InlinedLPads.end(); I != E; ++I) { 163 LandingPadInst *InlinedLPad = *I; 164 for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses(); 165 OuterIdx != OuterNum; ++OuterIdx) 166 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 167 } 168 } 169 170 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 171 /// an invoke, we have to turn all of the calls that can throw into 172 /// invokes. This function analyze BB to see if there are any calls, and if so, 173 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 174 /// nodes in that block with the values specified in InvokeDestPHIValues. 175 /// 176 /// Returns true to indicate that the next block should be skipped. 177 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 178 InvokeInliningInfo &Invoke) { 179 LandingPadInst *LPI = Invoke.getLandingPadInst(); 180 181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 182 Instruction *I = BBI++; 183 184 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 185 unsigned NumClauses = LPI->getNumClauses(); 186 L->reserveClauses(NumClauses); 187 for (unsigned i = 0; i != NumClauses; ++i) 188 L->addClause(LPI->getClause(i)); 189 } 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 if (!CI || CI->doesNotThrow()) 197 continue; 198 199 // Convert this function call into an invoke instruction. First, split the 200 // basic block. 201 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 202 203 // Delete the unconditional branch inserted by splitBasicBlock 204 BB->getInstList().pop_back(); 205 206 // Create the new invoke instruction. 207 ImmutableCallSite CS(CI); 208 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 209 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 210 Invoke.getOuterResumeDest(), 211 InvokeArgs, CI->getName(), BB); 212 II->setCallingConv(CI->getCallingConv()); 213 II->setAttributes(CI->getAttributes()); 214 215 // Make sure that anything using the call now uses the invoke! This also 216 // updates the CallGraph if present, because it uses a WeakVH. 217 CI->replaceAllUsesWith(II); 218 219 // Delete the original call 220 Split->getInstList().pop_front(); 221 222 // Update any PHI nodes in the exceptional block to indicate that there is 223 // now a new entry in them. 224 Invoke.addIncomingPHIValuesFor(BB); 225 return false; 226 } 227 228 return false; 229 } 230 231 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 232 /// in the body of the inlined function into invokes. 233 /// 234 /// II is the invoke instruction being inlined. FirstNewBlock is the first 235 /// block of the inlined code (the last block is the end of the function), 236 /// and InlineCodeInfo is information about the code that got inlined. 237 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 238 ClonedCodeInfo &InlinedCodeInfo) { 239 BasicBlock *InvokeDest = II->getUnwindDest(); 240 241 Function *Caller = FirstNewBlock->getParent(); 242 243 // The inlined code is currently at the end of the function, scan from the 244 // start of the inlined code to its end, checking for stuff we need to 245 // rewrite. 246 InvokeInliningInfo Invoke(II); 247 248 // Get all of the inlined landing pad instructions. 249 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 250 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 251 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 252 InlinedLPads.insert(II->getLandingPadInst()); 253 254 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 255 if (InlinedCodeInfo.ContainsCalls) 256 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 257 // Honor a request to skip the next block. 258 ++BB; 259 continue; 260 } 261 262 // Forward any resumes that are remaining here. 263 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 264 Invoke.forwardResume(RI, InlinedLPads); 265 } 266 267 // Now that everything is happy, we have one final detail. The PHI nodes in 268 // the exception destination block still have entries due to the original 269 // invoke instruction. Eliminate these entries (which might even delete the 270 // PHI node) now. 271 InvokeDest->removePredecessor(II->getParent()); 272 } 273 274 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 275 /// into the caller, update the specified callgraph to reflect the changes we 276 /// made. Note that it's possible that not all code was copied over, so only 277 /// some edges of the callgraph may remain. 278 static void UpdateCallGraphAfterInlining(CallSite CS, 279 Function::iterator FirstNewBlock, 280 ValueToValueMapTy &VMap, 281 InlineFunctionInfo &IFI) { 282 CallGraph &CG = *IFI.CG; 283 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 284 const Function *Callee = CS.getCalledFunction(); 285 CallGraphNode *CalleeNode = CG[Callee]; 286 CallGraphNode *CallerNode = CG[Caller]; 287 288 // Since we inlined some uninlined call sites in the callee into the caller, 289 // add edges from the caller to all of the callees of the callee. 290 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 291 292 // Consider the case where CalleeNode == CallerNode. 293 CallGraphNode::CalledFunctionsVector CallCache; 294 if (CalleeNode == CallerNode) { 295 CallCache.assign(I, E); 296 I = CallCache.begin(); 297 E = CallCache.end(); 298 } 299 300 for (; I != E; ++I) { 301 const Value *OrigCall = I->first; 302 303 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 304 // Only copy the edge if the call was inlined! 305 if (VMI == VMap.end() || VMI->second == 0) 306 continue; 307 308 // If the call was inlined, but then constant folded, there is no edge to 309 // add. Check for this case. 310 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 311 if (NewCall == 0) continue; 312 313 // Remember that this call site got inlined for the client of 314 // InlineFunction. 315 IFI.InlinedCalls.push_back(NewCall); 316 317 // It's possible that inlining the callsite will cause it to go from an 318 // indirect to a direct call by resolving a function pointer. If this 319 // happens, set the callee of the new call site to a more precise 320 // destination. This can also happen if the call graph node of the caller 321 // was just unnecessarily imprecise. 322 if (I->second->getFunction() == 0) 323 if (Function *F = CallSite(NewCall).getCalledFunction()) { 324 // Indirect call site resolved to direct call. 325 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 326 327 continue; 328 } 329 330 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 331 } 332 333 // Update the call graph by deleting the edge from Callee to Caller. We must 334 // do this after the loop above in case Caller and Callee are the same. 335 CallerNode->removeCallEdgeFor(CS); 336 } 337 338 /// HandleByValArgument - When inlining a call site that has a byval argument, 339 /// we have to make the implicit memcpy explicit by adding it. 340 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 341 const Function *CalledFunc, 342 InlineFunctionInfo &IFI, 343 unsigned ByValAlignment) { 344 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 345 346 // If the called function is readonly, then it could not mutate the caller's 347 // copy of the byval'd memory. In this case, it is safe to elide the copy and 348 // temporary. 349 if (CalledFunc->onlyReadsMemory()) { 350 // If the byval argument has a specified alignment that is greater than the 351 // passed in pointer, then we either have to round up the input pointer or 352 // give up on this transformation. 353 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 354 return Arg; 355 356 // If the pointer is already known to be sufficiently aligned, or if we can 357 // round it up to a larger alignment, then we don't need a temporary. 358 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 359 IFI.TD) >= ByValAlignment) 360 return Arg; 361 362 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 363 // for code quality, but rarely happens and is required for correctness. 364 } 365 366 LLVMContext &Context = Arg->getContext(); 367 368 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 369 370 // Create the alloca. If we have DataLayout, use nice alignment. 371 unsigned Align = 1; 372 if (IFI.TD) 373 Align = IFI.TD->getPrefTypeAlignment(AggTy); 374 375 // If the byval had an alignment specified, we *must* use at least that 376 // alignment, as it is required by the byval argument (and uses of the 377 // pointer inside the callee). 378 Align = std::max(Align, ByValAlignment); 379 380 Function *Caller = TheCall->getParent()->getParent(); 381 382 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 383 &*Caller->begin()->begin()); 384 // Emit a memcpy. 385 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 386 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 387 Intrinsic::memcpy, 388 Tys); 389 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 390 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 391 392 Value *Size; 393 if (IFI.TD == 0) 394 Size = ConstantExpr::getSizeOf(AggTy); 395 else 396 Size = ConstantInt::get(Type::getInt64Ty(Context), 397 IFI.TD->getTypeStoreSize(AggTy)); 398 399 // Always generate a memcpy of alignment 1 here because we don't know 400 // the alignment of the src pointer. Other optimizations can infer 401 // better alignment. 402 Value *CallArgs[] = { 403 DestCast, SrcCast, Size, 404 ConstantInt::get(Type::getInt32Ty(Context), 1), 405 ConstantInt::getFalse(Context) // isVolatile 406 }; 407 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 408 409 // Uses of the argument in the function should use our new alloca 410 // instead. 411 return NewAlloca; 412 } 413 414 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 415 // intrinsic. 416 static bool isUsedByLifetimeMarker(Value *V) { 417 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 418 ++UI) { 419 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 420 switch (II->getIntrinsicID()) { 421 default: break; 422 case Intrinsic::lifetime_start: 423 case Intrinsic::lifetime_end: 424 return true; 425 } 426 } 427 } 428 return false; 429 } 430 431 // hasLifetimeMarkers - Check whether the given alloca already has 432 // lifetime.start or lifetime.end intrinsics. 433 static bool hasLifetimeMarkers(AllocaInst *AI) { 434 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 435 if (AI->getType() == Int8PtrTy) 436 return isUsedByLifetimeMarker(AI); 437 438 // Do a scan to find all the casts to i8*. 439 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 440 ++I) { 441 if (I->getType() != Int8PtrTy) continue; 442 if (I->stripPointerCasts() != AI) continue; 443 if (isUsedByLifetimeMarker(*I)) 444 return true; 445 } 446 return false; 447 } 448 449 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 450 /// recursively update InlinedAtEntry of a DebugLoc. 451 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 452 const DebugLoc &InlinedAtDL, 453 LLVMContext &Ctx) { 454 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 455 DebugLoc NewInlinedAtDL 456 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 457 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 458 NewInlinedAtDL.getAsMDNode(Ctx)); 459 } 460 461 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 462 InlinedAtDL.getAsMDNode(Ctx)); 463 } 464 465 /// fixupLineNumbers - Update inlined instructions' line numbers to 466 /// to encode location where these instructions are inlined. 467 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 468 Instruction *TheCall) { 469 DebugLoc TheCallDL = TheCall->getDebugLoc(); 470 if (TheCallDL.isUnknown()) 471 return; 472 473 for (; FI != Fn->end(); ++FI) { 474 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 475 BI != BE; ++BI) { 476 DebugLoc DL = BI->getDebugLoc(); 477 if (!DL.isUnknown()) { 478 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 479 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 480 LLVMContext &Ctx = BI->getContext(); 481 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 482 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 483 InlinedAt, Ctx)); 484 } 485 } 486 } 487 } 488 } 489 490 /// InlineFunction - This function inlines the called function into the basic 491 /// block of the caller. This returns false if it is not possible to inline 492 /// this call. The program is still in a well defined state if this occurs 493 /// though. 494 /// 495 /// Note that this only does one level of inlining. For example, if the 496 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 497 /// exists in the instruction stream. Similarly this will inline a recursive 498 /// function by one level. 499 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 500 bool InsertLifetime) { 501 Instruction *TheCall = CS.getInstruction(); 502 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 503 "Instruction not in function!"); 504 505 // If IFI has any state in it, zap it before we fill it in. 506 IFI.reset(); 507 508 const Function *CalledFunc = CS.getCalledFunction(); 509 if (CalledFunc == 0 || // Can't inline external function or indirect 510 CalledFunc->isDeclaration() || // call, or call to a vararg function! 511 CalledFunc->getFunctionType()->isVarArg()) return false; 512 513 // If the call to the callee is not a tail call, we must clear the 'tail' 514 // flags on any calls that we inline. 515 bool MustClearTailCallFlags = 516 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 517 518 // If the call to the callee cannot throw, set the 'nounwind' flag on any 519 // calls that we inline. 520 bool MarkNoUnwind = CS.doesNotThrow(); 521 522 BasicBlock *OrigBB = TheCall->getParent(); 523 Function *Caller = OrigBB->getParent(); 524 525 // GC poses two hazards to inlining, which only occur when the callee has GC: 526 // 1. If the caller has no GC, then the callee's GC must be propagated to the 527 // caller. 528 // 2. If the caller has a differing GC, it is invalid to inline. 529 if (CalledFunc->hasGC()) { 530 if (!Caller->hasGC()) 531 Caller->setGC(CalledFunc->getGC()); 532 else if (CalledFunc->getGC() != Caller->getGC()) 533 return false; 534 } 535 536 // Get the personality function from the callee if it contains a landing pad. 537 Value *CalleePersonality = 0; 538 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 539 I != E; ++I) 540 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 541 const BasicBlock *BB = II->getUnwindDest(); 542 const LandingPadInst *LP = BB->getLandingPadInst(); 543 CalleePersonality = LP->getPersonalityFn(); 544 break; 545 } 546 547 // Find the personality function used by the landing pads of the caller. If it 548 // exists, then check to see that it matches the personality function used in 549 // the callee. 550 if (CalleePersonality) { 551 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 552 I != E; ++I) 553 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 554 const BasicBlock *BB = II->getUnwindDest(); 555 const LandingPadInst *LP = BB->getLandingPadInst(); 556 557 // If the personality functions match, then we can perform the 558 // inlining. Otherwise, we can't inline. 559 // TODO: This isn't 100% true. Some personality functions are proper 560 // supersets of others and can be used in place of the other. 561 if (LP->getPersonalityFn() != CalleePersonality) 562 return false; 563 564 break; 565 } 566 } 567 568 // Get an iterator to the last basic block in the function, which will have 569 // the new function inlined after it. 570 Function::iterator LastBlock = &Caller->back(); 571 572 // Make sure to capture all of the return instructions from the cloned 573 // function. 574 SmallVector<ReturnInst*, 8> Returns; 575 ClonedCodeInfo InlinedFunctionInfo; 576 Function::iterator FirstNewBlock; 577 578 { // Scope to destroy VMap after cloning. 579 ValueToValueMapTy VMap; 580 581 assert(CalledFunc->arg_size() == CS.arg_size() && 582 "No varargs calls can be inlined!"); 583 584 // Calculate the vector of arguments to pass into the function cloner, which 585 // matches up the formal to the actual argument values. 586 CallSite::arg_iterator AI = CS.arg_begin(); 587 unsigned ArgNo = 0; 588 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 589 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 590 Value *ActualArg = *AI; 591 592 // When byval arguments actually inlined, we need to make the copy implied 593 // by them explicit. However, we don't do this if the callee is readonly 594 // or readnone, because the copy would be unneeded: the callee doesn't 595 // modify the struct. 596 if (CS.isByValArgument(ArgNo)) { 597 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 598 CalledFunc->getParamAlignment(ArgNo+1)); 599 600 // Calls that we inline may use the new alloca, so we need to clear 601 // their 'tail' flags if HandleByValArgument introduced a new alloca and 602 // the callee has calls. 603 MustClearTailCallFlags |= ActualArg != *AI; 604 } 605 606 VMap[I] = ActualArg; 607 } 608 609 // We want the inliner to prune the code as it copies. We would LOVE to 610 // have no dead or constant instructions leftover after inlining occurs 611 // (which can happen, e.g., because an argument was constant), but we'll be 612 // happy with whatever the cloner can do. 613 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 614 /*ModuleLevelChanges=*/false, Returns, ".i", 615 &InlinedFunctionInfo, IFI.TD, TheCall); 616 617 // Remember the first block that is newly cloned over. 618 FirstNewBlock = LastBlock; ++FirstNewBlock; 619 620 // Update the callgraph if requested. 621 if (IFI.CG) 622 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 623 624 // Update inlined instructions' line number information. 625 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 626 } 627 628 // If there are any alloca instructions in the block that used to be the entry 629 // block for the callee, move them to the entry block of the caller. First 630 // calculate which instruction they should be inserted before. We insert the 631 // instructions at the end of the current alloca list. 632 { 633 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 634 for (BasicBlock::iterator I = FirstNewBlock->begin(), 635 E = FirstNewBlock->end(); I != E; ) { 636 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 637 if (AI == 0) continue; 638 639 // If the alloca is now dead, remove it. This often occurs due to code 640 // specialization. 641 if (AI->use_empty()) { 642 AI->eraseFromParent(); 643 continue; 644 } 645 646 if (!isa<Constant>(AI->getArraySize())) 647 continue; 648 649 // Keep track of the static allocas that we inline into the caller. 650 IFI.StaticAllocas.push_back(AI); 651 652 // Scan for the block of allocas that we can move over, and move them 653 // all at once. 654 while (isa<AllocaInst>(I) && 655 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 656 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 657 ++I; 658 } 659 660 // Transfer all of the allocas over in a block. Using splice means 661 // that the instructions aren't removed from the symbol table, then 662 // reinserted. 663 Caller->getEntryBlock().getInstList().splice(InsertPoint, 664 FirstNewBlock->getInstList(), 665 AI, I); 666 } 667 } 668 669 // Leave lifetime markers for the static alloca's, scoping them to the 670 // function we just inlined. 671 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 672 IRBuilder<> builder(FirstNewBlock->begin()); 673 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 674 AllocaInst *AI = IFI.StaticAllocas[ai]; 675 676 // If the alloca is already scoped to something smaller than the whole 677 // function then there's no need to add redundant, less accurate markers. 678 if (hasLifetimeMarkers(AI)) 679 continue; 680 681 // Try to determine the size of the allocation. 682 ConstantInt *AllocaSize = 0; 683 if (ConstantInt *AIArraySize = 684 dyn_cast<ConstantInt>(AI->getArraySize())) { 685 if (IFI.TD) { 686 Type *AllocaType = AI->getAllocatedType(); 687 uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType); 688 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 689 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 690 // Check that array size doesn't saturate uint64_t and doesn't 691 // overflow when it's multiplied by type size. 692 if (AllocaArraySize != ~0ULL && 693 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 694 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 695 AllocaArraySize * AllocaTypeSize); 696 } 697 } 698 } 699 700 builder.CreateLifetimeStart(AI, AllocaSize); 701 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 702 IRBuilder<> builder(Returns[ri]); 703 builder.CreateLifetimeEnd(AI, AllocaSize); 704 } 705 } 706 } 707 708 // If the inlined code contained dynamic alloca instructions, wrap the inlined 709 // code with llvm.stacksave/llvm.stackrestore intrinsics. 710 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 711 Module *M = Caller->getParent(); 712 // Get the two intrinsics we care about. 713 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 714 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 715 716 // Insert the llvm.stacksave. 717 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 718 .CreateCall(StackSave, "savedstack"); 719 720 // Insert a call to llvm.stackrestore before any return instructions in the 721 // inlined function. 722 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 723 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 724 } 725 } 726 727 // If we are inlining tail call instruction through a call site that isn't 728 // marked 'tail', we must remove the tail marker for any calls in the inlined 729 // code. Also, calls inlined through a 'nounwind' call site should be marked 730 // 'nounwind'. 731 if (InlinedFunctionInfo.ContainsCalls && 732 (MustClearTailCallFlags || MarkNoUnwind)) { 733 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 734 BB != E; ++BB) 735 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 736 if (CallInst *CI = dyn_cast<CallInst>(I)) { 737 if (MustClearTailCallFlags) 738 CI->setTailCall(false); 739 if (MarkNoUnwind) 740 CI->setDoesNotThrow(); 741 } 742 } 743 744 // If we are inlining for an invoke instruction, we must make sure to rewrite 745 // any call instructions into invoke instructions. 746 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 747 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 748 749 // If we cloned in _exactly one_ basic block, and if that block ends in a 750 // return instruction, we splice the body of the inlined callee directly into 751 // the calling basic block. 752 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 753 // Move all of the instructions right before the call. 754 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 755 FirstNewBlock->begin(), FirstNewBlock->end()); 756 // Remove the cloned basic block. 757 Caller->getBasicBlockList().pop_back(); 758 759 // If the call site was an invoke instruction, add a branch to the normal 760 // destination. 761 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 762 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 763 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 764 } 765 766 // If the return instruction returned a value, replace uses of the call with 767 // uses of the returned value. 768 if (!TheCall->use_empty()) { 769 ReturnInst *R = Returns[0]; 770 if (TheCall == R->getReturnValue()) 771 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 772 else 773 TheCall->replaceAllUsesWith(R->getReturnValue()); 774 } 775 // Since we are now done with the Call/Invoke, we can delete it. 776 TheCall->eraseFromParent(); 777 778 // Since we are now done with the return instruction, delete it also. 779 Returns[0]->eraseFromParent(); 780 781 // We are now done with the inlining. 782 return true; 783 } 784 785 // Otherwise, we have the normal case, of more than one block to inline or 786 // multiple return sites. 787 788 // We want to clone the entire callee function into the hole between the 789 // "starter" and "ender" blocks. How we accomplish this depends on whether 790 // this is an invoke instruction or a call instruction. 791 BasicBlock *AfterCallBB; 792 BranchInst *CreatedBranchToNormalDest = NULL; 793 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 794 795 // Add an unconditional branch to make this look like the CallInst case... 796 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 797 798 // Split the basic block. This guarantees that no PHI nodes will have to be 799 // updated due to new incoming edges, and make the invoke case more 800 // symmetric to the call case. 801 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 802 CalledFunc->getName()+".exit"); 803 804 } else { // It's a call 805 // If this is a call instruction, we need to split the basic block that 806 // the call lives in. 807 // 808 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 809 CalledFunc->getName()+".exit"); 810 } 811 812 // Change the branch that used to go to AfterCallBB to branch to the first 813 // basic block of the inlined function. 814 // 815 TerminatorInst *Br = OrigBB->getTerminator(); 816 assert(Br && Br->getOpcode() == Instruction::Br && 817 "splitBasicBlock broken!"); 818 Br->setOperand(0, FirstNewBlock); 819 820 821 // Now that the function is correct, make it a little bit nicer. In 822 // particular, move the basic blocks inserted from the end of the function 823 // into the space made by splitting the source basic block. 824 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 825 FirstNewBlock, Caller->end()); 826 827 // Handle all of the return instructions that we just cloned in, and eliminate 828 // any users of the original call/invoke instruction. 829 Type *RTy = CalledFunc->getReturnType(); 830 831 PHINode *PHI = 0; 832 if (Returns.size() > 1) { 833 // The PHI node should go at the front of the new basic block to merge all 834 // possible incoming values. 835 if (!TheCall->use_empty()) { 836 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 837 AfterCallBB->begin()); 838 // Anything that used the result of the function call should now use the 839 // PHI node as their operand. 840 TheCall->replaceAllUsesWith(PHI); 841 } 842 843 // Loop over all of the return instructions adding entries to the PHI node 844 // as appropriate. 845 if (PHI) { 846 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 847 ReturnInst *RI = Returns[i]; 848 assert(RI->getReturnValue()->getType() == PHI->getType() && 849 "Ret value not consistent in function!"); 850 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 851 } 852 } 853 854 855 // Add a branch to the merge points and remove return instructions. 856 DebugLoc Loc; 857 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 858 ReturnInst *RI = Returns[i]; 859 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 860 Loc = RI->getDebugLoc(); 861 BI->setDebugLoc(Loc); 862 RI->eraseFromParent(); 863 } 864 // We need to set the debug location to *somewhere* inside the 865 // inlined function. The line number may be nonsensical, but the 866 // instruction will at least be associated with the right 867 // function. 868 if (CreatedBranchToNormalDest) 869 CreatedBranchToNormalDest->setDebugLoc(Loc); 870 } else if (!Returns.empty()) { 871 // Otherwise, if there is exactly one return value, just replace anything 872 // using the return value of the call with the computed value. 873 if (!TheCall->use_empty()) { 874 if (TheCall == Returns[0]->getReturnValue()) 875 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 876 else 877 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 878 } 879 880 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 881 BasicBlock *ReturnBB = Returns[0]->getParent(); 882 ReturnBB->replaceAllUsesWith(AfterCallBB); 883 884 // Splice the code from the return block into the block that it will return 885 // to, which contains the code that was after the call. 886 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 887 ReturnBB->getInstList()); 888 889 if (CreatedBranchToNormalDest) 890 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 891 892 // Delete the return instruction now and empty ReturnBB now. 893 Returns[0]->eraseFromParent(); 894 ReturnBB->eraseFromParent(); 895 } else if (!TheCall->use_empty()) { 896 // No returns, but something is using the return value of the call. Just 897 // nuke the result. 898 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 899 } 900 901 // Since we are now done with the Call/Invoke, we can delete it. 902 TheCall->eraseFromParent(); 903 904 // We should always be able to fold the entry block of the function into the 905 // single predecessor of the block... 906 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 907 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 908 909 // Splice the code entry block into calling block, right before the 910 // unconditional branch. 911 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 912 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 913 914 // Remove the unconditional branch. 915 OrigBB->getInstList().erase(Br); 916 917 // Now we can remove the CalleeEntry block, which is now empty. 918 Caller->getBasicBlockList().erase(CalleeEntry); 919 920 // If we inserted a phi node, check to see if it has a single value (e.g. all 921 // the entries are the same or undef). If so, remove the PHI so it doesn't 922 // block other optimizations. 923 if (PHI) { 924 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 925 PHI->replaceAllUsesWith(V); 926 PHI->eraseFromParent(); 927 } 928 } 929 930 return true; 931 } 932