1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric (at) anholt.net> 25 * 26 */ 27 28 #include "brw_fs.h" 29 #include "glsl/glsl_types.h" 30 #include "glsl/ir_optimization.h" 31 #include "glsl/ir_print_visitor.h" 32 33 static void 34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width) 35 { 36 if (reg->file == GRF) { 37 assert(reg->reg_offset >= 0); 38 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width; 39 reg->reg_offset = 0; 40 } 41 } 42 43 void 44 fs_visitor::assign_regs_trivial() 45 { 46 int hw_reg_mapping[this->virtual_grf_count + 1]; 47 int i; 48 int reg_width = c->dispatch_width / 8; 49 50 /* Note that compressed instructions require alignment to 2 registers. */ 51 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); 52 for (i = 1; i <= this->virtual_grf_count; i++) { 53 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + 54 this->virtual_grf_sizes[i - 1] * reg_width); 55 } 56 this->grf_used = hw_reg_mapping[this->virtual_grf_count]; 57 58 foreach_list(node, &this->instructions) { 59 fs_inst *inst = (fs_inst *)node; 60 61 assign_reg(hw_reg_mapping, &inst->dst, reg_width); 62 assign_reg(hw_reg_mapping, &inst->src[0], reg_width); 63 assign_reg(hw_reg_mapping, &inst->src[1], reg_width); 64 assign_reg(hw_reg_mapping, &inst->src[2], reg_width); 65 } 66 67 if (this->grf_used >= max_grf) { 68 fail("Ran out of regs on trivial allocator (%d/%d)\n", 69 this->grf_used, max_grf); 70 } 71 72 } 73 74 static void 75 brw_alloc_reg_set_for_classes(struct brw_context *brw, 76 int *class_sizes, 77 int class_count, 78 int reg_width, 79 int base_reg_count) 80 { 81 struct intel_context *intel = &brw->intel; 82 83 /* Compute the total number of registers across all classes. */ 84 int ra_reg_count = 0; 85 for (int i = 0; i < class_count; i++) { 86 ra_reg_count += base_reg_count - (class_sizes[i] - 1); 87 } 88 89 ralloc_free(brw->wm.ra_reg_to_grf); 90 brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count); 91 ralloc_free(brw->wm.regs); 92 brw->wm.regs = ra_alloc_reg_set(brw, ra_reg_count); 93 ralloc_free(brw->wm.classes); 94 brw->wm.classes = ralloc_array(brw, int, class_count + 1); 95 96 brw->wm.aligned_pairs_class = -1; 97 98 /* Now, add the registers to their classes, and add the conflicts 99 * between them and the base GRF registers (and also each other). 100 */ 101 int reg = 0; 102 int pairs_base_reg = 0; 103 int pairs_reg_count = 0; 104 for (int i = 0; i < class_count; i++) { 105 int class_reg_count = base_reg_count - (class_sizes[i] - 1); 106 brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs); 107 108 /* Save this off for the aligned pair class at the end. */ 109 if (class_sizes[i] == 2) { 110 pairs_base_reg = reg; 111 pairs_reg_count = class_reg_count; 112 } 113 114 for (int j = 0; j < class_reg_count; j++) { 115 ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg); 116 117 brw->wm.ra_reg_to_grf[reg] = j; 118 119 for (int base_reg = j; 120 base_reg < j + class_sizes[i]; 121 base_reg++) { 122 ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg); 123 } 124 125 reg++; 126 } 127 } 128 assert(reg == ra_reg_count); 129 130 /* Add a special class for aligned pairs, which we'll put delta_x/y 131 * in on gen5 so that we can do PLN. 132 */ 133 if (brw->has_pln && reg_width == 1 && intel->gen < 6) { 134 brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs); 135 136 for (int i = 0; i < pairs_reg_count; i++) { 137 if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) { 138 ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class, 139 pairs_base_reg + i); 140 } 141 } 142 class_count++; 143 } 144 145 ra_set_finalize(brw->wm.regs); 146 } 147 148 bool 149 fs_visitor::assign_regs() 150 { 151 /* Most of this allocation was written for a reg_width of 1 152 * (dispatch_width == 8). In extending to 16-wide, the code was 153 * left in place and it was converted to have the hardware 154 * registers it's allocating be contiguous physical pairs of regs 155 * for reg_width == 2. 156 */ 157 int reg_width = c->dispatch_width / 8; 158 int hw_reg_mapping[this->virtual_grf_count]; 159 int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width); 160 int base_reg_count = (max_grf - first_assigned_grf) / reg_width; 161 int class_sizes[base_reg_count]; 162 int class_count = 0; 163 164 calculate_live_intervals(); 165 166 /* Set up the register classes. 167 * 168 * The base registers store a scalar value. For texture samples, 169 * we get virtual GRFs composed of 4 contiguous hw register. For 170 * structures and arrays, we store them as contiguous larger things 171 * than that, though we should be able to do better most of the 172 * time. 173 */ 174 class_sizes[class_count++] = 1; 175 if (brw->has_pln && intel->gen < 6) { 176 /* Always set up the (unaligned) pairs for gen5, so we can find 177 * them for making the aligned pair class. 178 */ 179 class_sizes[class_count++] = 2; 180 } 181 for (int r = 0; r < this->virtual_grf_count; r++) { 182 int i; 183 184 for (i = 0; i < class_count; i++) { 185 if (class_sizes[i] == this->virtual_grf_sizes[r]) 186 break; 187 } 188 if (i == class_count) { 189 if (this->virtual_grf_sizes[r] >= base_reg_count) { 190 fail("Object too large to register allocate.\n"); 191 } 192 193 class_sizes[class_count++] = this->virtual_grf_sizes[r]; 194 } 195 } 196 197 brw_alloc_reg_set_for_classes(brw, class_sizes, class_count, 198 reg_width, base_reg_count); 199 200 struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs, 201 this->virtual_grf_count); 202 203 for (int i = 0; i < this->virtual_grf_count; i++) { 204 for (int c = 0; c < class_count; c++) { 205 if (class_sizes[c] == this->virtual_grf_sizes[i]) { 206 /* Special case: on pre-GEN6 hardware that supports PLN, the 207 * second operand of a PLN instruction needs to be an 208 * even-numbered register, so we have a special register class 209 * wm_aligned_pairs_class to handle this case. pre-GEN6 always 210 * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the 211 * second operand of a PLN instruction (since it doesn't support 212 * any other interpolation modes). So all we need to do is find 213 * that register and set it to the appropriate class. 214 */ 215 if (brw->wm.aligned_pairs_class >= 0 && 216 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) { 217 ra_set_node_class(g, i, brw->wm.aligned_pairs_class); 218 } else { 219 ra_set_node_class(g, i, brw->wm.classes[c]); 220 } 221 break; 222 } 223 } 224 225 for (int j = 0; j < i; j++) { 226 if (virtual_grf_interferes(i, j)) { 227 ra_add_node_interference(g, i, j); 228 } 229 } 230 } 231 232 if (!ra_allocate_no_spills(g)) { 233 /* Failed to allocate registers. Spill a reg, and the caller will 234 * loop back into here to try again. 235 */ 236 int reg = choose_spill_reg(g); 237 238 if (reg == -1) { 239 fail("no register to spill\n"); 240 } else if (c->dispatch_width == 16) { 241 fail("Failure to register allocate. Reduce number of live scalar " 242 "values to avoid this."); 243 } else { 244 spill_reg(reg); 245 } 246 247 248 ralloc_free(g); 249 250 return false; 251 } 252 253 /* Get the chosen virtual registers for each node, and map virtual 254 * regs in the register classes back down to real hardware reg 255 * numbers. 256 */ 257 this->grf_used = first_assigned_grf; 258 for (int i = 0; i < this->virtual_grf_count; i++) { 259 int reg = ra_get_node_reg(g, i); 260 261 hw_reg_mapping[i] = (first_assigned_grf + 262 brw->wm.ra_reg_to_grf[reg] * reg_width); 263 this->grf_used = MAX2(this->grf_used, 264 hw_reg_mapping[i] + this->virtual_grf_sizes[i] * 265 reg_width); 266 } 267 268 foreach_list(node, &this->instructions) { 269 fs_inst *inst = (fs_inst *)node; 270 271 assign_reg(hw_reg_mapping, &inst->dst, reg_width); 272 assign_reg(hw_reg_mapping, &inst->src[0], reg_width); 273 assign_reg(hw_reg_mapping, &inst->src[1], reg_width); 274 assign_reg(hw_reg_mapping, &inst->src[2], reg_width); 275 } 276 277 ralloc_free(g); 278 279 return true; 280 } 281 282 void 283 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset) 284 { 285 fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst); 286 unspill_inst->offset = spill_offset; 287 unspill_inst->ir = inst->ir; 288 unspill_inst->annotation = inst->annotation; 289 290 /* Choose a MRF that won't conflict with an MRF that's live across the 291 * spill. Nothing else will make it up to MRF 14/15. 292 */ 293 unspill_inst->base_mrf = 14; 294 unspill_inst->mlen = 1; /* header contains offset */ 295 inst->insert_before(unspill_inst); 296 } 297 298 int 299 fs_visitor::choose_spill_reg(struct ra_graph *g) 300 { 301 float loop_scale = 1.0; 302 float spill_costs[this->virtual_grf_count]; 303 bool no_spill[this->virtual_grf_count]; 304 305 for (int i = 0; i < this->virtual_grf_count; i++) { 306 spill_costs[i] = 0.0; 307 no_spill[i] = false; 308 } 309 310 /* Calculate costs for spilling nodes. Call it a cost of 1 per 311 * spill/unspill we'll have to do, and guess that the insides of 312 * loops run 10 times. 313 */ 314 foreach_list(node, &this->instructions) { 315 fs_inst *inst = (fs_inst *)node; 316 317 for (unsigned int i = 0; i < 3; i++) { 318 if (inst->src[i].file == GRF) { 319 spill_costs[inst->src[i].reg] += loop_scale; 320 321 /* Register spilling logic assumes full-width registers; smeared 322 * registers have a width of 1 so if we try to spill them we'll 323 * generate invalid assembly. This shouldn't be a problem because 324 * smeared registers are only used as short-term temporaries when 325 * loading pull constants, so spilling them is unlikely to reduce 326 * register pressure anyhow. 327 */ 328 if (inst->src[i].smear >= 0) { 329 no_spill[inst->src[i].reg] = true; 330 } 331 } 332 } 333 334 if (inst->dst.file == GRF) { 335 spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale; 336 337 if (inst->dst.smear >= 0) { 338 no_spill[inst->dst.reg] = true; 339 } 340 } 341 342 switch (inst->opcode) { 343 344 case BRW_OPCODE_DO: 345 loop_scale *= 10; 346 break; 347 348 case BRW_OPCODE_WHILE: 349 loop_scale /= 10; 350 break; 351 352 case FS_OPCODE_SPILL: 353 if (inst->src[0].file == GRF) 354 no_spill[inst->src[0].reg] = true; 355 break; 356 357 case FS_OPCODE_UNSPILL: 358 if (inst->dst.file == GRF) 359 no_spill[inst->dst.reg] = true; 360 break; 361 362 default: 363 break; 364 } 365 } 366 367 for (int i = 0; i < this->virtual_grf_count; i++) { 368 if (!no_spill[i]) 369 ra_set_node_spill_cost(g, i, spill_costs[i]); 370 } 371 372 return ra_get_best_spill_node(g); 373 } 374 375 void 376 fs_visitor::spill_reg(int spill_reg) 377 { 378 int size = virtual_grf_sizes[spill_reg]; 379 unsigned int spill_offset = c->last_scratch; 380 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ 381 c->last_scratch += size * REG_SIZE; 382 383 /* Generate spill/unspill instructions for the objects being 384 * spilled. Right now, we spill or unspill the whole thing to a 385 * virtual grf of the same size. For most instructions, though, we 386 * could just spill/unspill the GRF being accessed. 387 */ 388 foreach_list(node, &this->instructions) { 389 fs_inst *inst = (fs_inst *)node; 390 391 for (unsigned int i = 0; i < 3; i++) { 392 if (inst->src[i].file == GRF && 393 inst->src[i].reg == spill_reg) { 394 inst->src[i].reg = virtual_grf_alloc(1); 395 emit_unspill(inst, inst->src[i], 396 spill_offset + REG_SIZE * inst->src[i].reg_offset); 397 } 398 } 399 400 if (inst->dst.file == GRF && 401 inst->dst.reg == spill_reg) { 402 int subset_spill_offset = (spill_offset + 403 REG_SIZE * inst->dst.reg_offset); 404 inst->dst.reg = virtual_grf_alloc(inst->regs_written()); 405 inst->dst.reg_offset = 0; 406 407 /* If our write is going to affect just part of the 408 * inst->regs_written(), then we need to unspill the destination 409 * since we write back out all of the regs_written(). 410 */ 411 if (inst->predicated || inst->force_uncompressed || inst->force_sechalf) { 412 fs_reg unspill_reg = inst->dst; 413 for (int chan = 0; chan < inst->regs_written(); chan++) { 414 emit_unspill(inst, unspill_reg, 415 subset_spill_offset + REG_SIZE * chan); 416 unspill_reg.reg_offset++; 417 } 418 } 419 420 fs_reg spill_src = inst->dst; 421 spill_src.reg_offset = 0; 422 spill_src.abs = false; 423 spill_src.negate = false; 424 spill_src.smear = -1; 425 426 for (int chan = 0; chan < inst->regs_written(); chan++) { 427 fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL, 428 reg_null_f, spill_src); 429 spill_src.reg_offset++; 430 spill_inst->offset = subset_spill_offset + chan * REG_SIZE; 431 spill_inst->ir = inst->ir; 432 spill_inst->annotation = inst->annotation; 433 spill_inst->base_mrf = 14; 434 spill_inst->mlen = 2; /* header, value */ 435 inst->insert_after(spill_inst); 436 } 437 } 438 } 439 440 this->live_intervals_valid = false; 441 } 442