Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #include "brw_fs.h"
     29 #include "glsl/glsl_types.h"
     30 #include "glsl/ir_optimization.h"
     31 #include "glsl/ir_print_visitor.h"
     32 
     33 static void
     34 assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
     35 {
     36    if (reg->file == GRF) {
     37       assert(reg->reg_offset >= 0);
     38       reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
     39       reg->reg_offset = 0;
     40    }
     41 }
     42 
     43 void
     44 fs_visitor::assign_regs_trivial()
     45 {
     46    int hw_reg_mapping[this->virtual_grf_count + 1];
     47    int i;
     48    int reg_width = c->dispatch_width / 8;
     49 
     50    /* Note that compressed instructions require alignment to 2 registers. */
     51    hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
     52    for (i = 1; i <= this->virtual_grf_count; i++) {
     53       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
     54 			   this->virtual_grf_sizes[i - 1] * reg_width);
     55    }
     56    this->grf_used = hw_reg_mapping[this->virtual_grf_count];
     57 
     58    foreach_list(node, &this->instructions) {
     59       fs_inst *inst = (fs_inst *)node;
     60 
     61       assign_reg(hw_reg_mapping, &inst->dst, reg_width);
     62       assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
     63       assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
     64       assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
     65    }
     66 
     67    if (this->grf_used >= max_grf) {
     68       fail("Ran out of regs on trivial allocator (%d/%d)\n",
     69 	   this->grf_used, max_grf);
     70    }
     71 
     72 }
     73 
     74 static void
     75 brw_alloc_reg_set_for_classes(struct brw_context *brw,
     76 			      int *class_sizes,
     77 			      int class_count,
     78 			      int reg_width,
     79 			      int base_reg_count)
     80 {
     81    struct intel_context *intel = &brw->intel;
     82 
     83    /* Compute the total number of registers across all classes. */
     84    int ra_reg_count = 0;
     85    for (int i = 0; i < class_count; i++) {
     86       ra_reg_count += base_reg_count - (class_sizes[i] - 1);
     87    }
     88 
     89    ralloc_free(brw->wm.ra_reg_to_grf);
     90    brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
     91    ralloc_free(brw->wm.regs);
     92    brw->wm.regs = ra_alloc_reg_set(brw, ra_reg_count);
     93    ralloc_free(brw->wm.classes);
     94    brw->wm.classes = ralloc_array(brw, int, class_count + 1);
     95 
     96    brw->wm.aligned_pairs_class = -1;
     97 
     98    /* Now, add the registers to their classes, and add the conflicts
     99     * between them and the base GRF registers (and also each other).
    100     */
    101    int reg = 0;
    102    int pairs_base_reg = 0;
    103    int pairs_reg_count = 0;
    104    for (int i = 0; i < class_count; i++) {
    105       int class_reg_count = base_reg_count - (class_sizes[i] - 1);
    106       brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs);
    107 
    108       /* Save this off for the aligned pair class at the end. */
    109       if (class_sizes[i] == 2) {
    110 	 pairs_base_reg = reg;
    111 	 pairs_reg_count = class_reg_count;
    112       }
    113 
    114       for (int j = 0; j < class_reg_count; j++) {
    115 	 ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg);
    116 
    117 	 brw->wm.ra_reg_to_grf[reg] = j;
    118 
    119 	 for (int base_reg = j;
    120 	      base_reg < j + class_sizes[i];
    121 	      base_reg++) {
    122 	    ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg);
    123 	 }
    124 
    125 	 reg++;
    126       }
    127    }
    128    assert(reg == ra_reg_count);
    129 
    130    /* Add a special class for aligned pairs, which we'll put delta_x/y
    131     * in on gen5 so that we can do PLN.
    132     */
    133    if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
    134       brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs);
    135 
    136       for (int i = 0; i < pairs_reg_count; i++) {
    137 	 if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
    138 	    ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class,
    139 			     pairs_base_reg + i);
    140 	 }
    141       }
    142       class_count++;
    143    }
    144 
    145    ra_set_finalize(brw->wm.regs);
    146 }
    147 
    148 bool
    149 fs_visitor::assign_regs()
    150 {
    151    /* Most of this allocation was written for a reg_width of 1
    152     * (dispatch_width == 8).  In extending to 16-wide, the code was
    153     * left in place and it was converted to have the hardware
    154     * registers it's allocating be contiguous physical pairs of regs
    155     * for reg_width == 2.
    156     */
    157    int reg_width = c->dispatch_width / 8;
    158    int hw_reg_mapping[this->virtual_grf_count];
    159    int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width);
    160    int base_reg_count = (max_grf - first_assigned_grf) / reg_width;
    161    int class_sizes[base_reg_count];
    162    int class_count = 0;
    163 
    164    calculate_live_intervals();
    165 
    166    /* Set up the register classes.
    167     *
    168     * The base registers store a scalar value.  For texture samples,
    169     * we get virtual GRFs composed of 4 contiguous hw register.  For
    170     * structures and arrays, we store them as contiguous larger things
    171     * than that, though we should be able to do better most of the
    172     * time.
    173     */
    174    class_sizes[class_count++] = 1;
    175    if (brw->has_pln && intel->gen < 6) {
    176       /* Always set up the (unaligned) pairs for gen5, so we can find
    177        * them for making the aligned pair class.
    178        */
    179       class_sizes[class_count++] = 2;
    180    }
    181    for (int r = 0; r < this->virtual_grf_count; r++) {
    182       int i;
    183 
    184       for (i = 0; i < class_count; i++) {
    185 	 if (class_sizes[i] == this->virtual_grf_sizes[r])
    186 	    break;
    187       }
    188       if (i == class_count) {
    189 	 if (this->virtual_grf_sizes[r] >= base_reg_count) {
    190 	    fail("Object too large to register allocate.\n");
    191 	 }
    192 
    193 	 class_sizes[class_count++] = this->virtual_grf_sizes[r];
    194       }
    195    }
    196 
    197    brw_alloc_reg_set_for_classes(brw, class_sizes, class_count,
    198 				 reg_width, base_reg_count);
    199 
    200    struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs,
    201 						    this->virtual_grf_count);
    202 
    203    for (int i = 0; i < this->virtual_grf_count; i++) {
    204       for (int c = 0; c < class_count; c++) {
    205 	 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
    206             /* Special case: on pre-GEN6 hardware that supports PLN, the
    207              * second operand of a PLN instruction needs to be an
    208              * even-numbered register, so we have a special register class
    209              * wm_aligned_pairs_class to handle this case.  pre-GEN6 always
    210              * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
    211              * second operand of a PLN instruction (since it doesn't support
    212              * any other interpolation modes).  So all we need to do is find
    213              * that register and set it to the appropriate class.
    214              */
    215 	    if (brw->wm.aligned_pairs_class >= 0 &&
    216 		this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
    217 	       ra_set_node_class(g, i, brw->wm.aligned_pairs_class);
    218 	    } else {
    219 	       ra_set_node_class(g, i, brw->wm.classes[c]);
    220 	    }
    221 	    break;
    222 	 }
    223       }
    224 
    225       for (int j = 0; j < i; j++) {
    226 	 if (virtual_grf_interferes(i, j)) {
    227 	    ra_add_node_interference(g, i, j);
    228 	 }
    229       }
    230    }
    231 
    232    if (!ra_allocate_no_spills(g)) {
    233       /* Failed to allocate registers.  Spill a reg, and the caller will
    234        * loop back into here to try again.
    235        */
    236       int reg = choose_spill_reg(g);
    237 
    238       if (reg == -1) {
    239 	 fail("no register to spill\n");
    240       } else if (c->dispatch_width == 16) {
    241 	 fail("Failure to register allocate.  Reduce number of live scalar "
    242               "values to avoid this.");
    243       } else {
    244 	 spill_reg(reg);
    245       }
    246 
    247 
    248       ralloc_free(g);
    249 
    250       return false;
    251    }
    252 
    253    /* Get the chosen virtual registers for each node, and map virtual
    254     * regs in the register classes back down to real hardware reg
    255     * numbers.
    256     */
    257    this->grf_used = first_assigned_grf;
    258    for (int i = 0; i < this->virtual_grf_count; i++) {
    259       int reg = ra_get_node_reg(g, i);
    260 
    261       hw_reg_mapping[i] = (first_assigned_grf +
    262 			   brw->wm.ra_reg_to_grf[reg] * reg_width);
    263       this->grf_used = MAX2(this->grf_used,
    264 			    hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
    265 			    reg_width);
    266    }
    267 
    268    foreach_list(node, &this->instructions) {
    269       fs_inst *inst = (fs_inst *)node;
    270 
    271       assign_reg(hw_reg_mapping, &inst->dst, reg_width);
    272       assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
    273       assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
    274       assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
    275    }
    276 
    277    ralloc_free(g);
    278 
    279    return true;
    280 }
    281 
    282 void
    283 fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
    284 {
    285    fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
    286    unspill_inst->offset = spill_offset;
    287    unspill_inst->ir = inst->ir;
    288    unspill_inst->annotation = inst->annotation;
    289 
    290    /* Choose a MRF that won't conflict with an MRF that's live across the
    291     * spill.  Nothing else will make it up to MRF 14/15.
    292     */
    293    unspill_inst->base_mrf = 14;
    294    unspill_inst->mlen = 1; /* header contains offset */
    295    inst->insert_before(unspill_inst);
    296 }
    297 
    298 int
    299 fs_visitor::choose_spill_reg(struct ra_graph *g)
    300 {
    301    float loop_scale = 1.0;
    302    float spill_costs[this->virtual_grf_count];
    303    bool no_spill[this->virtual_grf_count];
    304 
    305    for (int i = 0; i < this->virtual_grf_count; i++) {
    306       spill_costs[i] = 0.0;
    307       no_spill[i] = false;
    308    }
    309 
    310    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
    311     * spill/unspill we'll have to do, and guess that the insides of
    312     * loops run 10 times.
    313     */
    314    foreach_list(node, &this->instructions) {
    315       fs_inst *inst = (fs_inst *)node;
    316 
    317       for (unsigned int i = 0; i < 3; i++) {
    318 	 if (inst->src[i].file == GRF) {
    319 	    spill_costs[inst->src[i].reg] += loop_scale;
    320 
    321             /* Register spilling logic assumes full-width registers; smeared
    322              * registers have a width of 1 so if we try to spill them we'll
    323              * generate invalid assembly.  This shouldn't be a problem because
    324              * smeared registers are only used as short-term temporaries when
    325              * loading pull constants, so spilling them is unlikely to reduce
    326              * register pressure anyhow.
    327              */
    328             if (inst->src[i].smear >= 0) {
    329                no_spill[inst->src[i].reg] = true;
    330             }
    331 	 }
    332       }
    333 
    334       if (inst->dst.file == GRF) {
    335 	 spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale;
    336 
    337          if (inst->dst.smear >= 0) {
    338             no_spill[inst->dst.reg] = true;
    339          }
    340       }
    341 
    342       switch (inst->opcode) {
    343 
    344       case BRW_OPCODE_DO:
    345 	 loop_scale *= 10;
    346 	 break;
    347 
    348       case BRW_OPCODE_WHILE:
    349 	 loop_scale /= 10;
    350 	 break;
    351 
    352       case FS_OPCODE_SPILL:
    353 	 if (inst->src[0].file == GRF)
    354 	    no_spill[inst->src[0].reg] = true;
    355 	 break;
    356 
    357       case FS_OPCODE_UNSPILL:
    358 	 if (inst->dst.file == GRF)
    359 	    no_spill[inst->dst.reg] = true;
    360 	 break;
    361 
    362       default:
    363 	 break;
    364       }
    365    }
    366 
    367    for (int i = 0; i < this->virtual_grf_count; i++) {
    368       if (!no_spill[i])
    369 	 ra_set_node_spill_cost(g, i, spill_costs[i]);
    370    }
    371 
    372    return ra_get_best_spill_node(g);
    373 }
    374 
    375 void
    376 fs_visitor::spill_reg(int spill_reg)
    377 {
    378    int size = virtual_grf_sizes[spill_reg];
    379    unsigned int spill_offset = c->last_scratch;
    380    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
    381    c->last_scratch += size * REG_SIZE;
    382 
    383    /* Generate spill/unspill instructions for the objects being
    384     * spilled.  Right now, we spill or unspill the whole thing to a
    385     * virtual grf of the same size.  For most instructions, though, we
    386     * could just spill/unspill the GRF being accessed.
    387     */
    388    foreach_list(node, &this->instructions) {
    389       fs_inst *inst = (fs_inst *)node;
    390 
    391       for (unsigned int i = 0; i < 3; i++) {
    392 	 if (inst->src[i].file == GRF &&
    393 	     inst->src[i].reg == spill_reg) {
    394 	    inst->src[i].reg = virtual_grf_alloc(1);
    395 	    emit_unspill(inst, inst->src[i],
    396                          spill_offset + REG_SIZE * inst->src[i].reg_offset);
    397 	 }
    398       }
    399 
    400       if (inst->dst.file == GRF &&
    401 	  inst->dst.reg == spill_reg) {
    402          int subset_spill_offset = (spill_offset +
    403                                     REG_SIZE * inst->dst.reg_offset);
    404          inst->dst.reg = virtual_grf_alloc(inst->regs_written());
    405          inst->dst.reg_offset = 0;
    406 
    407 	 /* If our write is going to affect just part of the
    408           * inst->regs_written(), then we need to unspill the destination
    409           * since we write back out all of the regs_written().
    410 	  */
    411 	 if (inst->predicated || inst->force_uncompressed || inst->force_sechalf) {
    412             fs_reg unspill_reg = inst->dst;
    413             for (int chan = 0; chan < inst->regs_written(); chan++) {
    414                emit_unspill(inst, unspill_reg,
    415                             subset_spill_offset + REG_SIZE * chan);
    416                unspill_reg.reg_offset++;
    417             }
    418 	 }
    419 
    420 	 fs_reg spill_src = inst->dst;
    421 	 spill_src.reg_offset = 0;
    422 	 spill_src.abs = false;
    423 	 spill_src.negate = false;
    424 	 spill_src.smear = -1;
    425 
    426 	 for (int chan = 0; chan < inst->regs_written(); chan++) {
    427 	    fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
    428 						       reg_null_f, spill_src);
    429 	    spill_src.reg_offset++;
    430 	    spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
    431 	    spill_inst->ir = inst->ir;
    432 	    spill_inst->annotation = inst->annotation;
    433 	    spill_inst->base_mrf = 14;
    434 	    spill_inst->mlen = 2; /* header, value */
    435 	    inst->insert_after(spill_inst);
    436 	 }
    437       }
    438    }
    439 
    440    this->live_intervals_valid = false;
    441 }
    442