1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric (at) anholt.net> 25 * 26 */ 27 28 #include "brw_fs.h" 29 #include "glsl/glsl_types.h" 30 #include "glsl/ir_optimization.h" 31 #include "glsl/ir_print_visitor.h" 32 33 /** @file brw_fs_schedule_instructions.cpp 34 * 35 * List scheduling of FS instructions. 36 * 37 * The basic model of the list scheduler is to take a basic block, 38 * compute a DAG of the dependencies (RAW ordering with latency, WAW 39 * ordering, WAR ordering), and make a list of the DAG heads. 40 * Heuristically pick a DAG head, then put all the children that are 41 * now DAG heads into the list of things to schedule. 42 * 43 * The heuristic is the important part. We're trying to be cheap, 44 * since actually computing the optimal scheduling is NP complete. 45 * What we do is track a "current clock". When we schedule a node, we 46 * update the earliest-unblocked clock time of its children, and 47 * increment the clock. Then, when trying to schedule, we just pick 48 * the earliest-unblocked instruction to schedule. 49 * 50 * Note that often there will be many things which could execute 51 * immediately, and there are a range of heuristic options to choose 52 * from in picking among those. 53 */ 54 55 class schedule_node : public exec_node 56 { 57 public: 58 schedule_node(fs_inst *inst) 59 { 60 this->inst = inst; 61 this->child_array_size = 0; 62 this->children = NULL; 63 this->child_latency = NULL; 64 this->child_count = 0; 65 this->parent_count = 0; 66 this->unblocked_time = 0; 67 68 int chans = 8; 69 int math_latency = 22; 70 71 switch (inst->opcode) { 72 case SHADER_OPCODE_RCP: 73 this->latency = 1 * chans * math_latency; 74 break; 75 case SHADER_OPCODE_RSQ: 76 this->latency = 2 * chans * math_latency; 77 break; 78 case SHADER_OPCODE_INT_QUOTIENT: 79 case SHADER_OPCODE_SQRT: 80 case SHADER_OPCODE_LOG2: 81 /* full precision log. partial is 2. */ 82 this->latency = 3 * chans * math_latency; 83 break; 84 case SHADER_OPCODE_INT_REMAINDER: 85 case SHADER_OPCODE_EXP2: 86 /* full precision. partial is 3, same throughput. */ 87 this->latency = 4 * chans * math_latency; 88 break; 89 case SHADER_OPCODE_POW: 90 this->latency = 8 * chans * math_latency; 91 break; 92 case SHADER_OPCODE_SIN: 93 case SHADER_OPCODE_COS: 94 /* minimum latency, max is 12 rounds. */ 95 this->latency = 5 * chans * math_latency; 96 break; 97 default: 98 this->latency = 2; 99 break; 100 } 101 } 102 103 fs_inst *inst; 104 schedule_node **children; 105 int *child_latency; 106 int child_count; 107 int parent_count; 108 int child_array_size; 109 int unblocked_time; 110 int latency; 111 }; 112 113 class instruction_scheduler { 114 public: 115 instruction_scheduler(fs_visitor *v, void *mem_ctx, int virtual_grf_count) 116 { 117 this->v = v; 118 this->mem_ctx = ralloc_context(mem_ctx); 119 this->virtual_grf_count = virtual_grf_count; 120 this->instructions.make_empty(); 121 this->instructions_to_schedule = 0; 122 } 123 124 ~instruction_scheduler() 125 { 126 ralloc_free(this->mem_ctx); 127 } 128 void add_barrier_deps(schedule_node *n); 129 void add_dep(schedule_node *before, schedule_node *after, int latency); 130 void add_dep(schedule_node *before, schedule_node *after); 131 132 void add_inst(fs_inst *inst); 133 void calculate_deps(); 134 void schedule_instructions(fs_inst *next_block_header); 135 136 bool is_compressed(fs_inst *inst); 137 138 void *mem_ctx; 139 140 int instructions_to_schedule; 141 int virtual_grf_count; 142 exec_list instructions; 143 fs_visitor *v; 144 }; 145 146 void 147 instruction_scheduler::add_inst(fs_inst *inst) 148 { 149 schedule_node *n = new(mem_ctx) schedule_node(inst); 150 151 assert(!inst->is_head_sentinel()); 152 assert(!inst->is_tail_sentinel()); 153 154 this->instructions_to_schedule++; 155 156 inst->remove(); 157 instructions.push_tail(n); 158 } 159 160 /** 161 * Add a dependency between two instruction nodes. 162 * 163 * The @after node will be scheduled after @before. We will try to 164 * schedule it @latency cycles after @before, but no guarantees there. 165 */ 166 void 167 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after, 168 int latency) 169 { 170 if (!before || !after) 171 return; 172 173 assert(before != after); 174 175 for (int i = 0; i < before->child_count; i++) { 176 if (before->children[i] == after) { 177 before->child_latency[i] = MAX2(before->child_latency[i], latency); 178 return; 179 } 180 } 181 182 if (before->child_array_size <= before->child_count) { 183 if (before->child_array_size < 16) 184 before->child_array_size = 16; 185 else 186 before->child_array_size *= 2; 187 188 before->children = reralloc(mem_ctx, before->children, 189 schedule_node *, 190 before->child_array_size); 191 before->child_latency = reralloc(mem_ctx, before->child_latency, 192 int, before->child_array_size); 193 } 194 195 before->children[before->child_count] = after; 196 before->child_latency[before->child_count] = latency; 197 before->child_count++; 198 after->parent_count++; 199 } 200 201 void 202 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after) 203 { 204 if (!before) 205 return; 206 207 add_dep(before, after, before->latency); 208 } 209 210 /** 211 * Sometimes we really want this node to execute after everything that 212 * was before it and before everything that followed it. This adds 213 * the deps to do so. 214 */ 215 void 216 instruction_scheduler::add_barrier_deps(schedule_node *n) 217 { 218 schedule_node *prev = (schedule_node *)n->prev; 219 schedule_node *next = (schedule_node *)n->next; 220 221 if (prev) { 222 while (!prev->is_head_sentinel()) { 223 add_dep(prev, n, 0); 224 prev = (schedule_node *)prev->prev; 225 } 226 } 227 228 if (next) { 229 while (!next->is_tail_sentinel()) { 230 add_dep(n, next, 0); 231 next = (schedule_node *)next->next; 232 } 233 } 234 } 235 236 /* instruction scheduling needs to be aware of when an MRF write 237 * actually writes 2 MRFs. 238 */ 239 bool 240 instruction_scheduler::is_compressed(fs_inst *inst) 241 { 242 return (v->c->dispatch_width == 16 && 243 !inst->force_uncompressed && 244 !inst->force_sechalf); 245 } 246 247 void 248 instruction_scheduler::calculate_deps() 249 { 250 schedule_node *last_grf_write[virtual_grf_count]; 251 schedule_node *last_mrf_write[BRW_MAX_MRF]; 252 schedule_node *last_conditional_mod = NULL; 253 /* Fixed HW registers are assumed to be separate from the virtual 254 * GRFs, so they can be tracked separately. We don't really write 255 * to fixed GRFs much, so don't bother tracking them on a more 256 * granular level. 257 */ 258 schedule_node *last_fixed_grf_write = NULL; 259 260 /* The last instruction always needs to still be the last 261 * instruction. Either it's flow control (IF, ELSE, ENDIF, DO, 262 * WHILE) and scheduling other things after it would disturb the 263 * basic block, or it's FB_WRITE and we should do a better job at 264 * dead code elimination anyway. 265 */ 266 schedule_node *last = (schedule_node *)instructions.get_tail(); 267 add_barrier_deps(last); 268 269 memset(last_grf_write, 0, sizeof(last_grf_write)); 270 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 271 272 /* top-to-bottom dependencies: RAW and WAW. */ 273 foreach_list(node, &instructions) { 274 schedule_node *n = (schedule_node *)node; 275 fs_inst *inst = n->inst; 276 277 /* read-after-write deps. */ 278 for (int i = 0; i < 3; i++) { 279 if (inst->src[i].file == GRF) { 280 add_dep(last_grf_write[inst->src[i].reg], n); 281 } else if (inst->src[i].file == FIXED_HW_REG && 282 (inst->src[i].fixed_hw_reg.file == 283 BRW_GENERAL_REGISTER_FILE)) { 284 add_dep(last_fixed_grf_write, n); 285 } else if (inst->src[i].file != BAD_FILE && 286 inst->src[i].file != IMM && 287 inst->src[i].file != UNIFORM) { 288 assert(inst->src[i].file != MRF); 289 add_barrier_deps(n); 290 } 291 } 292 293 for (int i = 0; i < inst->mlen; i++) { 294 /* It looks like the MRF regs are released in the send 295 * instruction once it's sent, not when the result comes 296 * back. 297 */ 298 add_dep(last_mrf_write[inst->base_mrf + i], n); 299 } 300 301 if (inst->predicated) { 302 assert(last_conditional_mod); 303 add_dep(last_conditional_mod, n); 304 } 305 306 /* write-after-write deps. */ 307 if (inst->dst.file == GRF) { 308 add_dep(last_grf_write[inst->dst.reg], n); 309 last_grf_write[inst->dst.reg] = n; 310 } else if (inst->dst.file == MRF) { 311 int reg = inst->dst.reg & ~BRW_MRF_COMPR4; 312 313 add_dep(last_mrf_write[reg], n); 314 last_mrf_write[reg] = n; 315 if (is_compressed(inst)) { 316 if (inst->dst.reg & BRW_MRF_COMPR4) 317 reg += 4; 318 else 319 reg++; 320 add_dep(last_mrf_write[reg], n); 321 last_mrf_write[reg] = n; 322 } 323 } else if (inst->dst.file == FIXED_HW_REG && 324 inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { 325 last_fixed_grf_write = n; 326 } else if (inst->dst.file != BAD_FILE) { 327 add_barrier_deps(n); 328 } 329 330 if (inst->mlen > 0) { 331 for (int i = 0; i < v->implied_mrf_writes(inst); i++) { 332 add_dep(last_mrf_write[inst->base_mrf + i], n); 333 last_mrf_write[inst->base_mrf + i] = n; 334 } 335 } 336 337 /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a 338 * conditional_mod, because it sets the flag register. 339 */ 340 if (inst->conditional_mod || 341 inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) { 342 add_dep(last_conditional_mod, n, 0); 343 last_conditional_mod = n; 344 } 345 } 346 347 /* bottom-to-top dependencies: WAR */ 348 memset(last_grf_write, 0, sizeof(last_grf_write)); 349 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 350 last_conditional_mod = NULL; 351 last_fixed_grf_write = NULL; 352 353 exec_node *node; 354 exec_node *prev; 355 for (node = instructions.get_tail(), prev = node->prev; 356 !node->is_head_sentinel(); 357 node = prev, prev = node->prev) { 358 schedule_node *n = (schedule_node *)node; 359 fs_inst *inst = n->inst; 360 361 /* write-after-read deps. */ 362 for (int i = 0; i < 3; i++) { 363 if (inst->src[i].file == GRF) { 364 add_dep(n, last_grf_write[inst->src[i].reg]); 365 } else if (inst->src[i].file == FIXED_HW_REG && 366 (inst->src[i].fixed_hw_reg.file == 367 BRW_GENERAL_REGISTER_FILE)) { 368 add_dep(n, last_fixed_grf_write); 369 } else if (inst->src[i].file != BAD_FILE && 370 inst->src[i].file != IMM && 371 inst->src[i].file != UNIFORM) { 372 assert(inst->src[i].file != MRF); 373 add_barrier_deps(n); 374 } 375 } 376 377 for (int i = 0; i < inst->mlen; i++) { 378 /* It looks like the MRF regs are released in the send 379 * instruction once it's sent, not when the result comes 380 * back. 381 */ 382 add_dep(n, last_mrf_write[inst->base_mrf + i], 2); 383 } 384 385 if (inst->predicated) { 386 add_dep(n, last_conditional_mod); 387 } 388 389 /* Update the things this instruction wrote, so earlier reads 390 * can mark this as WAR dependency. 391 */ 392 if (inst->dst.file == GRF) { 393 last_grf_write[inst->dst.reg] = n; 394 } else if (inst->dst.file == MRF) { 395 int reg = inst->dst.reg & ~BRW_MRF_COMPR4; 396 397 last_mrf_write[reg] = n; 398 399 if (is_compressed(inst)) { 400 if (inst->dst.reg & BRW_MRF_COMPR4) 401 reg += 4; 402 else 403 reg++; 404 405 last_mrf_write[reg] = n; 406 } 407 } else if (inst->dst.file == FIXED_HW_REG && 408 inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { 409 last_fixed_grf_write = n; 410 } else if (inst->dst.file != BAD_FILE) { 411 add_barrier_deps(n); 412 } 413 414 if (inst->mlen > 0) { 415 for (int i = 0; i < v->implied_mrf_writes(inst); i++) { 416 last_mrf_write[inst->base_mrf + i] = n; 417 } 418 } 419 420 /* Treat FS_OPCODE_MOV_DISPATCH_TO_FLAGS as though it had a 421 * conditional_mod, because it sets the flag register. 422 */ 423 if (inst->conditional_mod || 424 inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) { 425 last_conditional_mod = n; 426 } 427 } 428 } 429 430 void 431 instruction_scheduler::schedule_instructions(fs_inst *next_block_header) 432 { 433 int time = 0; 434 435 /* Remove non-DAG heads from the list. */ 436 foreach_list_safe(node, &instructions) { 437 schedule_node *n = (schedule_node *)node; 438 if (n->parent_count != 0) 439 n->remove(); 440 } 441 442 while (!instructions.is_empty()) { 443 schedule_node *chosen = NULL; 444 int chosen_time = 0; 445 446 foreach_list(node, &instructions) { 447 schedule_node *n = (schedule_node *)node; 448 449 if (!chosen || n->unblocked_time < chosen_time) { 450 chosen = n; 451 chosen_time = n->unblocked_time; 452 } 453 } 454 455 /* Schedule this instruction. */ 456 assert(chosen); 457 chosen->remove(); 458 next_block_header->insert_before(chosen->inst); 459 instructions_to_schedule--; 460 461 /* Bump the clock. If we expected a delay for scheduling, then 462 * bump the clock to reflect that. 463 */ 464 time = MAX2(time + 1, chosen_time); 465 466 /* Now that we've scheduled a new instruction, some of its 467 * children can be promoted to the list of instructions ready to 468 * be scheduled. Update the children's unblocked time for this 469 * DAG edge as we do so. 470 */ 471 for (int i = 0; i < chosen->child_count; i++) { 472 schedule_node *child = chosen->children[i]; 473 474 child->unblocked_time = MAX2(child->unblocked_time, 475 time + chosen->child_latency[i]); 476 477 child->parent_count--; 478 if (child->parent_count == 0) { 479 instructions.push_tail(child); 480 } 481 } 482 483 /* Shared resource: the mathbox. There's one per EU (on later 484 * generations, it's even more limited pre-gen6), so if we send 485 * something off to it then the next math isn't going to make 486 * progress until the first is done. 487 */ 488 if (chosen->inst->is_math()) { 489 foreach_list(node, &instructions) { 490 schedule_node *n = (schedule_node *)node; 491 492 if (n->inst->is_math()) 493 n->unblocked_time = MAX2(n->unblocked_time, 494 time + chosen->latency); 495 } 496 } 497 } 498 499 assert(instructions_to_schedule == 0); 500 } 501 502 void 503 fs_visitor::schedule_instructions() 504 { 505 fs_inst *next_block_header = (fs_inst *)instructions.head; 506 instruction_scheduler sched(this, mem_ctx, this->virtual_grf_count); 507 508 while (!next_block_header->is_tail_sentinel()) { 509 /* Add things to be scheduled until we get to a new BB. */ 510 while (!next_block_header->is_tail_sentinel()) { 511 fs_inst *inst = next_block_header; 512 next_block_header = (fs_inst *)next_block_header->next; 513 514 sched.add_inst(inst); 515 if (inst->opcode == BRW_OPCODE_IF || 516 inst->opcode == BRW_OPCODE_ELSE || 517 inst->opcode == BRW_OPCODE_ENDIF || 518 inst->opcode == BRW_OPCODE_DO || 519 inst->opcode == BRW_OPCODE_WHILE || 520 inst->opcode == BRW_OPCODE_BREAK || 521 inst->opcode == BRW_OPCODE_CONTINUE) { 522 break; 523 } 524 } 525 sched.calculate_deps(); 526 sched.schedule_instructions(next_block_header); 527 } 528 529 this->live_intervals_valid = false; 530 } 531