Home | History | Annotate | Download | only in swrast
      1 /*
      2  * Mesa 3-D graphics library
      3  * Version:  6.5.3
      4  *
      5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included
     15  * in all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
     21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     23  */
     24 
     25 
     26 /*
     27  * Antialiased Triangle rasterizers
     28  */
     29 
     30 
     31 #include "main/glheader.h"
     32 #include "main/context.h"
     33 #include "main/colormac.h"
     34 #include "main/macros.h"
     35 #include "main/imports.h"
     36 #include "main/state.h"
     37 #include "s_aatriangle.h"
     38 #include "s_context.h"
     39 #include "s_span.h"
     40 
     41 
     42 /*
     43  * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
     44  * vertices and the given Z values.
     45  * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
     46  */
     47 static inline void
     48 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
     49               GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
     50 {
     51    const GLfloat px = v1[0] - v0[0];
     52    const GLfloat py = v1[1] - v0[1];
     53    const GLfloat pz = z1 - z0;
     54 
     55    const GLfloat qx = v2[0] - v0[0];
     56    const GLfloat qy = v2[1] - v0[1];
     57    const GLfloat qz = z2 - z0;
     58 
     59    /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
     60    const GLfloat a = py * qz - pz * qy;
     61    const GLfloat b = pz * qx - px * qz;
     62    const GLfloat c = px * qy - py * qx;
     63    /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
     64       on the distance of plane from origin and arbitrary "w" parallel
     65       to the plane. */
     66    /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
     67       which is equal to "-d" below. */
     68    const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
     69 
     70    plane[0] = a;
     71    plane[1] = b;
     72    plane[2] = c;
     73    plane[3] = d;
     74 }
     75 
     76 
     77 /*
     78  * Compute coefficients of a plane with a constant Z value.
     79  */
     80 static inline void
     81 constant_plane(GLfloat value, GLfloat plane[4])
     82 {
     83    plane[0] = 0.0;
     84    plane[1] = 0.0;
     85    plane[2] = -1.0;
     86    plane[3] = value;
     87 }
     88 
     89 #define CONSTANT_PLANE(VALUE, PLANE)	\
     90 do {					\
     91    PLANE[0] = 0.0F;			\
     92    PLANE[1] = 0.0F;			\
     93    PLANE[2] = -1.0F;			\
     94    PLANE[3] = VALUE;			\
     95 } while (0)
     96 
     97 
     98 
     99 /*
    100  * Solve plane equation for Z at (X,Y).
    101  */
    102 static inline GLfloat
    103 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
    104 {
    105    ASSERT(plane[2] != 0.0F);
    106    return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
    107 }
    108 
    109 
    110 #define SOLVE_PLANE(X, Y, PLANE) \
    111    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
    112 
    113 
    114 /*
    115  * Return 1 / solve_plane().
    116  */
    117 static inline GLfloat
    118 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
    119 {
    120    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
    121    if (denom == 0.0F)
    122       return 0.0F;
    123    else
    124       return -plane[2] / denom;
    125 }
    126 
    127 
    128 /*
    129  * Solve plane and return clamped GLchan value.
    130  */
    131 static inline GLchan
    132 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
    133 {
    134    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
    135 #if CHAN_TYPE == GL_FLOAT
    136    return CLAMP(z, 0.0F, CHAN_MAXF);
    137 #else
    138    if (z < 0)
    139       return 0;
    140    else if (z > CHAN_MAX)
    141       return CHAN_MAX;
    142    return (GLchan) IROUND_POS(z);
    143 #endif
    144 }
    145 
    146 
    147 static inline GLfloat
    148 plane_dx(const GLfloat plane[4])
    149 {
    150    return -plane[0] / plane[2];
    151 }
    152 
    153 static inline GLfloat
    154 plane_dy(const GLfloat plane[4])
    155 {
    156    return -plane[1] / plane[2];
    157 }
    158 
    159 
    160 
    161 /*
    162  * Compute how much (area) of the given pixel is inside the triangle.
    163  * Vertices MUST be specified in counter-clockwise order.
    164  * Return:  coverage in [0, 1].
    165  */
    166 static GLfloat
    167 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
    168                   const GLfloat v2[3], GLint winx, GLint winy)
    169 {
    170    /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
    171     * Contributed by Ray Tice.
    172     *
    173     * Jitter sample positions -
    174     * - average should be .5 in x & y for each column
    175     * - each of the 16 rows and columns should be used once
    176     * - the rectangle formed by the first four points
    177     *   should contain the other points
    178     * - the distrubition should be fairly even in any given direction
    179     *
    180     * The pattern drawn below isn't optimal, but it's better than a regular
    181     * grid.  In the drawing, the center of each subpixel is surrounded by
    182     * four dots.  The "x" marks the jittered position relative to the
    183     * subpixel center.
    184     */
    185 #define POS(a, b) (0.5+a*4+b)/16
    186    static const GLfloat samples[16][2] = {
    187       /* start with the four corners */
    188       { POS(0, 2), POS(0, 0) },
    189       { POS(3, 3), POS(0, 2) },
    190       { POS(0, 0), POS(3, 1) },
    191       { POS(3, 1), POS(3, 3) },
    192       /* continue with interior samples */
    193       { POS(1, 1), POS(0, 1) },
    194       { POS(2, 0), POS(0, 3) },
    195       { POS(0, 3), POS(1, 3) },
    196       { POS(1, 2), POS(1, 0) },
    197       { POS(2, 3), POS(1, 2) },
    198       { POS(3, 2), POS(1, 1) },
    199       { POS(0, 1), POS(2, 2) },
    200       { POS(1, 0), POS(2, 1) },
    201       { POS(2, 1), POS(2, 3) },
    202       { POS(3, 0), POS(2, 0) },
    203       { POS(1, 3), POS(3, 0) },
    204       { POS(2, 2), POS(3, 2) }
    205    };
    206 
    207    const GLfloat x = (GLfloat) winx;
    208    const GLfloat y = (GLfloat) winy;
    209    const GLfloat dx0 = v1[0] - v0[0];
    210    const GLfloat dy0 = v1[1] - v0[1];
    211    const GLfloat dx1 = v2[0] - v1[0];
    212    const GLfloat dy1 = v2[1] - v1[1];
    213    const GLfloat dx2 = v0[0] - v2[0];
    214    const GLfloat dy2 = v0[1] - v2[1];
    215    GLint stop = 4, i;
    216    GLfloat insideCount = 16.0F;
    217 
    218    ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
    219 
    220    for (i = 0; i < stop; i++) {
    221       const GLfloat sx = x + samples[i][0];
    222       const GLfloat sy = y + samples[i][1];
    223       /* cross product determines if sample is inside or outside each edge */
    224       GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
    225       /* Check if the sample is exactly on an edge.  If so, let cross be a
    226        * positive or negative value depending on the direction of the edge.
    227        */
    228       if (cross == 0.0F)
    229          cross = dx0 + dy0;
    230       if (cross < 0.0F) {
    231          /* sample point is outside first edge */
    232          insideCount -= 1.0F;
    233          stop = 16;
    234       }
    235       else {
    236          /* sample point is inside first edge */
    237          cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
    238          if (cross == 0.0F)
    239             cross = dx1 + dy1;
    240          if (cross < 0.0F) {
    241             /* sample point is outside second edge */
    242             insideCount -= 1.0F;
    243             stop = 16;
    244          }
    245          else {
    246             /* sample point is inside first and second edges */
    247             cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));
    248             if (cross == 0.0F)
    249                cross = dx2 + dy2;
    250             if (cross < 0.0F) {
    251                /* sample point is outside third edge */
    252                insideCount -= 1.0F;
    253                stop = 16;
    254             }
    255          }
    256       }
    257    }
    258    if (stop == 4)
    259       return 1.0F;
    260    else
    261       return insideCount * (1.0F / 16.0F);
    262 }
    263 
    264 
    265 
    266 static void
    267 rgba_aa_tri(struct gl_context *ctx,
    268 	    const SWvertex *v0,
    269 	    const SWvertex *v1,
    270 	    const SWvertex *v2)
    271 {
    272 #define DO_Z
    273 #include "s_aatritemp.h"
    274 }
    275 
    276 
    277 static void
    278 general_aa_tri(struct gl_context *ctx,
    279                const SWvertex *v0,
    280                const SWvertex *v1,
    281                const SWvertex *v2)
    282 {
    283 #define DO_Z
    284 #define DO_ATTRIBS
    285 #include "s_aatritemp.h"
    286 }
    287 
    288 
    289 
    290 /*
    291  * Examine GL state and set swrast->Triangle to an
    292  * appropriate antialiased triangle rasterizer function.
    293  */
    294 void
    295 _swrast_set_aa_triangle_function(struct gl_context *ctx)
    296 {
    297    SWcontext *swrast = SWRAST_CONTEXT(ctx);
    298 
    299    ASSERT(ctx->Polygon.SmoothFlag);
    300 
    301    if (ctx->Texture._EnabledCoordUnits != 0
    302        || _swrast_use_fragment_program(ctx)
    303        || swrast->_FogEnabled
    304        || _mesa_need_secondary_color(ctx)) {
    305       SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
    306    }
    307    else {
    308       SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
    309    }
    310 
    311    ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
    312 }
    313