1 /* crypto/bn/bn_asm.c */ 2 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay (at) cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay (at) cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 59 #ifndef BN_DEBUG 60 # undef NDEBUG /* avoid conflicting definitions */ 61 # define NDEBUG 62 #endif 63 64 #include <stdio.h> 65 #include <assert.h> 66 #include "cryptlib.h" 67 #include "bn_lcl.h" 68 69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) 70 71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) 72 { 73 BN_ULONG c1=0; 74 75 assert(num >= 0); 76 if (num <= 0) return(c1); 77 78 #ifndef OPENSSL_SMALL_FOOTPRINT 79 while (num&~3) 80 { 81 mul_add(rp[0],ap[0],w,c1); 82 mul_add(rp[1],ap[1],w,c1); 83 mul_add(rp[2],ap[2],w,c1); 84 mul_add(rp[3],ap[3],w,c1); 85 ap+=4; rp+=4; num-=4; 86 } 87 #endif 88 while (num) 89 { 90 mul_add(rp[0],ap[0],w,c1); 91 ap++; rp++; num--; 92 } 93 94 return(c1); 95 } 96 97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) 98 { 99 BN_ULONG c1=0; 100 101 assert(num >= 0); 102 if (num <= 0) return(c1); 103 104 #ifndef OPENSSL_SMALL_FOOTPRINT 105 while (num&~3) 106 { 107 mul(rp[0],ap[0],w,c1); 108 mul(rp[1],ap[1],w,c1); 109 mul(rp[2],ap[2],w,c1); 110 mul(rp[3],ap[3],w,c1); 111 ap+=4; rp+=4; num-=4; 112 } 113 #endif 114 while (num) 115 { 116 mul(rp[0],ap[0],w,c1); 117 ap++; rp++; num--; 118 } 119 return(c1); 120 } 121 122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) 123 { 124 assert(n >= 0); 125 if (n <= 0) return; 126 127 #ifndef OPENSSL_SMALL_FOOTPRINT 128 while (n&~3) 129 { 130 sqr(r[0],r[1],a[0]); 131 sqr(r[2],r[3],a[1]); 132 sqr(r[4],r[5],a[2]); 133 sqr(r[6],r[7],a[3]); 134 a+=4; r+=8; n-=4; 135 } 136 #endif 137 while (n) 138 { 139 sqr(r[0],r[1],a[0]); 140 a++; r+=2; n--; 141 } 142 } 143 144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ 145 146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) 147 { 148 BN_ULONG c=0; 149 BN_ULONG bl,bh; 150 151 assert(num >= 0); 152 if (num <= 0) return((BN_ULONG)0); 153 154 bl=LBITS(w); 155 bh=HBITS(w); 156 157 #ifndef OPENSSL_SMALL_FOOTPRINT 158 while (num&~3) 159 { 160 mul_add(rp[0],ap[0],bl,bh,c); 161 mul_add(rp[1],ap[1],bl,bh,c); 162 mul_add(rp[2],ap[2],bl,bh,c); 163 mul_add(rp[3],ap[3],bl,bh,c); 164 ap+=4; rp+=4; num-=4; 165 } 166 #endif 167 while (num) 168 { 169 mul_add(rp[0],ap[0],bl,bh,c); 170 ap++; rp++; num--; 171 } 172 return(c); 173 } 174 175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) 176 { 177 BN_ULONG carry=0; 178 BN_ULONG bl,bh; 179 180 assert(num >= 0); 181 if (num <= 0) return((BN_ULONG)0); 182 183 bl=LBITS(w); 184 bh=HBITS(w); 185 186 #ifndef OPENSSL_SMALL_FOOTPRINT 187 while (num&~3) 188 { 189 mul(rp[0],ap[0],bl,bh,carry); 190 mul(rp[1],ap[1],bl,bh,carry); 191 mul(rp[2],ap[2],bl,bh,carry); 192 mul(rp[3],ap[3],bl,bh,carry); 193 ap+=4; rp+=4; num-=4; 194 } 195 #endif 196 while (num) 197 { 198 mul(rp[0],ap[0],bl,bh,carry); 199 ap++; rp++; num--; 200 } 201 return(carry); 202 } 203 204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) 205 { 206 assert(n >= 0); 207 if (n <= 0) return; 208 209 #ifndef OPENSSL_SMALL_FOOTPRINT 210 while (n&~3) 211 { 212 sqr64(r[0],r[1],a[0]); 213 sqr64(r[2],r[3],a[1]); 214 sqr64(r[4],r[5],a[2]); 215 sqr64(r[6],r[7],a[3]); 216 a+=4; r+=8; n-=4; 217 } 218 #endif 219 while (n) 220 { 221 sqr64(r[0],r[1],a[0]); 222 a++; r+=2; n--; 223 } 224 } 225 226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ 227 228 #if defined(BN_LLONG) && defined(BN_DIV2W) 229 230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) 231 { 232 return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); 233 } 234 235 #else 236 237 /* Divide h,l by d and return the result. */ 238 /* I need to test this some more :-( */ 239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) 240 { 241 BN_ULONG dh,dl,q,ret=0,th,tl,t; 242 int i,count=2; 243 244 if (d == 0) return(BN_MASK2); 245 246 i=BN_num_bits_word(d); 247 assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); 248 249 i=BN_BITS2-i; 250 if (h >= d) h-=d; 251 252 if (i) 253 { 254 d<<=i; 255 h=(h<<i)|(l>>(BN_BITS2-i)); 256 l<<=i; 257 } 258 dh=(d&BN_MASK2h)>>BN_BITS4; 259 dl=(d&BN_MASK2l); 260 for (;;) 261 { 262 if ((h>>BN_BITS4) == dh) 263 q=BN_MASK2l; 264 else 265 q=h/dh; 266 267 th=q*dh; 268 tl=dl*q; 269 for (;;) 270 { 271 t=h-th; 272 if ((t&BN_MASK2h) || 273 ((tl) <= ( 274 (t<<BN_BITS4)| 275 ((l&BN_MASK2h)>>BN_BITS4)))) 276 break; 277 q--; 278 th-=dh; 279 tl-=dl; 280 } 281 t=(tl>>BN_BITS4); 282 tl=(tl<<BN_BITS4)&BN_MASK2h; 283 th+=t; 284 285 if (l < tl) th++; 286 l-=tl; 287 if (h < th) 288 { 289 h+=d; 290 q--; 291 } 292 h-=th; 293 294 if (--count == 0) break; 295 296 ret=q<<BN_BITS4; 297 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; 298 l=(l&BN_MASK2l)<<BN_BITS4; 299 } 300 ret|=q; 301 return(ret); 302 } 303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ 304 305 #ifdef BN_LLONG 306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) 307 { 308 BN_ULLONG ll=0; 309 310 assert(n >= 0); 311 if (n <= 0) return((BN_ULONG)0); 312 313 #ifndef OPENSSL_SMALL_FOOTPRINT 314 while (n&~3) 315 { 316 ll+=(BN_ULLONG)a[0]+b[0]; 317 r[0]=(BN_ULONG)ll&BN_MASK2; 318 ll>>=BN_BITS2; 319 ll+=(BN_ULLONG)a[1]+b[1]; 320 r[1]=(BN_ULONG)ll&BN_MASK2; 321 ll>>=BN_BITS2; 322 ll+=(BN_ULLONG)a[2]+b[2]; 323 r[2]=(BN_ULONG)ll&BN_MASK2; 324 ll>>=BN_BITS2; 325 ll+=(BN_ULLONG)a[3]+b[3]; 326 r[3]=(BN_ULONG)ll&BN_MASK2; 327 ll>>=BN_BITS2; 328 a+=4; b+=4; r+=4; n-=4; 329 } 330 #endif 331 while (n) 332 { 333 ll+=(BN_ULLONG)a[0]+b[0]; 334 r[0]=(BN_ULONG)ll&BN_MASK2; 335 ll>>=BN_BITS2; 336 a++; b++; r++; n--; 337 } 338 return((BN_ULONG)ll); 339 } 340 #else /* !BN_LLONG */ 341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) 342 { 343 BN_ULONG c,l,t; 344 345 assert(n >= 0); 346 if (n <= 0) return((BN_ULONG)0); 347 348 c=0; 349 #ifndef OPENSSL_SMALL_FOOTPRINT 350 while (n&~3) 351 { 352 t=a[0]; 353 t=(t+c)&BN_MASK2; 354 c=(t < c); 355 l=(t+b[0])&BN_MASK2; 356 c+=(l < t); 357 r[0]=l; 358 t=a[1]; 359 t=(t+c)&BN_MASK2; 360 c=(t < c); 361 l=(t+b[1])&BN_MASK2; 362 c+=(l < t); 363 r[1]=l; 364 t=a[2]; 365 t=(t+c)&BN_MASK2; 366 c=(t < c); 367 l=(t+b[2])&BN_MASK2; 368 c+=(l < t); 369 r[2]=l; 370 t=a[3]; 371 t=(t+c)&BN_MASK2; 372 c=(t < c); 373 l=(t+b[3])&BN_MASK2; 374 c+=(l < t); 375 r[3]=l; 376 a+=4; b+=4; r+=4; n-=4; 377 } 378 #endif 379 while(n) 380 { 381 t=a[0]; 382 t=(t+c)&BN_MASK2; 383 c=(t < c); 384 l=(t+b[0])&BN_MASK2; 385 c+=(l < t); 386 r[0]=l; 387 a++; b++; r++; n--; 388 } 389 return((BN_ULONG)c); 390 } 391 #endif /* !BN_LLONG */ 392 393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) 394 { 395 BN_ULONG t1,t2; 396 int c=0; 397 398 assert(n >= 0); 399 if (n <= 0) return((BN_ULONG)0); 400 401 #ifndef OPENSSL_SMALL_FOOTPRINT 402 while (n&~3) 403 { 404 t1=a[0]; t2=b[0]; 405 r[0]=(t1-t2-c)&BN_MASK2; 406 if (t1 != t2) c=(t1 < t2); 407 t1=a[1]; t2=b[1]; 408 r[1]=(t1-t2-c)&BN_MASK2; 409 if (t1 != t2) c=(t1 < t2); 410 t1=a[2]; t2=b[2]; 411 r[2]=(t1-t2-c)&BN_MASK2; 412 if (t1 != t2) c=(t1 < t2); 413 t1=a[3]; t2=b[3]; 414 r[3]=(t1-t2-c)&BN_MASK2; 415 if (t1 != t2) c=(t1 < t2); 416 a+=4; b+=4; r+=4; n-=4; 417 } 418 #endif 419 while (n) 420 { 421 t1=a[0]; t2=b[0]; 422 r[0]=(t1-t2-c)&BN_MASK2; 423 if (t1 != t2) c=(t1 < t2); 424 a++; b++; r++; n--; 425 } 426 return(c); 427 } 428 429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) 430 431 #undef bn_mul_comba8 432 #undef bn_mul_comba4 433 #undef bn_sqr_comba8 434 #undef bn_sqr_comba4 435 436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ 437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ 438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ 439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ 440 441 #ifdef BN_LLONG 442 #define mul_add_c(a,b,c0,c1,c2) \ 443 t=(BN_ULLONG)a*b; \ 444 t1=(BN_ULONG)Lw(t); \ 445 t2=(BN_ULONG)Hw(t); \ 446 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ 447 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 448 449 #define mul_add_c2(a,b,c0,c1,c2) \ 450 t=(BN_ULLONG)a*b; \ 451 tt=(t+t)&BN_MASK; \ 452 if (tt < t) c2++; \ 453 t1=(BN_ULONG)Lw(tt); \ 454 t2=(BN_ULONG)Hw(tt); \ 455 c0=(c0+t1)&BN_MASK2; \ 456 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ 457 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 458 459 #define sqr_add_c(a,i,c0,c1,c2) \ 460 t=(BN_ULLONG)a[i]*a[i]; \ 461 t1=(BN_ULONG)Lw(t); \ 462 t2=(BN_ULONG)Hw(t); \ 463 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ 464 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 465 466 #define sqr_add_c2(a,i,j,c0,c1,c2) \ 467 mul_add_c2((a)[i],(a)[j],c0,c1,c2) 468 469 #elif defined(BN_UMULT_LOHI) 470 471 #define mul_add_c(a,b,c0,c1,c2) { \ 472 BN_ULONG ta=(a),tb=(b); \ 473 BN_UMULT_LOHI(t1,t2,ta,tb); \ 474 c0 += t1; t2 += (c0<t1)?1:0; \ 475 c1 += t2; c2 += (c1<t2)?1:0; \ 476 } 477 478 #define mul_add_c2(a,b,c0,c1,c2) { \ 479 BN_ULONG ta=(a),tb=(b),t0; \ 480 BN_UMULT_LOHI(t0,t1,ta,tb); \ 481 t2 = t1+t1; c2 += (t2<t1)?1:0; \ 482 t1 = t0+t0; t2 += (t1<t0)?1:0; \ 483 c0 += t1; t2 += (c0<t1)?1:0; \ 484 c1 += t2; c2 += (c1<t2)?1:0; \ 485 } 486 487 #define sqr_add_c(a,i,c0,c1,c2) { \ 488 BN_ULONG ta=(a)[i]; \ 489 BN_UMULT_LOHI(t1,t2,ta,ta); \ 490 c0 += t1; t2 += (c0<t1)?1:0; \ 491 c1 += t2; c2 += (c1<t2)?1:0; \ 492 } 493 494 #define sqr_add_c2(a,i,j,c0,c1,c2) \ 495 mul_add_c2((a)[i],(a)[j],c0,c1,c2) 496 497 #elif defined(BN_UMULT_HIGH) 498 499 #define mul_add_c(a,b,c0,c1,c2) { \ 500 BN_ULONG ta=(a),tb=(b); \ 501 t1 = ta * tb; \ 502 t2 = BN_UMULT_HIGH(ta,tb); \ 503 c0 += t1; t2 += (c0<t1)?1:0; \ 504 c1 += t2; c2 += (c1<t2)?1:0; \ 505 } 506 507 #define mul_add_c2(a,b,c0,c1,c2) { \ 508 BN_ULONG ta=(a),tb=(b),t0; \ 509 t1 = BN_UMULT_HIGH(ta,tb); \ 510 t0 = ta * tb; \ 511 t2 = t1+t1; c2 += (t2<t1)?1:0; \ 512 t1 = t0+t0; t2 += (t1<t0)?1:0; \ 513 c0 += t1; t2 += (c0<t1)?1:0; \ 514 c1 += t2; c2 += (c1<t2)?1:0; \ 515 } 516 517 #define sqr_add_c(a,i,c0,c1,c2) { \ 518 BN_ULONG ta=(a)[i]; \ 519 t1 = ta * ta; \ 520 t2 = BN_UMULT_HIGH(ta,ta); \ 521 c0 += t1; t2 += (c0<t1)?1:0; \ 522 c1 += t2; c2 += (c1<t2)?1:0; \ 523 } 524 525 #define sqr_add_c2(a,i,j,c0,c1,c2) \ 526 mul_add_c2((a)[i],(a)[j],c0,c1,c2) 527 528 #else /* !BN_LLONG */ 529 #define mul_add_c(a,b,c0,c1,c2) \ 530 t1=LBITS(a); t2=HBITS(a); \ 531 bl=LBITS(b); bh=HBITS(b); \ 532 mul64(t1,t2,bl,bh); \ 533 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ 534 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 535 536 #define mul_add_c2(a,b,c0,c1,c2) \ 537 t1=LBITS(a); t2=HBITS(a); \ 538 bl=LBITS(b); bh=HBITS(b); \ 539 mul64(t1,t2,bl,bh); \ 540 if (t2 & BN_TBIT) c2++; \ 541 t2=(t2+t2)&BN_MASK2; \ 542 if (t1 & BN_TBIT) t2++; \ 543 t1=(t1+t1)&BN_MASK2; \ 544 c0=(c0+t1)&BN_MASK2; \ 545 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ 546 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 547 548 #define sqr_add_c(a,i,c0,c1,c2) \ 549 sqr64(t1,t2,(a)[i]); \ 550 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ 551 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; 552 553 #define sqr_add_c2(a,i,j,c0,c1,c2) \ 554 mul_add_c2((a)[i],(a)[j],c0,c1,c2) 555 #endif /* !BN_LLONG */ 556 557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 558 { 559 #ifdef BN_LLONG 560 BN_ULLONG t; 561 #else 562 BN_ULONG bl,bh; 563 #endif 564 BN_ULONG t1,t2; 565 BN_ULONG c1,c2,c3; 566 567 c1=0; 568 c2=0; 569 c3=0; 570 mul_add_c(a[0],b[0],c1,c2,c3); 571 r[0]=c1; 572 c1=0; 573 mul_add_c(a[0],b[1],c2,c3,c1); 574 mul_add_c(a[1],b[0],c2,c3,c1); 575 r[1]=c2; 576 c2=0; 577 mul_add_c(a[2],b[0],c3,c1,c2); 578 mul_add_c(a[1],b[1],c3,c1,c2); 579 mul_add_c(a[0],b[2],c3,c1,c2); 580 r[2]=c3; 581 c3=0; 582 mul_add_c(a[0],b[3],c1,c2,c3); 583 mul_add_c(a[1],b[2],c1,c2,c3); 584 mul_add_c(a[2],b[1],c1,c2,c3); 585 mul_add_c(a[3],b[0],c1,c2,c3); 586 r[3]=c1; 587 c1=0; 588 mul_add_c(a[4],b[0],c2,c3,c1); 589 mul_add_c(a[3],b[1],c2,c3,c1); 590 mul_add_c(a[2],b[2],c2,c3,c1); 591 mul_add_c(a[1],b[3],c2,c3,c1); 592 mul_add_c(a[0],b[4],c2,c3,c1); 593 r[4]=c2; 594 c2=0; 595 mul_add_c(a[0],b[5],c3,c1,c2); 596 mul_add_c(a[1],b[4],c3,c1,c2); 597 mul_add_c(a[2],b[3],c3,c1,c2); 598 mul_add_c(a[3],b[2],c3,c1,c2); 599 mul_add_c(a[4],b[1],c3,c1,c2); 600 mul_add_c(a[5],b[0],c3,c1,c2); 601 r[5]=c3; 602 c3=0; 603 mul_add_c(a[6],b[0],c1,c2,c3); 604 mul_add_c(a[5],b[1],c1,c2,c3); 605 mul_add_c(a[4],b[2],c1,c2,c3); 606 mul_add_c(a[3],b[3],c1,c2,c3); 607 mul_add_c(a[2],b[4],c1,c2,c3); 608 mul_add_c(a[1],b[5],c1,c2,c3); 609 mul_add_c(a[0],b[6],c1,c2,c3); 610 r[6]=c1; 611 c1=0; 612 mul_add_c(a[0],b[7],c2,c3,c1); 613 mul_add_c(a[1],b[6],c2,c3,c1); 614 mul_add_c(a[2],b[5],c2,c3,c1); 615 mul_add_c(a[3],b[4],c2,c3,c1); 616 mul_add_c(a[4],b[3],c2,c3,c1); 617 mul_add_c(a[5],b[2],c2,c3,c1); 618 mul_add_c(a[6],b[1],c2,c3,c1); 619 mul_add_c(a[7],b[0],c2,c3,c1); 620 r[7]=c2; 621 c2=0; 622 mul_add_c(a[7],b[1],c3,c1,c2); 623 mul_add_c(a[6],b[2],c3,c1,c2); 624 mul_add_c(a[5],b[3],c3,c1,c2); 625 mul_add_c(a[4],b[4],c3,c1,c2); 626 mul_add_c(a[3],b[5],c3,c1,c2); 627 mul_add_c(a[2],b[6],c3,c1,c2); 628 mul_add_c(a[1],b[7],c3,c1,c2); 629 r[8]=c3; 630 c3=0; 631 mul_add_c(a[2],b[7],c1,c2,c3); 632 mul_add_c(a[3],b[6],c1,c2,c3); 633 mul_add_c(a[4],b[5],c1,c2,c3); 634 mul_add_c(a[5],b[4],c1,c2,c3); 635 mul_add_c(a[6],b[3],c1,c2,c3); 636 mul_add_c(a[7],b[2],c1,c2,c3); 637 r[9]=c1; 638 c1=0; 639 mul_add_c(a[7],b[3],c2,c3,c1); 640 mul_add_c(a[6],b[4],c2,c3,c1); 641 mul_add_c(a[5],b[5],c2,c3,c1); 642 mul_add_c(a[4],b[6],c2,c3,c1); 643 mul_add_c(a[3],b[7],c2,c3,c1); 644 r[10]=c2; 645 c2=0; 646 mul_add_c(a[4],b[7],c3,c1,c2); 647 mul_add_c(a[5],b[6],c3,c1,c2); 648 mul_add_c(a[6],b[5],c3,c1,c2); 649 mul_add_c(a[7],b[4],c3,c1,c2); 650 r[11]=c3; 651 c3=0; 652 mul_add_c(a[7],b[5],c1,c2,c3); 653 mul_add_c(a[6],b[6],c1,c2,c3); 654 mul_add_c(a[5],b[7],c1,c2,c3); 655 r[12]=c1; 656 c1=0; 657 mul_add_c(a[6],b[7],c2,c3,c1); 658 mul_add_c(a[7],b[6],c2,c3,c1); 659 r[13]=c2; 660 c2=0; 661 mul_add_c(a[7],b[7],c3,c1,c2); 662 r[14]=c3; 663 r[15]=c1; 664 } 665 666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 667 { 668 #ifdef BN_LLONG 669 BN_ULLONG t; 670 #else 671 BN_ULONG bl,bh; 672 #endif 673 BN_ULONG t1,t2; 674 BN_ULONG c1,c2,c3; 675 676 c1=0; 677 c2=0; 678 c3=0; 679 mul_add_c(a[0],b[0],c1,c2,c3); 680 r[0]=c1; 681 c1=0; 682 mul_add_c(a[0],b[1],c2,c3,c1); 683 mul_add_c(a[1],b[0],c2,c3,c1); 684 r[1]=c2; 685 c2=0; 686 mul_add_c(a[2],b[0],c3,c1,c2); 687 mul_add_c(a[1],b[1],c3,c1,c2); 688 mul_add_c(a[0],b[2],c3,c1,c2); 689 r[2]=c3; 690 c3=0; 691 mul_add_c(a[0],b[3],c1,c2,c3); 692 mul_add_c(a[1],b[2],c1,c2,c3); 693 mul_add_c(a[2],b[1],c1,c2,c3); 694 mul_add_c(a[3],b[0],c1,c2,c3); 695 r[3]=c1; 696 c1=0; 697 mul_add_c(a[3],b[1],c2,c3,c1); 698 mul_add_c(a[2],b[2],c2,c3,c1); 699 mul_add_c(a[1],b[3],c2,c3,c1); 700 r[4]=c2; 701 c2=0; 702 mul_add_c(a[2],b[3],c3,c1,c2); 703 mul_add_c(a[3],b[2],c3,c1,c2); 704 r[5]=c3; 705 c3=0; 706 mul_add_c(a[3],b[3],c1,c2,c3); 707 r[6]=c1; 708 r[7]=c2; 709 } 710 711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) 712 { 713 #ifdef BN_LLONG 714 BN_ULLONG t,tt; 715 #else 716 BN_ULONG bl,bh; 717 #endif 718 BN_ULONG t1,t2; 719 BN_ULONG c1,c2,c3; 720 721 c1=0; 722 c2=0; 723 c3=0; 724 sqr_add_c(a,0,c1,c2,c3); 725 r[0]=c1; 726 c1=0; 727 sqr_add_c2(a,1,0,c2,c3,c1); 728 r[1]=c2; 729 c2=0; 730 sqr_add_c(a,1,c3,c1,c2); 731 sqr_add_c2(a,2,0,c3,c1,c2); 732 r[2]=c3; 733 c3=0; 734 sqr_add_c2(a,3,0,c1,c2,c3); 735 sqr_add_c2(a,2,1,c1,c2,c3); 736 r[3]=c1; 737 c1=0; 738 sqr_add_c(a,2,c2,c3,c1); 739 sqr_add_c2(a,3,1,c2,c3,c1); 740 sqr_add_c2(a,4,0,c2,c3,c1); 741 r[4]=c2; 742 c2=0; 743 sqr_add_c2(a,5,0,c3,c1,c2); 744 sqr_add_c2(a,4,1,c3,c1,c2); 745 sqr_add_c2(a,3,2,c3,c1,c2); 746 r[5]=c3; 747 c3=0; 748 sqr_add_c(a,3,c1,c2,c3); 749 sqr_add_c2(a,4,2,c1,c2,c3); 750 sqr_add_c2(a,5,1,c1,c2,c3); 751 sqr_add_c2(a,6,0,c1,c2,c3); 752 r[6]=c1; 753 c1=0; 754 sqr_add_c2(a,7,0,c2,c3,c1); 755 sqr_add_c2(a,6,1,c2,c3,c1); 756 sqr_add_c2(a,5,2,c2,c3,c1); 757 sqr_add_c2(a,4,3,c2,c3,c1); 758 r[7]=c2; 759 c2=0; 760 sqr_add_c(a,4,c3,c1,c2); 761 sqr_add_c2(a,5,3,c3,c1,c2); 762 sqr_add_c2(a,6,2,c3,c1,c2); 763 sqr_add_c2(a,7,1,c3,c1,c2); 764 r[8]=c3; 765 c3=0; 766 sqr_add_c2(a,7,2,c1,c2,c3); 767 sqr_add_c2(a,6,3,c1,c2,c3); 768 sqr_add_c2(a,5,4,c1,c2,c3); 769 r[9]=c1; 770 c1=0; 771 sqr_add_c(a,5,c2,c3,c1); 772 sqr_add_c2(a,6,4,c2,c3,c1); 773 sqr_add_c2(a,7,3,c2,c3,c1); 774 r[10]=c2; 775 c2=0; 776 sqr_add_c2(a,7,4,c3,c1,c2); 777 sqr_add_c2(a,6,5,c3,c1,c2); 778 r[11]=c3; 779 c3=0; 780 sqr_add_c(a,6,c1,c2,c3); 781 sqr_add_c2(a,7,5,c1,c2,c3); 782 r[12]=c1; 783 c1=0; 784 sqr_add_c2(a,7,6,c2,c3,c1); 785 r[13]=c2; 786 c2=0; 787 sqr_add_c(a,7,c3,c1,c2); 788 r[14]=c3; 789 r[15]=c1; 790 } 791 792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) 793 { 794 #ifdef BN_LLONG 795 BN_ULLONG t,tt; 796 #else 797 BN_ULONG bl,bh; 798 #endif 799 BN_ULONG t1,t2; 800 BN_ULONG c1,c2,c3; 801 802 c1=0; 803 c2=0; 804 c3=0; 805 sqr_add_c(a,0,c1,c2,c3); 806 r[0]=c1; 807 c1=0; 808 sqr_add_c2(a,1,0,c2,c3,c1); 809 r[1]=c2; 810 c2=0; 811 sqr_add_c(a,1,c3,c1,c2); 812 sqr_add_c2(a,2,0,c3,c1,c2); 813 r[2]=c3; 814 c3=0; 815 sqr_add_c2(a,3,0,c1,c2,c3); 816 sqr_add_c2(a,2,1,c1,c2,c3); 817 r[3]=c1; 818 c1=0; 819 sqr_add_c(a,2,c2,c3,c1); 820 sqr_add_c2(a,3,1,c2,c3,c1); 821 r[4]=c2; 822 c2=0; 823 sqr_add_c2(a,3,2,c3,c1,c2); 824 r[5]=c3; 825 c3=0; 826 sqr_add_c(a,3,c1,c2,c3); 827 r[6]=c1; 828 r[7]=c2; 829 } 830 831 #ifdef OPENSSL_NO_ASM 832 #ifdef OPENSSL_BN_ASM_MONT 833 #include <alloca.h> 834 /* 835 * This is essentially reference implementation, which may or may not 836 * result in performance improvement. E.g. on IA-32 this routine was 837 * observed to give 40% faster rsa1024 private key operations and 10% 838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only 839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a 840 * reference implementation, one to be used as starting point for 841 * platform-specific assembler. Mentioned numbers apply to compiler 842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and 843 * can vary not only from platform to platform, but even for compiler 844 * versions. Assembler vs. assembler improvement coefficients can 845 * [and are known to] differ and are to be documented elsewhere. 846 */ 847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) 848 { 849 BN_ULONG c0,c1,ml,*tp,n0; 850 #ifdef mul64 851 BN_ULONG mh; 852 #endif 853 volatile BN_ULONG *vp; 854 int i=0,j; 855 856 #if 0 /* template for platform-specific implementation */ 857 if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); 858 #endif 859 vp = tp = alloca((num+2)*sizeof(BN_ULONG)); 860 861 n0 = *n0p; 862 863 c0 = 0; 864 ml = bp[0]; 865 #ifdef mul64 866 mh = HBITS(ml); 867 ml = LBITS(ml); 868 for (j=0;j<num;++j) 869 mul(tp[j],ap[j],ml,mh,c0); 870 #else 871 for (j=0;j<num;++j) 872 mul(tp[j],ap[j],ml,c0); 873 #endif 874 875 tp[num] = c0; 876 tp[num+1] = 0; 877 goto enter; 878 879 for(i=0;i<num;i++) 880 { 881 c0 = 0; 882 ml = bp[i]; 883 #ifdef mul64 884 mh = HBITS(ml); 885 ml = LBITS(ml); 886 for (j=0;j<num;++j) 887 mul_add(tp[j],ap[j],ml,mh,c0); 888 #else 889 for (j=0;j<num;++j) 890 mul_add(tp[j],ap[j],ml,c0); 891 #endif 892 c1 = (tp[num] + c0)&BN_MASK2; 893 tp[num] = c1; 894 tp[num+1] = (c1<c0?1:0); 895 enter: 896 c1 = tp[0]; 897 ml = (c1*n0)&BN_MASK2; 898 c0 = 0; 899 #ifdef mul64 900 mh = HBITS(ml); 901 ml = LBITS(ml); 902 mul_add(c1,np[0],ml,mh,c0); 903 #else 904 mul_add(c1,ml,np[0],c0); 905 #endif 906 for(j=1;j<num;j++) 907 { 908 c1 = tp[j]; 909 #ifdef mul64 910 mul_add(c1,np[j],ml,mh,c0); 911 #else 912 mul_add(c1,ml,np[j],c0); 913 #endif 914 tp[j-1] = c1&BN_MASK2; 915 } 916 c1 = (tp[num] + c0)&BN_MASK2; 917 tp[num-1] = c1; 918 tp[num] = tp[num+1] + (c1<c0?1:0); 919 } 920 921 if (tp[num]!=0 || tp[num-1]>=np[num-1]) 922 { 923 c0 = bn_sub_words(rp,tp,np,num); 924 if (tp[num]!=0 || c0==0) 925 { 926 for(i=0;i<num+2;i++) vp[i] = 0; 927 return 1; 928 } 929 } 930 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; 931 vp[num] = 0; 932 vp[num+1] = 0; 933 return 1; 934 } 935 #else 936 /* 937 * Return value of 0 indicates that multiplication/convolution was not 938 * performed to signal the caller to fall down to alternative/original 939 * code-path. 940 */ 941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) 942 { return 0; } 943 #endif /* OPENSSL_BN_ASM_MONT */ 944 #endif 945 946 #else /* !BN_MUL_COMBA */ 947 948 /* hmm... is it faster just to do a multiply? */ 949 #undef bn_sqr_comba4 950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) 951 { 952 BN_ULONG t[8]; 953 bn_sqr_normal(r,a,4,t); 954 } 955 956 #undef bn_sqr_comba8 957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) 958 { 959 BN_ULONG t[16]; 960 bn_sqr_normal(r,a,8,t); 961 } 962 963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 964 { 965 r[4]=bn_mul_words( &(r[0]),a,4,b[0]); 966 r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); 967 r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); 968 r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); 969 } 970 971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 972 { 973 r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); 974 r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); 975 r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); 976 r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); 977 r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); 978 r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); 979 r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); 980 r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); 981 } 982 983 #ifdef OPENSSL_NO_ASM 984 #ifdef OPENSSL_BN_ASM_MONT 985 #include <alloca.h> 986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) 987 { 988 BN_ULONG c0,c1,*tp,n0=*n0p; 989 volatile BN_ULONG *vp; 990 int i=0,j; 991 992 vp = tp = alloca((num+2)*sizeof(BN_ULONG)); 993 994 for(i=0;i<=num;i++) tp[i]=0; 995 996 for(i=0;i<num;i++) 997 { 998 c0 = bn_mul_add_words(tp,ap,num,bp[i]); 999 c1 = (tp[num] + c0)&BN_MASK2; 1000 tp[num] = c1; 1001 tp[num+1] = (c1<c0?1:0); 1002 1003 c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); 1004 c1 = (tp[num] + c0)&BN_MASK2; 1005 tp[num] = c1; 1006 tp[num+1] += (c1<c0?1:0); 1007 for(j=0;j<=num;j++) tp[j]=tp[j+1]; 1008 } 1009 1010 if (tp[num]!=0 || tp[num-1]>=np[num-1]) 1011 { 1012 c0 = bn_sub_words(rp,tp,np,num); 1013 if (tp[num]!=0 || c0==0) 1014 { 1015 for(i=0;i<num+2;i++) vp[i] = 0; 1016 return 1; 1017 } 1018 } 1019 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; 1020 vp[num] = 0; 1021 vp[num+1] = 0; 1022 return 1; 1023 } 1024 #else 1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) 1026 { return 0; } 1027 #endif /* OPENSSL_BN_ASM_MONT */ 1028 #endif 1029 1030 #endif /* !BN_MUL_COMBA */ 1031