1 /* crypto/ec/ec2_smpl.c */ 2 /* ==================================================================== 3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 4 * 5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included 6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed 7 * to the OpenSSL project. 8 * 9 * The ECC Code is licensed pursuant to the OpenSSL open source 10 * license provided below. 11 * 12 * The software is originally written by Sheueling Chang Shantz and 13 * Douglas Stebila of Sun Microsystems Laboratories. 14 * 15 */ 16 /* ==================================================================== 17 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * 1. Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * 31 * 3. All advertising materials mentioning features or use of this 32 * software must display the following acknowledgment: 33 * "This product includes software developed by the OpenSSL Project 34 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 35 * 36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 37 * endorse or promote products derived from this software without 38 * prior written permission. For written permission, please contact 39 * openssl-core (at) openssl.org. 40 * 41 * 5. Products derived from this software may not be called "OpenSSL" 42 * nor may "OpenSSL" appear in their names without prior written 43 * permission of the OpenSSL Project. 44 * 45 * 6. Redistributions of any form whatsoever must retain the following 46 * acknowledgment: 47 * "This product includes software developed by the OpenSSL Project 48 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 61 * OF THE POSSIBILITY OF SUCH DAMAGE. 62 * ==================================================================== 63 * 64 * This product includes cryptographic software written by Eric Young 65 * (eay (at) cryptsoft.com). This product includes software written by Tim 66 * Hudson (tjh (at) cryptsoft.com). 67 * 68 */ 69 70 #include <openssl/err.h> 71 72 #include "ec_lcl.h" 73 74 #ifndef OPENSSL_NO_EC2M 75 76 #ifdef OPENSSL_FIPS 77 #include <openssl/fips.h> 78 #endif 79 80 81 const EC_METHOD *EC_GF2m_simple_method(void) 82 { 83 #ifdef OPENSSL_FIPS 84 return fips_ec_gf2m_simple_method(); 85 #else 86 static const EC_METHOD ret = { 87 EC_FLAGS_DEFAULT_OCT, 88 NID_X9_62_characteristic_two_field, 89 ec_GF2m_simple_group_init, 90 ec_GF2m_simple_group_finish, 91 ec_GF2m_simple_group_clear_finish, 92 ec_GF2m_simple_group_copy, 93 ec_GF2m_simple_group_set_curve, 94 ec_GF2m_simple_group_get_curve, 95 ec_GF2m_simple_group_get_degree, 96 ec_GF2m_simple_group_check_discriminant, 97 ec_GF2m_simple_point_init, 98 ec_GF2m_simple_point_finish, 99 ec_GF2m_simple_point_clear_finish, 100 ec_GF2m_simple_point_copy, 101 ec_GF2m_simple_point_set_to_infinity, 102 0 /* set_Jprojective_coordinates_GFp */, 103 0 /* get_Jprojective_coordinates_GFp */, 104 ec_GF2m_simple_point_set_affine_coordinates, 105 ec_GF2m_simple_point_get_affine_coordinates, 106 0,0,0, 107 ec_GF2m_simple_add, 108 ec_GF2m_simple_dbl, 109 ec_GF2m_simple_invert, 110 ec_GF2m_simple_is_at_infinity, 111 ec_GF2m_simple_is_on_curve, 112 ec_GF2m_simple_cmp, 113 ec_GF2m_simple_make_affine, 114 ec_GF2m_simple_points_make_affine, 115 116 /* the following three method functions are defined in ec2_mult.c */ 117 ec_GF2m_simple_mul, 118 ec_GF2m_precompute_mult, 119 ec_GF2m_have_precompute_mult, 120 121 ec_GF2m_simple_field_mul, 122 ec_GF2m_simple_field_sqr, 123 ec_GF2m_simple_field_div, 124 0 /* field_encode */, 125 0 /* field_decode */, 126 0 /* field_set_to_one */ }; 127 128 return &ret; 129 #endif 130 } 131 132 133 /* Initialize a GF(2^m)-based EC_GROUP structure. 134 * Note that all other members are handled by EC_GROUP_new. 135 */ 136 int ec_GF2m_simple_group_init(EC_GROUP *group) 137 { 138 BN_init(&group->field); 139 BN_init(&group->a); 140 BN_init(&group->b); 141 return 1; 142 } 143 144 145 /* Free a GF(2^m)-based EC_GROUP structure. 146 * Note that all other members are handled by EC_GROUP_free. 147 */ 148 void ec_GF2m_simple_group_finish(EC_GROUP *group) 149 { 150 BN_free(&group->field); 151 BN_free(&group->a); 152 BN_free(&group->b); 153 } 154 155 156 /* Clear and free a GF(2^m)-based EC_GROUP structure. 157 * Note that all other members are handled by EC_GROUP_clear_free. 158 */ 159 void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) 160 { 161 BN_clear_free(&group->field); 162 BN_clear_free(&group->a); 163 BN_clear_free(&group->b); 164 group->poly[0] = 0; 165 group->poly[1] = 0; 166 group->poly[2] = 0; 167 group->poly[3] = 0; 168 group->poly[4] = 0; 169 group->poly[5] = -1; 170 } 171 172 173 /* Copy a GF(2^m)-based EC_GROUP structure. 174 * Note that all other members are handled by EC_GROUP_copy. 175 */ 176 int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) 177 { 178 int i; 179 if (!BN_copy(&dest->field, &src->field)) return 0; 180 if (!BN_copy(&dest->a, &src->a)) return 0; 181 if (!BN_copy(&dest->b, &src->b)) return 0; 182 dest->poly[0] = src->poly[0]; 183 dest->poly[1] = src->poly[1]; 184 dest->poly[2] = src->poly[2]; 185 dest->poly[3] = src->poly[3]; 186 dest->poly[4] = src->poly[4]; 187 dest->poly[5] = src->poly[5]; 188 if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; 189 if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; 190 for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; 191 for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; 192 return 1; 193 } 194 195 196 /* Set the curve parameters of an EC_GROUP structure. */ 197 int ec_GF2m_simple_group_set_curve(EC_GROUP *group, 198 const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 199 { 200 int ret = 0, i; 201 202 /* group->field */ 203 if (!BN_copy(&group->field, p)) goto err; 204 i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; 205 if ((i != 5) && (i != 3)) 206 { 207 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); 208 goto err; 209 } 210 211 /* group->a */ 212 if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; 213 if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; 214 for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; 215 216 /* group->b */ 217 if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; 218 if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; 219 for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; 220 221 ret = 1; 222 err: 223 return ret; 224 } 225 226 227 /* Get the curve parameters of an EC_GROUP structure. 228 * If p, a, or b are NULL then there values will not be set but the method will return with success. 229 */ 230 int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) 231 { 232 int ret = 0; 233 234 if (p != NULL) 235 { 236 if (!BN_copy(p, &group->field)) return 0; 237 } 238 239 if (a != NULL) 240 { 241 if (!BN_copy(a, &group->a)) goto err; 242 } 243 244 if (b != NULL) 245 { 246 if (!BN_copy(b, &group->b)) goto err; 247 } 248 249 ret = 1; 250 251 err: 252 return ret; 253 } 254 255 256 /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ 257 int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) 258 { 259 return BN_num_bits(&group->field)-1; 260 } 261 262 263 /* Checks the discriminant of the curve. 264 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 265 */ 266 int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) 267 { 268 int ret = 0; 269 BIGNUM *b; 270 BN_CTX *new_ctx = NULL; 271 272 if (ctx == NULL) 273 { 274 ctx = new_ctx = BN_CTX_new(); 275 if (ctx == NULL) 276 { 277 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); 278 goto err; 279 } 280 } 281 BN_CTX_start(ctx); 282 b = BN_CTX_get(ctx); 283 if (b == NULL) goto err; 284 285 if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; 286 287 /* check the discriminant: 288 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 289 */ 290 if (BN_is_zero(b)) goto err; 291 292 ret = 1; 293 294 err: 295 if (ctx != NULL) 296 BN_CTX_end(ctx); 297 if (new_ctx != NULL) 298 BN_CTX_free(new_ctx); 299 return ret; 300 } 301 302 303 /* Initializes an EC_POINT. */ 304 int ec_GF2m_simple_point_init(EC_POINT *point) 305 { 306 BN_init(&point->X); 307 BN_init(&point->Y); 308 BN_init(&point->Z); 309 return 1; 310 } 311 312 313 /* Frees an EC_POINT. */ 314 void ec_GF2m_simple_point_finish(EC_POINT *point) 315 { 316 BN_free(&point->X); 317 BN_free(&point->Y); 318 BN_free(&point->Z); 319 } 320 321 322 /* Clears and frees an EC_POINT. */ 323 void ec_GF2m_simple_point_clear_finish(EC_POINT *point) 324 { 325 BN_clear_free(&point->X); 326 BN_clear_free(&point->Y); 327 BN_clear_free(&point->Z); 328 point->Z_is_one = 0; 329 } 330 331 332 /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ 333 int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) 334 { 335 if (!BN_copy(&dest->X, &src->X)) return 0; 336 if (!BN_copy(&dest->Y, &src->Y)) return 0; 337 if (!BN_copy(&dest->Z, &src->Z)) return 0; 338 dest->Z_is_one = src->Z_is_one; 339 340 return 1; 341 } 342 343 344 /* Set an EC_POINT to the point at infinity. 345 * A point at infinity is represented by having Z=0. 346 */ 347 int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) 348 { 349 point->Z_is_one = 0; 350 BN_zero(&point->Z); 351 return 1; 352 } 353 354 355 /* Set the coordinates of an EC_POINT using affine coordinates. 356 * Note that the simple implementation only uses affine coordinates. 357 */ 358 int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, 359 const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) 360 { 361 int ret = 0; 362 if (x == NULL || y == NULL) 363 { 364 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); 365 return 0; 366 } 367 368 if (!BN_copy(&point->X, x)) goto err; 369 BN_set_negative(&point->X, 0); 370 if (!BN_copy(&point->Y, y)) goto err; 371 BN_set_negative(&point->Y, 0); 372 if (!BN_copy(&point->Z, BN_value_one())) goto err; 373 BN_set_negative(&point->Z, 0); 374 point->Z_is_one = 1; 375 ret = 1; 376 377 err: 378 return ret; 379 } 380 381 382 /* Gets the affine coordinates of an EC_POINT. 383 * Note that the simple implementation only uses affine coordinates. 384 */ 385 int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, 386 BIGNUM *x, BIGNUM *y, BN_CTX *ctx) 387 { 388 int ret = 0; 389 390 if (EC_POINT_is_at_infinity(group, point)) 391 { 392 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); 393 return 0; 394 } 395 396 if (BN_cmp(&point->Z, BN_value_one())) 397 { 398 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 399 return 0; 400 } 401 if (x != NULL) 402 { 403 if (!BN_copy(x, &point->X)) goto err; 404 BN_set_negative(x, 0); 405 } 406 if (y != NULL) 407 { 408 if (!BN_copy(y, &point->Y)) goto err; 409 BN_set_negative(y, 0); 410 } 411 ret = 1; 412 413 err: 414 return ret; 415 } 416 417 /* Computes a + b and stores the result in r. r could be a or b, a could be b. 418 * Uses algorithm A.10.2 of IEEE P1363. 419 */ 420 int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) 421 { 422 BN_CTX *new_ctx = NULL; 423 BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; 424 int ret = 0; 425 426 if (EC_POINT_is_at_infinity(group, a)) 427 { 428 if (!EC_POINT_copy(r, b)) return 0; 429 return 1; 430 } 431 432 if (EC_POINT_is_at_infinity(group, b)) 433 { 434 if (!EC_POINT_copy(r, a)) return 0; 435 return 1; 436 } 437 438 if (ctx == NULL) 439 { 440 ctx = new_ctx = BN_CTX_new(); 441 if (ctx == NULL) 442 return 0; 443 } 444 445 BN_CTX_start(ctx); 446 x0 = BN_CTX_get(ctx); 447 y0 = BN_CTX_get(ctx); 448 x1 = BN_CTX_get(ctx); 449 y1 = BN_CTX_get(ctx); 450 x2 = BN_CTX_get(ctx); 451 y2 = BN_CTX_get(ctx); 452 s = BN_CTX_get(ctx); 453 t = BN_CTX_get(ctx); 454 if (t == NULL) goto err; 455 456 if (a->Z_is_one) 457 { 458 if (!BN_copy(x0, &a->X)) goto err; 459 if (!BN_copy(y0, &a->Y)) goto err; 460 } 461 else 462 { 463 if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; 464 } 465 if (b->Z_is_one) 466 { 467 if (!BN_copy(x1, &b->X)) goto err; 468 if (!BN_copy(y1, &b->Y)) goto err; 469 } 470 else 471 { 472 if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; 473 } 474 475 476 if (BN_GF2m_cmp(x0, x1)) 477 { 478 if (!BN_GF2m_add(t, x0, x1)) goto err; 479 if (!BN_GF2m_add(s, y0, y1)) goto err; 480 if (!group->meth->field_div(group, s, s, t, ctx)) goto err; 481 if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; 482 if (!BN_GF2m_add(x2, x2, &group->a)) goto err; 483 if (!BN_GF2m_add(x2, x2, s)) goto err; 484 if (!BN_GF2m_add(x2, x2, t)) goto err; 485 } 486 else 487 { 488 if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) 489 { 490 if (!EC_POINT_set_to_infinity(group, r)) goto err; 491 ret = 1; 492 goto err; 493 } 494 if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; 495 if (!BN_GF2m_add(s, s, x1)) goto err; 496 497 if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; 498 if (!BN_GF2m_add(x2, x2, s)) goto err; 499 if (!BN_GF2m_add(x2, x2, &group->a)) goto err; 500 } 501 502 if (!BN_GF2m_add(y2, x1, x2)) goto err; 503 if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; 504 if (!BN_GF2m_add(y2, y2, x2)) goto err; 505 if (!BN_GF2m_add(y2, y2, y1)) goto err; 506 507 if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; 508 509 ret = 1; 510 511 err: 512 BN_CTX_end(ctx); 513 if (new_ctx != NULL) 514 BN_CTX_free(new_ctx); 515 return ret; 516 } 517 518 519 /* Computes 2 * a and stores the result in r. r could be a. 520 * Uses algorithm A.10.2 of IEEE P1363. 521 */ 522 int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) 523 { 524 return ec_GF2m_simple_add(group, r, a, a, ctx); 525 } 526 527 528 int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) 529 { 530 if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) 531 /* point is its own inverse */ 532 return 1; 533 534 if (!EC_POINT_make_affine(group, point, ctx)) return 0; 535 return BN_GF2m_add(&point->Y, &point->X, &point->Y); 536 } 537 538 539 /* Indicates whether the given point is the point at infinity. */ 540 int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) 541 { 542 return BN_is_zero(&point->Z); 543 } 544 545 546 /* Determines whether the given EC_POINT is an actual point on the curve defined 547 * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: 548 * y^2 + x*y = x^3 + a*x^2 + b. 549 */ 550 int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) 551 { 552 int ret = -1; 553 BN_CTX *new_ctx = NULL; 554 BIGNUM *lh, *y2; 555 int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); 556 int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); 557 558 if (EC_POINT_is_at_infinity(group, point)) 559 return 1; 560 561 field_mul = group->meth->field_mul; 562 field_sqr = group->meth->field_sqr; 563 564 /* only support affine coordinates */ 565 if (!point->Z_is_one) return -1; 566 567 if (ctx == NULL) 568 { 569 ctx = new_ctx = BN_CTX_new(); 570 if (ctx == NULL) 571 return -1; 572 } 573 574 BN_CTX_start(ctx); 575 y2 = BN_CTX_get(ctx); 576 lh = BN_CTX_get(ctx); 577 if (lh == NULL) goto err; 578 579 /* We have a curve defined by a Weierstrass equation 580 * y^2 + x*y = x^3 + a*x^2 + b. 581 * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 582 * <=> ((x + a) * x + y ) * x + b + y^2 = 0 583 */ 584 if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; 585 if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; 586 if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; 587 if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; 588 if (!BN_GF2m_add(lh, lh, &group->b)) goto err; 589 if (!field_sqr(group, y2, &point->Y, ctx)) goto err; 590 if (!BN_GF2m_add(lh, lh, y2)) goto err; 591 ret = BN_is_zero(lh); 592 err: 593 if (ctx) BN_CTX_end(ctx); 594 if (new_ctx) BN_CTX_free(new_ctx); 595 return ret; 596 } 597 598 599 /* Indicates whether two points are equal. 600 * Return values: 601 * -1 error 602 * 0 equal (in affine coordinates) 603 * 1 not equal 604 */ 605 int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) 606 { 607 BIGNUM *aX, *aY, *bX, *bY; 608 BN_CTX *new_ctx = NULL; 609 int ret = -1; 610 611 if (EC_POINT_is_at_infinity(group, a)) 612 { 613 return EC_POINT_is_at_infinity(group, b) ? 0 : 1; 614 } 615 616 if (EC_POINT_is_at_infinity(group, b)) 617 return 1; 618 619 if (a->Z_is_one && b->Z_is_one) 620 { 621 return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; 622 } 623 624 if (ctx == NULL) 625 { 626 ctx = new_ctx = BN_CTX_new(); 627 if (ctx == NULL) 628 return -1; 629 } 630 631 BN_CTX_start(ctx); 632 aX = BN_CTX_get(ctx); 633 aY = BN_CTX_get(ctx); 634 bX = BN_CTX_get(ctx); 635 bY = BN_CTX_get(ctx); 636 if (bY == NULL) goto err; 637 638 if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; 639 if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; 640 ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; 641 642 err: 643 if (ctx) BN_CTX_end(ctx); 644 if (new_ctx) BN_CTX_free(new_ctx); 645 return ret; 646 } 647 648 649 /* Forces the given EC_POINT to internally use affine coordinates. */ 650 int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) 651 { 652 BN_CTX *new_ctx = NULL; 653 BIGNUM *x, *y; 654 int ret = 0; 655 656 if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) 657 return 1; 658 659 if (ctx == NULL) 660 { 661 ctx = new_ctx = BN_CTX_new(); 662 if (ctx == NULL) 663 return 0; 664 } 665 666 BN_CTX_start(ctx); 667 x = BN_CTX_get(ctx); 668 y = BN_CTX_get(ctx); 669 if (y == NULL) goto err; 670 671 if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; 672 if (!BN_copy(&point->X, x)) goto err; 673 if (!BN_copy(&point->Y, y)) goto err; 674 if (!BN_one(&point->Z)) goto err; 675 676 ret = 1; 677 678 err: 679 if (ctx) BN_CTX_end(ctx); 680 if (new_ctx) BN_CTX_free(new_ctx); 681 return ret; 682 } 683 684 685 /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ 686 int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) 687 { 688 size_t i; 689 690 for (i = 0; i < num; i++) 691 { 692 if (!group->meth->make_affine(group, points[i], ctx)) return 0; 693 } 694 695 return 1; 696 } 697 698 699 /* Wrapper to simple binary polynomial field multiplication implementation. */ 700 int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 701 { 702 return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); 703 } 704 705 706 /* Wrapper to simple binary polynomial field squaring implementation. */ 707 int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) 708 { 709 return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); 710 } 711 712 713 /* Wrapper to simple binary polynomial field division implementation. */ 714 int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 715 { 716 return BN_GF2m_mod_div(r, a, b, &group->field, ctx); 717 } 718 719 #endif 720