Home | History | Annotate | Download | only in ec
      1 /* crypto/ec/ec_mult.c */
      2 /*
      3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
      4  */
      5 /* ====================================================================
      6  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  *
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in
     17  *    the documentation and/or other materials provided with the
     18  *    distribution.
     19  *
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgment:
     22  *    "This product includes software developed by the OpenSSL Project
     23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     24  *
     25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     26  *    endorse or promote products derived from this software without
     27  *    prior written permission. For written permission, please contact
     28  *    openssl-core (at) openssl.org.
     29  *
     30  * 5. Products derived from this software may not be called "OpenSSL"
     31  *    nor may "OpenSSL" appear in their names without prior written
     32  *    permission of the OpenSSL Project.
     33  *
     34  * 6. Redistributions of any form whatsoever must retain the following
     35  *    acknowledgment:
     36  *    "This product includes software developed by the OpenSSL Project
     37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     50  * OF THE POSSIBILITY OF SUCH DAMAGE.
     51  * ====================================================================
     52  *
     53  * This product includes cryptographic software written by Eric Young
     54  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     55  * Hudson (tjh (at) cryptsoft.com).
     56  *
     57  */
     58 /* ====================================================================
     59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
     61  * and contributed to the OpenSSL project.
     62  */
     63 
     64 #include <string.h>
     65 
     66 #include <openssl/err.h>
     67 
     68 #include "ec_lcl.h"
     69 
     70 
     71 /*
     72  * This file implements the wNAF-based interleaving multi-exponentation method
     73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
     74  * for multiplication with precomputation, we use wNAF splitting
     75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
     76  */
     77 
     78 
     79 
     80 
     81 /* structure for precomputed multiples of the generator */
     82 typedef struct ec_pre_comp_st {
     83 	const EC_GROUP *group; /* parent EC_GROUP object */
     84 	size_t blocksize;      /* block size for wNAF splitting */
     85 	size_t numblocks;      /* max. number of blocks for which we have precomputation */
     86 	size_t w;              /* window size */
     87 	EC_POINT **points;     /* array with pre-calculated multiples of generator:
     88 	                        * 'num' pointers to EC_POINT objects followed by a NULL */
     89 	size_t num;            /* numblocks * 2^(w-1) */
     90 	int references;
     91 } EC_PRE_COMP;
     92 
     93 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
     94 static void *ec_pre_comp_dup(void *);
     95 static void ec_pre_comp_free(void *);
     96 static void ec_pre_comp_clear_free(void *);
     97 
     98 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
     99 	{
    100 	EC_PRE_COMP *ret = NULL;
    101 
    102 	if (!group)
    103 		return NULL;
    104 
    105 	ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
    106 	if (!ret)
    107 		{
    108 		ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
    109 		return ret;
    110 		}
    111 	ret->group = group;
    112 	ret->blocksize = 8; /* default */
    113 	ret->numblocks = 0;
    114 	ret->w = 4; /* default */
    115 	ret->points = NULL;
    116 	ret->num = 0;
    117 	ret->references = 1;
    118 	return ret;
    119 	}
    120 
    121 static void *ec_pre_comp_dup(void *src_)
    122 	{
    123 	EC_PRE_COMP *src = src_;
    124 
    125 	/* no need to actually copy, these objects never change! */
    126 
    127 	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
    128 
    129 	return src_;
    130 	}
    131 
    132 static void ec_pre_comp_free(void *pre_)
    133 	{
    134 	int i;
    135 	EC_PRE_COMP *pre = pre_;
    136 
    137 	if (!pre)
    138 		return;
    139 
    140 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
    141 	if (i > 0)
    142 		return;
    143 
    144 	if (pre->points)
    145 		{
    146 		EC_POINT **p;
    147 
    148 		for (p = pre->points; *p != NULL; p++)
    149 			EC_POINT_free(*p);
    150 		OPENSSL_free(pre->points);
    151 		}
    152 	OPENSSL_free(pre);
    153 	}
    154 
    155 static void ec_pre_comp_clear_free(void *pre_)
    156 	{
    157 	int i;
    158 	EC_PRE_COMP *pre = pre_;
    159 
    160 	if (!pre)
    161 		return;
    162 
    163 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
    164 	if (i > 0)
    165 		return;
    166 
    167 	if (pre->points)
    168 		{
    169 		EC_POINT **p;
    170 
    171 		for (p = pre->points; *p != NULL; p++)
    172 			{
    173 			EC_POINT_clear_free(*p);
    174 			OPENSSL_cleanse(p, sizeof *p);
    175 			}
    176 		OPENSSL_free(pre->points);
    177 		}
    178 	OPENSSL_cleanse(pre, sizeof *pre);
    179 	OPENSSL_free(pre);
    180 	}
    181 
    182 
    183 
    184 
    185 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
    186  * This is an array  r[]  of values that are either zero or odd with an
    187  * absolute value less than  2^w  satisfying
    188  *     scalar = \sum_j r[j]*2^j
    189  * where at most one of any  w+1  consecutive digits is non-zero
    190  * with the exception that the most significant digit may be only
    191  * w-1 zeros away from that next non-zero digit.
    192  */
    193 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
    194 	{
    195 	int window_val;
    196 	int ok = 0;
    197 	signed char *r = NULL;
    198 	int sign = 1;
    199 	int bit, next_bit, mask;
    200 	size_t len = 0, j;
    201 
    202 	if (BN_is_zero(scalar))
    203 		{
    204 		r = OPENSSL_malloc(1);
    205 		if (!r)
    206 			{
    207 			ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
    208 			goto err;
    209 			}
    210 		r[0] = 0;
    211 		*ret_len = 1;
    212 		return r;
    213 		}
    214 
    215 	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
    216 		{
    217 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    218 		goto err;
    219 		}
    220 	bit = 1 << w; /* at most 128 */
    221 	next_bit = bit << 1; /* at most 256 */
    222 	mask = next_bit - 1; /* at most 255 */
    223 
    224 	if (BN_is_negative(scalar))
    225 		{
    226 		sign = -1;
    227 		}
    228 
    229 	if (scalar->d == NULL || scalar->top == 0)
    230 		{
    231 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    232 		goto err;
    233 		}
    234 
    235 	len = BN_num_bits(scalar);
    236 	r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
    237 	                              * (*ret_len will be set to the actual length, i.e. at most
    238 	                              * BN_num_bits(scalar) + 1) */
    239 	if (r == NULL)
    240 		{
    241 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
    242 		goto err;
    243 		}
    244 	window_val = scalar->d[0] & mask;
    245 	j = 0;
    246 	while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
    247 		{
    248 		int digit = 0;
    249 
    250 		/* 0 <= window_val <= 2^(w+1) */
    251 
    252 		if (window_val & 1)
    253 			{
    254 			/* 0 < window_val < 2^(w+1) */
    255 
    256 			if (window_val & bit)
    257 				{
    258 				digit = window_val - next_bit; /* -2^w < digit < 0 */
    259 
    260 #if 1 /* modified wNAF */
    261 				if (j + w + 1 >= len)
    262 					{
    263 					/* special case for generating modified wNAFs:
    264 					 * no new bits will be added into window_val,
    265 					 * so using a positive digit here will decrease
    266 					 * the total length of the representation */
    267 
    268 					digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
    269 					}
    270 #endif
    271 				}
    272 			else
    273 				{
    274 				digit = window_val; /* 0 < digit < 2^w */
    275 				}
    276 
    277 			if (digit <= -bit || digit >= bit || !(digit & 1))
    278 				{
    279 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    280 				goto err;
    281 				}
    282 
    283 			window_val -= digit;
    284 
    285 			/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
    286 			 * for modified window NAFs, it may also be 2^w
    287 			 */
    288 			if (window_val != 0 && window_val != next_bit && window_val != bit)
    289 				{
    290 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    291 				goto err;
    292 				}
    293 			}
    294 
    295 		r[j++] = sign * digit;
    296 
    297 		window_val >>= 1;
    298 		window_val += bit * BN_is_bit_set(scalar, j + w);
    299 
    300 		if (window_val > next_bit)
    301 			{
    302 			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    303 			goto err;
    304 			}
    305 		}
    306 
    307 	if (j > len + 1)
    308 		{
    309 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
    310 		goto err;
    311 		}
    312 	len = j;
    313 	ok = 1;
    314 
    315  err:
    316 	if (!ok)
    317 		{
    318 		OPENSSL_free(r);
    319 		r = NULL;
    320 		}
    321 	if (ok)
    322 		*ret_len = len;
    323 	return r;
    324 	}
    325 
    326 
    327 /* TODO: table should be optimised for the wNAF-based implementation,
    328  *       sometimes smaller windows will give better performance
    329  *       (thus the boundaries should be increased)
    330  */
    331 #define EC_window_bits_for_scalar_size(b) \
    332 		((size_t) \
    333 		 ((b) >= 2000 ? 6 : \
    334 		  (b) >=  800 ? 5 : \
    335 		  (b) >=  300 ? 4 : \
    336 		  (b) >=   70 ? 3 : \
    337 		  (b) >=   20 ? 2 : \
    338 		  1))
    339 
    340 /* Compute
    341  *      \sum scalars[i]*points[i],
    342  * also including
    343  *      scalar*generator
    344  * in the addition if scalar != NULL
    345  */
    346 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
    347 	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
    348 	{
    349 	BN_CTX *new_ctx = NULL;
    350 	const EC_POINT *generator = NULL;
    351 	EC_POINT *tmp = NULL;
    352 	size_t totalnum;
    353 	size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
    354 	size_t pre_points_per_block = 0;
    355 	size_t i, j;
    356 	int k;
    357 	int r_is_inverted = 0;
    358 	int r_is_at_infinity = 1;
    359 	size_t *wsize = NULL; /* individual window sizes */
    360 	signed char **wNAF = NULL; /* individual wNAFs */
    361 	size_t *wNAF_len = NULL;
    362 	size_t max_len = 0;
    363 	size_t num_val;
    364 	EC_POINT **val = NULL; /* precomputation */
    365 	EC_POINT **v;
    366 	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
    367 	const EC_PRE_COMP *pre_comp = NULL;
    368 	int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
    369 	                     * i.e. precomputation is not available */
    370 	int ret = 0;
    371 
    372 	if (group->meth != r->meth)
    373 		{
    374 		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
    375 		return 0;
    376 		}
    377 
    378 	if ((scalar == NULL) && (num == 0))
    379 		{
    380 		return EC_POINT_set_to_infinity(group, r);
    381 		}
    382 
    383 	for (i = 0; i < num; i++)
    384 		{
    385 		if (group->meth != points[i]->meth)
    386 			{
    387 			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
    388 			return 0;
    389 			}
    390 		}
    391 
    392 	if (ctx == NULL)
    393 		{
    394 		ctx = new_ctx = BN_CTX_new();
    395 		if (ctx == NULL)
    396 			goto err;
    397 		}
    398 
    399 	if (scalar != NULL)
    400 		{
    401 		generator = EC_GROUP_get0_generator(group);
    402 		if (generator == NULL)
    403 			{
    404 			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
    405 			goto err;
    406 			}
    407 
    408 		/* look if we can use precomputed multiples of generator */
    409 
    410 		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
    411 
    412 		if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
    413 			{
    414 			blocksize = pre_comp->blocksize;
    415 
    416 			/* determine maximum number of blocks that wNAF splitting may yield
    417 			 * (NB: maximum wNAF length is bit length plus one) */
    418 			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
    419 
    420 			/* we cannot use more blocks than we have precomputation for */
    421 			if (numblocks > pre_comp->numblocks)
    422 				numblocks = pre_comp->numblocks;
    423 
    424 			pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
    425 
    426 			/* check that pre_comp looks sane */
    427 			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
    428 				{
    429 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    430 				goto err;
    431 				}
    432 			}
    433 		else
    434 			{
    435 			/* can't use precomputation */
    436 			pre_comp = NULL;
    437 			numblocks = 1;
    438 			num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
    439 			}
    440 		}
    441 
    442 	totalnum = num + numblocks;
    443 
    444 	wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
    445 	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
    446 	wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
    447 	val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
    448 
    449 	if (!wsize || !wNAF_len || !wNAF || !val_sub)
    450 		{
    451 		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
    452 		goto err;
    453 		}
    454 
    455 	wNAF[0] = NULL;	/* preliminary pivot */
    456 
    457 	/* num_val will be the total number of temporarily precomputed points */
    458 	num_val = 0;
    459 
    460 	for (i = 0; i < num + num_scalar; i++)
    461 		{
    462 		size_t bits;
    463 
    464 		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
    465 		wsize[i] = EC_window_bits_for_scalar_size(bits);
    466 		num_val += (size_t)1 << (wsize[i] - 1);
    467 		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
    468 		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
    469 		if (wNAF[i] == NULL)
    470 			goto err;
    471 		if (wNAF_len[i] > max_len)
    472 			max_len = wNAF_len[i];
    473 		}
    474 
    475 	if (numblocks)
    476 		{
    477 		/* we go here iff scalar != NULL */
    478 
    479 		if (pre_comp == NULL)
    480 			{
    481 			if (num_scalar != 1)
    482 				{
    483 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    484 				goto err;
    485 				}
    486 			/* we have already generated a wNAF for 'scalar' */
    487 			}
    488 		else
    489 			{
    490 			signed char *tmp_wNAF = NULL;
    491 			size_t tmp_len = 0;
    492 
    493 			if (num_scalar != 0)
    494 				{
    495 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    496 				goto err;
    497 				}
    498 
    499 			/* use the window size for which we have precomputation */
    500 			wsize[num] = pre_comp->w;
    501 			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
    502 			if (!tmp_wNAF)
    503 				goto err;
    504 
    505 			if (tmp_len <= max_len)
    506 				{
    507 				/* One of the other wNAFs is at least as long
    508 				 * as the wNAF belonging to the generator,
    509 				 * so wNAF splitting will not buy us anything. */
    510 
    511 				numblocks = 1;
    512 				totalnum = num + 1; /* don't use wNAF splitting */
    513 				wNAF[num] = tmp_wNAF;
    514 				wNAF[num + 1] = NULL;
    515 				wNAF_len[num] = tmp_len;
    516 				if (tmp_len > max_len)
    517 					max_len = tmp_len;
    518 				/* pre_comp->points starts with the points that we need here: */
    519 				val_sub[num] = pre_comp->points;
    520 				}
    521 			else
    522 				{
    523 				/* don't include tmp_wNAF directly into wNAF array
    524 				 * - use wNAF splitting and include the blocks */
    525 
    526 				signed char *pp;
    527 				EC_POINT **tmp_points;
    528 
    529 				if (tmp_len < numblocks * blocksize)
    530 					{
    531 					/* possibly we can do with fewer blocks than estimated */
    532 					numblocks = (tmp_len + blocksize - 1) / blocksize;
    533 					if (numblocks > pre_comp->numblocks)
    534 						{
    535 						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    536 						goto err;
    537 						}
    538 					totalnum = num + numblocks;
    539 					}
    540 
    541 				/* split wNAF in 'numblocks' parts */
    542 				pp = tmp_wNAF;
    543 				tmp_points = pre_comp->points;
    544 
    545 				for (i = num; i < totalnum; i++)
    546 					{
    547 					if (i < totalnum - 1)
    548 						{
    549 						wNAF_len[i] = blocksize;
    550 						if (tmp_len < blocksize)
    551 							{
    552 							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    553 							goto err;
    554 							}
    555 						tmp_len -= blocksize;
    556 						}
    557 					else
    558 						/* last block gets whatever is left
    559 						 * (this could be more or less than 'blocksize'!) */
    560 						wNAF_len[i] = tmp_len;
    561 
    562 					wNAF[i + 1] = NULL;
    563 					wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
    564 					if (wNAF[i] == NULL)
    565 						{
    566 						ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
    567 						OPENSSL_free(tmp_wNAF);
    568 						goto err;
    569 						}
    570 					memcpy(wNAF[i], pp, wNAF_len[i]);
    571 					if (wNAF_len[i] > max_len)
    572 						max_len = wNAF_len[i];
    573 
    574 					if (*tmp_points == NULL)
    575 						{
    576 						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    577 						OPENSSL_free(tmp_wNAF);
    578 						goto err;
    579 						}
    580 					val_sub[i] = tmp_points;
    581 					tmp_points += pre_points_per_block;
    582 					pp += blocksize;
    583 					}
    584 				OPENSSL_free(tmp_wNAF);
    585 				}
    586 			}
    587 		}
    588 
    589 	/* All points we precompute now go into a single array 'val'.
    590 	 * 'val_sub[i]' is a pointer to the subarray for the i-th point,
    591 	 * or to a subarray of 'pre_comp->points' if we already have precomputation. */
    592 	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
    593 	if (val == NULL)
    594 		{
    595 		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
    596 		goto err;
    597 		}
    598 	val[num_val] = NULL; /* pivot element */
    599 
    600 	/* allocate points for precomputation */
    601 	v = val;
    602 	for (i = 0; i < num + num_scalar; i++)
    603 		{
    604 		val_sub[i] = v;
    605 		for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++)
    606 			{
    607 			*v = EC_POINT_new(group);
    608 			if (*v == NULL) goto err;
    609 			v++;
    610 			}
    611 		}
    612 	if (!(v == val + num_val))
    613 		{
    614 		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
    615 		goto err;
    616 		}
    617 
    618 	if (!(tmp = EC_POINT_new(group)))
    619 		goto err;
    620 
    621 	/* prepare precomputed values:
    622 	 *    val_sub[i][0] :=     points[i]
    623 	 *    val_sub[i][1] := 3 * points[i]
    624 	 *    val_sub[i][2] := 5 * points[i]
    625 	 *    ...
    626 	 */
    627 	for (i = 0; i < num + num_scalar; i++)
    628 		{
    629 		if (i < num)
    630 			{
    631 			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
    632 			}
    633 		else
    634 			{
    635 			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
    636 			}
    637 
    638 		if (wsize[i] > 1)
    639 			{
    640 			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
    641 			for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++)
    642 				{
    643 				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
    644 				}
    645 			}
    646 		}
    647 
    648 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
    649 	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
    650 		goto err;
    651 #endif
    652 
    653 	r_is_at_infinity = 1;
    654 
    655 	for (k = max_len - 1; k >= 0; k--)
    656 		{
    657 		if (!r_is_at_infinity)
    658 			{
    659 			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
    660 			}
    661 
    662 		for (i = 0; i < totalnum; i++)
    663 			{
    664 			if (wNAF_len[i] > (size_t)k)
    665 				{
    666 				int digit = wNAF[i][k];
    667 				int is_neg;
    668 
    669 				if (digit)
    670 					{
    671 					is_neg = digit < 0;
    672 
    673 					if (is_neg)
    674 						digit = -digit;
    675 
    676 					if (is_neg != r_is_inverted)
    677 						{
    678 						if (!r_is_at_infinity)
    679 							{
    680 							if (!EC_POINT_invert(group, r, ctx)) goto err;
    681 							}
    682 						r_is_inverted = !r_is_inverted;
    683 						}
    684 
    685 					/* digit > 0 */
    686 
    687 					if (r_is_at_infinity)
    688 						{
    689 						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
    690 						r_is_at_infinity = 0;
    691 						}
    692 					else
    693 						{
    694 						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
    695 						}
    696 					}
    697 				}
    698 			}
    699 		}
    700 
    701 	if (r_is_at_infinity)
    702 		{
    703 		if (!EC_POINT_set_to_infinity(group, r)) goto err;
    704 		}
    705 	else
    706 		{
    707 		if (r_is_inverted)
    708 			if (!EC_POINT_invert(group, r, ctx)) goto err;
    709 		}
    710 
    711 	ret = 1;
    712 
    713  err:
    714 	if (new_ctx != NULL)
    715 		BN_CTX_free(new_ctx);
    716 	if (tmp != NULL)
    717 		EC_POINT_free(tmp);
    718 	if (wsize != NULL)
    719 		OPENSSL_free(wsize);
    720 	if (wNAF_len != NULL)
    721 		OPENSSL_free(wNAF_len);
    722 	if (wNAF != NULL)
    723 		{
    724 		signed char **w;
    725 
    726 		for (w = wNAF; *w != NULL; w++)
    727 			OPENSSL_free(*w);
    728 
    729 		OPENSSL_free(wNAF);
    730 		}
    731 	if (val != NULL)
    732 		{
    733 		for (v = val; *v != NULL; v++)
    734 			EC_POINT_clear_free(*v);
    735 
    736 		OPENSSL_free(val);
    737 		}
    738 	if (val_sub != NULL)
    739 		{
    740 		OPENSSL_free(val_sub);
    741 		}
    742 	return ret;
    743 	}
    744 
    745 
    746 /* ec_wNAF_precompute_mult()
    747  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
    748  * for use with wNAF splitting as implemented in ec_wNAF_mul().
    749  *
    750  * 'pre_comp->points' is an array of multiples of the generator
    751  * of the following form:
    752  * points[0] =     generator;
    753  * points[1] = 3 * generator;
    754  * ...
    755  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
    756  * points[2^(w-1)]   =     2^blocksize * generator;
    757  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
    758  * ...
    759  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
    760  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
    761  * ...
    762  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
    763  * points[2^(w-1)*numblocks]       = NULL
    764  */
    765 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
    766 	{
    767 	const EC_POINT *generator;
    768 	EC_POINT *tmp_point = NULL, *base = NULL, **var;
    769 	BN_CTX *new_ctx = NULL;
    770 	BIGNUM *order;
    771 	size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
    772 	EC_POINT **points = NULL;
    773 	EC_PRE_COMP *pre_comp;
    774 	int ret = 0;
    775 
    776 	/* if there is an old EC_PRE_COMP object, throw it away */
    777 	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
    778 
    779 	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
    780 		return 0;
    781 
    782 	generator = EC_GROUP_get0_generator(group);
    783 	if (generator == NULL)
    784 		{
    785 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
    786 		goto err;
    787 		}
    788 
    789 	if (ctx == NULL)
    790 		{
    791 		ctx = new_ctx = BN_CTX_new();
    792 		if (ctx == NULL)
    793 			goto err;
    794 		}
    795 
    796 	BN_CTX_start(ctx);
    797 	order = BN_CTX_get(ctx);
    798 	if (order == NULL) goto err;
    799 
    800 	if (!EC_GROUP_get_order(group, order, ctx)) goto err;
    801 	if (BN_is_zero(order))
    802 		{
    803 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
    804 		goto err;
    805 		}
    806 
    807 	bits = BN_num_bits(order);
    808 	/* The following parameters mean we precompute (approximately)
    809 	 * one point per bit.
    810 	 *
    811 	 * TBD: The combination  8, 4  is perfect for 160 bits; for other
    812 	 * bit lengths, other parameter combinations might provide better
    813 	 * efficiency.
    814 	 */
    815 	blocksize = 8;
    816 	w = 4;
    817 	if (EC_window_bits_for_scalar_size(bits) > w)
    818 		{
    819 		/* let's not make the window too small ... */
    820 		w = EC_window_bits_for_scalar_size(bits);
    821 		}
    822 
    823 	numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
    824 
    825 	pre_points_per_block = (size_t)1 << (w - 1);
    826 	num = pre_points_per_block * numblocks; /* number of points to compute and store */
    827 
    828 	points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
    829 	if (!points)
    830 		{
    831 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
    832 		goto err;
    833 		}
    834 
    835 	var = points;
    836 	var[num] = NULL; /* pivot */
    837 	for (i = 0; i < num; i++)
    838 		{
    839 		if ((var[i] = EC_POINT_new(group)) == NULL)
    840 			{
    841 			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
    842 			goto err;
    843 			}
    844 		}
    845 
    846 	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
    847 		{
    848 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
    849 		goto err;
    850 		}
    851 
    852 	if (!EC_POINT_copy(base, generator))
    853 		goto err;
    854 
    855 	/* do the precomputation */
    856 	for (i = 0; i < numblocks; i++)
    857 		{
    858 		size_t j;
    859 
    860 		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
    861 			goto err;
    862 
    863 		if (!EC_POINT_copy(*var++, base))
    864 			goto err;
    865 
    866 		for (j = 1; j < pre_points_per_block; j++, var++)
    867 			{
    868 			/* calculate odd multiples of the current base point */
    869 			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
    870 				goto err;
    871 			}
    872 
    873 		if (i < numblocks - 1)
    874 			{
    875 			/* get the next base (multiply current one by 2^blocksize) */
    876 			size_t k;
    877 
    878 			if (blocksize <= 2)
    879 				{
    880 				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
    881 				goto err;
    882 				}
    883 
    884 			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
    885 				goto err;
    886 			for (k = 2; k < blocksize; k++)
    887 				{
    888 				if (!EC_POINT_dbl(group,base,base,ctx))
    889 					goto err;
    890 				}
    891 			}
    892  		}
    893 
    894 	if (!EC_POINTs_make_affine(group, num, points, ctx))
    895 		goto err;
    896 
    897 	pre_comp->group = group;
    898 	pre_comp->blocksize = blocksize;
    899 	pre_comp->numblocks = numblocks;
    900 	pre_comp->w = w;
    901 	pre_comp->points = points;
    902 	points = NULL;
    903 	pre_comp->num = num;
    904 
    905 	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
    906 		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
    907 		goto err;
    908 	pre_comp = NULL;
    909 
    910 	ret = 1;
    911  err:
    912 	if (ctx != NULL)
    913 		BN_CTX_end(ctx);
    914 	if (new_ctx != NULL)
    915 		BN_CTX_free(new_ctx);
    916 	if (pre_comp)
    917 		ec_pre_comp_free(pre_comp);
    918 	if (points)
    919 		{
    920 		EC_POINT **p;
    921 
    922 		for (p = points; *p != NULL; p++)
    923 			EC_POINT_free(*p);
    924 		OPENSSL_free(points);
    925 		}
    926 	if (tmp_point)
    927 		EC_POINT_free(tmp_point);
    928 	if (base)
    929 		EC_POINT_free(base);
    930 	return ret;
    931 	}
    932 
    933 
    934 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
    935 	{
    936 	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
    937 		return 1;
    938 	else
    939 		return 0;
    940 	}
    941