Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkGeometry_DEFINED
     11 #define SkGeometry_DEFINED
     12 
     13 #include "SkMatrix.h"
     14 
     15 /** An XRay is a half-line that runs from the specific point/origin to
     16     +infinity in the X direction. e.g. XRay(3,5) is the half-line
     17     (3,5)....(infinity, 5)
     18  */
     19 typedef SkPoint SkXRay;
     20 
     21 /** Given a line segment from pts[0] to pts[1], and an xray, return true if
     22     they intersect. Optional outgoing "ambiguous" argument indicates
     23     whether the answer is ambiguous because the query occurred exactly at
     24     one of the endpoints' y coordinates, indicating that another query y
     25     coordinate is preferred for robustness.
     26 */
     27 bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
     28                        bool* ambiguous = NULL);
     29 
     30 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
     31     equation.
     32 */
     33 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
     34 
     35 ///////////////////////////////////////////////////////////////////////////////
     36 
     37 /** Set pt to the point on the src quadratic specified by t. t must be
     38     0 <= t <= 1.0
     39 */
     40 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
     41                   SkVector* tangent = NULL);
     42 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
     43                       SkVector* tangent = NULL);
     44 
     45 /** Given a src quadratic bezier, chop it at the specified t value,
     46     where 0 < t < 1, and return the two new quadratics in dst:
     47     dst[0..2] and dst[2..4]
     48 */
     49 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
     50 
     51 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
     52     The new quads are returned in dst[0..2] and dst[2..4]
     53 */
     54 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
     55 
     56 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
     57     for extrema, and return the number of t-values that are found that represent
     58     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
     59     function returns 0.
     60     Returned count      tValues[]
     61     0                   ignored
     62     1                   0 < tValues[0] < 1
     63 */
     64 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
     65 
     66 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
     67     the resulting beziers are monotonic in Y. This is called by the scan converter.
     68     Depending on what is returned, dst[] is treated as follows
     69     0   dst[0..2] is the original quad
     70     1   dst[0..2] and dst[2..4] are the two new quads
     71 */
     72 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
     73 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
     74 
     75 /** Given 3 points on a quadratic bezier, if the point of maximum
     76     curvature exists on the segment, returns the t value for this
     77     point along the curve. Otherwise it will return a value of 0.
     78 */
     79 float SkFindQuadMaxCurvature(const SkPoint src[3]);
     80 
     81 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
     82     if the point of maximum curvature exists on the quad segment.
     83     Depending on what is returned, dst[] is treated as follows
     84     1   dst[0..2] is the original quad
     85     2   dst[0..2] and dst[2..4] are the two new quads
     86     If dst == null, it is ignored and only the count is returned.
     87 */
     88 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
     89 
     90 /** Given 3 points on a quadratic bezier, use degree elevation to
     91     convert it into the cubic fitting the same curve. The new cubic
     92     curve is returned in dst[0..3].
     93 */
     94 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
     95 
     96 ///////////////////////////////////////////////////////////////////////////////
     97 
     98 /** Convert from parametric from (pts) to polynomial coefficients
     99     coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
    100 */
    101 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
    102 
    103 /** Set pt to the point on the src cubic specified by t. t must be
    104     0 <= t <= 1.0
    105 */
    106 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
    107                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
    108 
    109 /** Given a src cubic bezier, chop it at the specified t value,
    110     where 0 < t < 1, and return the two new cubics in dst:
    111     dst[0..3] and dst[3..6]
    112 */
    113 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
    114 /** Given a src cubic bezier, chop it at the specified t values,
    115     where 0 < t < 1, and return the new cubics in dst:
    116     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
    117 */
    118 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
    119                    int t_count);
    120 
    121 /** Given a src cubic bezier, chop it at the specified t == 1/2,
    122     The new cubics are returned in dst[0..3] and dst[3..6]
    123 */
    124 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
    125 
    126 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    127     for extrema, and return the number of t-values that are found that represent
    128     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    129     function returns 0.
    130     Returned count      tValues[]
    131     0                   ignored
    132     1                   0 < tValues[0] < 1
    133     2                   0 < tValues[0] < tValues[1] < 1
    134 */
    135 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    136                        SkScalar tValues[2]);
    137 
    138 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    139     the resulting beziers are monotonic in Y. This is called by the scan converter.
    140     Depending on what is returned, dst[] is treated as follows
    141     0   dst[0..3] is the original cubic
    142     1   dst[0..3] and dst[3..6] are the two new cubics
    143     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    144     If dst == null, it is ignored and only the count is returned.
    145 */
    146 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
    147 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
    148 
    149 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    150     inflection points.
    151 */
    152 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
    153 
    154 /** Return 1 for no chop, 2 for having chopped the cubic at a single
    155     inflection point, 3 for having chopped at 2 inflection points.
    156     dst will hold the resulting 1, 2, or 3 cubics.
    157 */
    158 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
    159 
    160 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
    161 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    162                               SkScalar tValues[3] = NULL);
    163 
    164 /** Given a monotonic cubic bezier, determine whether an xray intersects the
    165     cubic.
    166     By definition the cubic is open at the starting point; in other
    167     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    168     left of the curve, the line is not considered to cross the curve,
    169     but if it is equal to cubic[3].fY then it is considered to
    170     cross.
    171     Optional outgoing "ambiguous" argument indicates whether the answer is
    172     ambiguous because the query occurred exactly at one of the endpoints' y
    173     coordinates, indicating that another query y coordinate is preferred
    174     for robustness.
    175  */
    176 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
    177                                  bool* ambiguous = NULL);
    178 
    179 /** Given an arbitrary cubic bezier, return the number of times an xray crosses
    180     the cubic. Valid return values are [0..3]
    181     By definition the cubic is open at the starting point; in other
    182     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    183     left of the curve, the line is not considered to cross the curve,
    184     but if it is equal to cubic[3].fY then it is considered to
    185     cross.
    186     Optional outgoing "ambiguous" argument indicates whether the answer is
    187     ambiguous because the query occurred exactly at one of the endpoints' y
    188     coordinates or at a tangent point, indicating that another query y
    189     coordinate is preferred for robustness.
    190  */
    191 int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
    192                                bool* ambiguous = NULL);
    193 
    194 ///////////////////////////////////////////////////////////////////////////////
    195 
    196 enum SkRotationDirection {
    197     kCW_SkRotationDirection,
    198     kCCW_SkRotationDirection
    199 };
    200 
    201 /** Maximum number of points needed in the quadPoints[] parameter for
    202     SkBuildQuadArc()
    203 */
    204 #define kSkBuildQuadArcStorage  17
    205 
    206 /** Given 2 unit vectors and a rotation direction, fill out the specified
    207     array of points with quadratic segments. Return is the number of points
    208     written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
    209 
    210     matrix, if not null, is appled to the points before they are returned.
    211 */
    212 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
    213                    SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
    214 
    215 // experimental
    216 struct SkConic {
    217     SkPoint  fPts[3];
    218     SkScalar fW;
    219 
    220     void set(const SkPoint pts[3], SkScalar w) {
    221         memcpy(fPts, pts, 3 * sizeof(SkPoint));
    222         fW = w;
    223     }
    224 
    225     /**
    226      *  Given a t-value [0...1] return its position and/or tangent.
    227      *  If pos is not null, return its position at the t-value.
    228      *  If tangent is not null, return its tangent at the t-value. NOTE the
    229      *  tangent value's length is arbitrary, and only its direction should
    230      *  be used.
    231      */
    232     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
    233     void chopAt(SkScalar t, SkConic dst[2]) const;
    234     void chop(SkConic dst[2]) const;
    235 
    236     void computeAsQuadError(SkVector* err) const;
    237     bool asQuadTol(SkScalar tol) const;
    238 
    239     /**
    240      *  return the power-of-2 number of quads needed to approximate this conic
    241      *  with a sequence of quads. Will be >= 0.
    242      */
    243     int computeQuadPOW2(SkScalar tol) const;
    244 
    245     /**
    246      *  Chop this conic into N quads, stored continguously in pts[], where
    247      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
    248      */
    249     int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
    250 
    251     bool findXExtrema(SkScalar* t) const;
    252     bool findYExtrema(SkScalar* t) const;
    253     bool chopAtXExtrema(SkConic dst[2]) const;
    254     bool chopAtYExtrema(SkConic dst[2]) const;
    255 
    256     void computeTightBounds(SkRect* bounds) const;
    257     void computeFastBounds(SkRect* bounds) const;
    258 };
    259 
    260 #include "SkTemplates.h"
    261 
    262 /**
    263  *  Help class to allocate storage for approximating a conic with N quads.
    264  */
    265 class SkAutoConicToQuads {
    266 public:
    267     SkAutoConicToQuads() : fQuadCount(0) {}
    268 
    269     /**
    270      *  Given a conic and a tolerance, return the array of points for the
    271      *  approximating quad(s). Call countQuads() to know the number of quads
    272      *  represented in these points.
    273      *
    274      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
    275      *  there will be 9 points allocated as follows
    276      *      quad[0] == pts[0..2]
    277      *      quad[1] == pts[2..4]
    278      *      quad[2] == pts[4..6]
    279      *      quad[3] == pts[6..8]
    280      */
    281     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
    282         int pow2 = conic.computeQuadPOW2(tol);
    283         fQuadCount = 1 << pow2;
    284         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
    285         conic.chopIntoQuadsPOW2(pts, pow2);
    286         return pts;
    287     }
    288 
    289     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
    290                                 SkScalar tol) {
    291         SkConic conic;
    292         conic.set(pts, weight);
    293         return computeQuads(conic, tol);
    294     }
    295 
    296     int countQuads() const { return fQuadCount; }
    297 
    298 private:
    299     enum {
    300         kQuadCount = 8, // should handle most conics
    301         kPointCount = 1 + 2 * kQuadCount,
    302     };
    303     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    304     int fQuadCount; // #quads for current usage
    305 };
    306 
    307 #endif
    308