1 2 /* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #include "SkEdge.h" 11 #include "SkFDot6.h" 12 #include "SkMath.h" 13 14 /* 15 In setLine, setQuadratic, setCubic, the first thing we do is to convert 16 the points into FDot6. This is modulated by the shift parameter, which 17 will either be 0, or something like 2 for antialiasing. 18 19 In the float case, we want to turn the float into .6 by saying pt * 64, 20 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). 21 22 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, 23 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). 24 */ 25 26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { 27 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw 28 // away data in value, so just perform a modify up-shift 29 return value << (16 - 6 - 1); 30 } 31 32 ///////////////////////////////////////////////////////////////////////// 33 34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, 35 int shift) { 36 SkFDot6 x0, y0, x1, y1; 37 38 { 39 #ifdef SK_SCALAR_IS_FLOAT 40 float scale = float(1 << (shift + 6)); 41 x0 = int(p0.fX * scale); 42 y0 = int(p0.fY * scale); 43 x1 = int(p1.fX * scale); 44 y1 = int(p1.fY * scale); 45 #else 46 shift = 10 - shift; 47 x0 = p0.fX >> shift; 48 y0 = p0.fY >> shift; 49 x1 = p1.fX >> shift; 50 y1 = p1.fY >> shift; 51 #endif 52 } 53 54 int winding = 1; 55 56 if (y0 > y1) { 57 SkTSwap(x0, x1); 58 SkTSwap(y0, y1); 59 winding = -1; 60 } 61 62 int top = SkFDot6Round(y0); 63 int bot = SkFDot6Round(y1); 64 65 // are we a zero-height line? 66 if (top == bot) { 67 return 0; 68 } 69 // are we completely above or below the clip? 70 if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) { 71 return 0; 72 } 73 74 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 75 const int dy = SkEdge_Compute_DY(top, y0); 76 77 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 78 fDX = slope; 79 fFirstY = top; 80 fLastY = bot - 1; 81 fCurveCount = 0; 82 fWinding = SkToS8(winding); 83 fCurveShift = 0; 84 85 if (clip) { 86 this->chopLineWithClip(*clip); 87 } 88 return 1; 89 } 90 91 // called from a curve subclass 92 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) 93 { 94 SkASSERT(fWinding == 1 || fWinding == -1); 95 SkASSERT(fCurveCount != 0); 96 // SkASSERT(fCurveShift != 0); 97 98 y0 >>= 10; 99 y1 >>= 10; 100 101 SkASSERT(y0 <= y1); 102 103 int top = SkFDot6Round(y0); 104 int bot = SkFDot6Round(y1); 105 106 // SkASSERT(top >= fFirstY); 107 108 // are we a zero-height line? 109 if (top == bot) 110 return 0; 111 112 x0 >>= 10; 113 x1 >>= 10; 114 115 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 116 const int dy = SkEdge_Compute_DY(top, y0); 117 118 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 119 fDX = slope; 120 fFirstY = top; 121 fLastY = bot - 1; 122 123 return 1; 124 } 125 126 void SkEdge::chopLineWithClip(const SkIRect& clip) 127 { 128 int top = fFirstY; 129 130 SkASSERT(top < clip.fBottom); 131 132 // clip the line to the top 133 if (top < clip.fTop) 134 { 135 SkASSERT(fLastY >= clip.fTop); 136 fX += fDX * (clip.fTop - top); 137 fFirstY = clip.fTop; 138 } 139 } 140 141 /////////////////////////////////////////////////////////////////////////////// 142 143 /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. 144 Note that this limits the number of lines we use to approximate a curve. 145 If we need to increase this, we need to store fCurveCount in something 146 larger than int8_t. 147 */ 148 #define MAX_COEFF_SHIFT 6 149 150 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) 151 { 152 dx = SkAbs32(dx); 153 dy = SkAbs32(dy); 154 // return max + min/2 155 if (dx > dy) 156 dx += dy >> 1; 157 else 158 dx = dy + (dx >> 1); 159 return dx; 160 } 161 162 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy) 163 { 164 // cheap calc of distance from center of p0-p2 to the center of the curve 165 SkFDot6 dist = cheap_distance(dx, dy); 166 167 // shift down dist (it is currently in dot6) 168 // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...) 169 // this is chosen by heuristic: make it as big as possible (to minimize segments) 170 // ... but small enough so that our curves still look smooth 171 dist = (dist + (1 << 4)) >> 5; 172 173 // each subdivision (shift value) cuts this dist (error) by 1/4 174 return (32 - SkCLZ(dist)) >> 1; 175 } 176 177 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) 178 { 179 SkFDot6 x0, y0, x1, y1, x2, y2; 180 181 { 182 #ifdef SK_SCALAR_IS_FLOAT 183 float scale = float(1 << (shift + 6)); 184 x0 = int(pts[0].fX * scale); 185 y0 = int(pts[0].fY * scale); 186 x1 = int(pts[1].fX * scale); 187 y1 = int(pts[1].fY * scale); 188 x2 = int(pts[2].fX * scale); 189 y2 = int(pts[2].fY * scale); 190 #else 191 shift = 10 - shift; 192 x0 = pts[0].fX >> shift; 193 y0 = pts[0].fY >> shift; 194 x1 = pts[1].fX >> shift; 195 y1 = pts[1].fY >> shift; 196 x2 = pts[2].fX >> shift; 197 y2 = pts[2].fY >> shift; 198 #endif 199 } 200 201 int winding = 1; 202 if (y0 > y2) 203 { 204 SkTSwap(x0, x2); 205 SkTSwap(y0, y2); 206 winding = -1; 207 } 208 SkASSERT(y0 <= y1 && y1 <= y2); 209 210 int top = SkFDot6Round(y0); 211 int bot = SkFDot6Round(y2); 212 213 // are we a zero-height quad (line)? 214 if (top == bot) 215 return 0; 216 217 // compute number of steps needed (1 << shift) 218 { 219 SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2; 220 SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2; 221 shift = diff_to_shift(dx, dy); 222 SkASSERT(shift >= 0); 223 } 224 // need at least 1 subdivision for our bias trick 225 if (shift == 0) { 226 shift = 1; 227 } else if (shift > MAX_COEFF_SHIFT) { 228 shift = MAX_COEFF_SHIFT; 229 } 230 231 fWinding = SkToS8(winding); 232 //fCubicDShift only set for cubics 233 fCurveCount = SkToS8(1 << shift); 234 235 /* 236 * We want to reformulate into polynomial form, to make it clear how we 237 * should forward-difference. 238 * 239 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C 240 * 241 * A = p0 - 2p1 + p2 242 * B = 2(p1 - p0) 243 * C = p0 244 * 245 * Our caller must have constrained our inputs (p0..p2) to all fit into 246 * 16.16. However, as seen above, we sometimes compute values that can be 247 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store 248 * A and B at 1/2 of their actual value, and just apply a 2x scale during 249 * application in updateQuadratic(). Hence we store (shift - 1) in 250 * fCurveShift. 251 */ 252 253 fCurveShift = SkToU8(shift - 1); 254 255 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value 256 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value 257 258 fQx = SkFDot6ToFixed(x0); 259 fQDx = B + (A >> shift); // biased by shift 260 fQDDx = A >> (shift - 1); // biased by shift 261 262 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value 263 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value 264 265 fQy = SkFDot6ToFixed(y0); 266 fQDy = B + (A >> shift); // biased by shift 267 fQDDy = A >> (shift - 1); // biased by shift 268 269 fQLastX = SkFDot6ToFixed(x2); 270 fQLastY = SkFDot6ToFixed(y2); 271 272 return this->updateQuadratic(); 273 } 274 275 int SkQuadraticEdge::updateQuadratic() 276 { 277 int success; 278 int count = fCurveCount; 279 SkFixed oldx = fQx; 280 SkFixed oldy = fQy; 281 SkFixed dx = fQDx; 282 SkFixed dy = fQDy; 283 SkFixed newx, newy; 284 int shift = fCurveShift; 285 286 SkASSERT(count > 0); 287 288 do { 289 if (--count > 0) 290 { 291 newx = oldx + (dx >> shift); 292 dx += fQDDx; 293 newy = oldy + (dy >> shift); 294 dy += fQDDy; 295 } 296 else // last segment 297 { 298 newx = fQLastX; 299 newy = fQLastY; 300 } 301 success = this->updateLine(oldx, oldy, newx, newy); 302 oldx = newx; 303 oldy = newy; 304 } while (count > 0 && !success); 305 306 fQx = newx; 307 fQy = newy; 308 fQDx = dx; 309 fQDy = dy; 310 fCurveCount = SkToS8(count); 311 return success; 312 } 313 314 ///////////////////////////////////////////////////////////////////////// 315 316 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { 317 SkASSERT((x << upShift >> upShift) == x); 318 return x << upShift; 319 } 320 321 /* f(1/3) = (8a + 12b + 6c + d) / 27 322 f(2/3) = (a + 6b + 12c + 8d) / 27 323 324 f(1/3)-b = (8a - 15b + 6c + d) / 27 325 f(2/3)-c = (a + 6b - 15c + 8d) / 27 326 327 use 16/512 to approximate 1/27 328 */ 329 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) 330 { 331 SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9; 332 SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9; 333 334 return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird)); 335 } 336 337 int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift) 338 { 339 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; 340 341 { 342 #ifdef SK_SCALAR_IS_FLOAT 343 float scale = float(1 << (shift + 6)); 344 x0 = int(pts[0].fX * scale); 345 y0 = int(pts[0].fY * scale); 346 x1 = int(pts[1].fX * scale); 347 y1 = int(pts[1].fY * scale); 348 x2 = int(pts[2].fX * scale); 349 y2 = int(pts[2].fY * scale); 350 x3 = int(pts[3].fX * scale); 351 y3 = int(pts[3].fY * scale); 352 #else 353 shift = 10 - shift; 354 x0 = pts[0].fX >> shift; 355 y0 = pts[0].fY >> shift; 356 x1 = pts[1].fX >> shift; 357 y1 = pts[1].fY >> shift; 358 x2 = pts[2].fX >> shift; 359 y2 = pts[2].fY >> shift; 360 x3 = pts[3].fX >> shift; 361 y3 = pts[3].fY >> shift; 362 #endif 363 } 364 365 int winding = 1; 366 if (y0 > y3) 367 { 368 SkTSwap(x0, x3); 369 SkTSwap(x1, x2); 370 SkTSwap(y0, y3); 371 SkTSwap(y1, y2); 372 winding = -1; 373 } 374 375 int top = SkFDot6Round(y0); 376 int bot = SkFDot6Round(y3); 377 378 // are we a zero-height cubic (line)? 379 if (top == bot) 380 return 0; 381 382 // are we completely above or below the clip? 383 if (clip && (top >= clip->fBottom || bot <= clip->fTop)) 384 return 0; 385 386 // compute number of steps needed (1 << shift) 387 { 388 // Can't use (center of curve - center of baseline), since center-of-curve 389 // need not be the max delta from the baseline (it could even be coincident) 390 // so we try just looking at the two off-curve points 391 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); 392 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); 393 // add 1 (by observation) 394 shift = diff_to_shift(dx, dy) + 1; 395 } 396 // need at least 1 subdivision for our bias trick 397 SkASSERT(shift > 0); 398 if (shift > MAX_COEFF_SHIFT) { 399 shift = MAX_COEFF_SHIFT; 400 } 401 402 /* Since our in coming data is initially shifted down by 10 (or 8 in 403 antialias). That means the most we can shift up is 8. However, we 404 compute coefficients with a 3*, so the safest upshift is really 6 405 */ 406 int upShift = 6; // largest safe value 407 int downShift = shift + upShift - 10; 408 if (downShift < 0) { 409 downShift = 0; 410 upShift = 10 - shift; 411 } 412 413 fWinding = SkToS8(winding); 414 fCurveCount = SkToS8(-1 << shift); 415 fCurveShift = SkToU8(shift); 416 fCubicDShift = SkToU8(downShift); 417 418 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); 419 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); 420 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); 421 422 fCx = SkFDot6ToFixed(x0); 423 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift 424 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 425 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift 426 427 B = SkFDot6UpShift(3 * (y1 - y0), upShift); 428 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); 429 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); 430 431 fCy = SkFDot6ToFixed(y0); 432 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift 433 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 434 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift 435 436 fCLastX = SkFDot6ToFixed(x3); 437 fCLastY = SkFDot6ToFixed(y3); 438 439 if (clip) 440 { 441 do { 442 if (!this->updateCubic()) { 443 return 0; 444 } 445 } while (!this->intersectsClip(*clip)); 446 this->chopLineWithClip(*clip); 447 return 1; 448 } 449 return this->updateCubic(); 450 } 451 452 int SkCubicEdge::updateCubic() 453 { 454 int success; 455 int count = fCurveCount; 456 SkFixed oldx = fCx; 457 SkFixed oldy = fCy; 458 SkFixed newx, newy; 459 const int ddshift = fCurveShift; 460 const int dshift = fCubicDShift; 461 462 SkASSERT(count < 0); 463 464 do { 465 if (++count < 0) 466 { 467 newx = oldx + (fCDx >> dshift); 468 fCDx += fCDDx >> ddshift; 469 fCDDx += fCDDDx; 470 471 newy = oldy + (fCDy >> dshift); 472 fCDy += fCDDy >> ddshift; 473 fCDDy += fCDDDy; 474 } 475 else // last segment 476 { 477 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); 478 newx = fCLastX; 479 newy = fCLastY; 480 } 481 482 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint 483 // doesn't always achieve that, so we have to explicitly pin it here. 484 if (newy < oldy) { 485 newy = oldy; 486 } 487 488 success = this->updateLine(oldx, oldy, newx, newy); 489 oldx = newx; 490 oldy = newy; 491 } while (count < 0 && !success); 492 493 fCx = newx; 494 fCy = newy; 495 fCurveCount = SkToS8(count); 496 return success; 497 } 498