Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkGeometry.h"
     11 #include "Sk64.h"
     12 #include "SkMatrix.h"
     13 
     14 bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
     15     if (ambiguous) {
     16         *ambiguous = false;
     17     }
     18     // Determine quick discards.
     19     // Consider query line going exactly through point 0 to not
     20     // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
     21     if (pt.fY == pts[0].fY) {
     22         if (ambiguous) {
     23             *ambiguous = true;
     24         }
     25         return false;
     26     }
     27     if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
     28         return false;
     29     if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
     30         return false;
     31     if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
     32         return false;
     33     // Determine degenerate cases
     34     if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
     35         return false;
     36     if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
     37         // We've already determined the query point lies within the
     38         // vertical range of the line segment.
     39         if (pt.fX <= pts[0].fX) {
     40             if (ambiguous) {
     41                 *ambiguous = (pt.fY == pts[1].fY);
     42             }
     43             return true;
     44         }
     45         return false;
     46     }
     47     // Ambiguity check
     48     if (pt.fY == pts[1].fY) {
     49         if (pt.fX <= pts[1].fX) {
     50             if (ambiguous) {
     51                 *ambiguous = true;
     52             }
     53             return true;
     54         }
     55         return false;
     56     }
     57     // Full line segment evaluation
     58     SkScalar delta_y = pts[1].fY - pts[0].fY;
     59     SkScalar delta_x = pts[1].fX - pts[0].fX;
     60     SkScalar slope = SkScalarDiv(delta_y, delta_x);
     61     SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
     62     // Solve for x coordinate at y = pt.fY
     63     SkScalar x = SkScalarDiv(pt.fY - b, slope);
     64     return pt.fX <= x;
     65 }
     66 
     67 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
     68     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
     69     May also introduce overflow of fixed when we compute our setup.
     70 */
     71 #ifdef SK_SCALAR_IS_FIXED
     72     #define DIRECT_EVAL_OF_POLYNOMIALS
     73 #endif
     74 
     75 ////////////////////////////////////////////////////////////////////////
     76 
     77 #ifdef SK_SCALAR_IS_FIXED
     78     static int is_not_monotonic(int a, int b, int c, int d)
     79     {
     80         return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
     81     }
     82 
     83     static int is_not_monotonic(int a, int b, int c)
     84     {
     85         return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
     86     }
     87 #else
     88     static int is_not_monotonic(float a, float b, float c)
     89     {
     90         float ab = a - b;
     91         float bc = b - c;
     92         if (ab < 0)
     93             bc = -bc;
     94         return ab == 0 || bc < 0;
     95     }
     96 #endif
     97 
     98 ////////////////////////////////////////////////////////////////////////
     99 
    100 static bool is_unit_interval(SkScalar x)
    101 {
    102     return x > 0 && x < SK_Scalar1;
    103 }
    104 
    105 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
    106 {
    107     SkASSERT(ratio);
    108 
    109     if (numer < 0)
    110     {
    111         numer = -numer;
    112         denom = -denom;
    113     }
    114 
    115     if (denom == 0 || numer == 0 || numer >= denom)
    116         return 0;
    117 
    118     SkScalar r = SkScalarDiv(numer, denom);
    119     if (SkScalarIsNaN(r)) {
    120         return 0;
    121     }
    122     SkASSERT(r >= 0 && r < SK_Scalar1);
    123     if (r == 0) // catch underflow if numer <<<< denom
    124         return 0;
    125     *ratio = r;
    126     return 1;
    127 }
    128 
    129 /** From Numerical Recipes in C.
    130 
    131     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    132     x1 = Q / A
    133     x2 = C / Q
    134 */
    135 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
    136 {
    137     SkASSERT(roots);
    138 
    139     if (A == 0)
    140         return valid_unit_divide(-C, B, roots);
    141 
    142     SkScalar* r = roots;
    143 
    144 #ifdef SK_SCALAR_IS_FLOAT
    145     float R = B*B - 4*A*C;
    146     if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
    147         return 0;
    148     }
    149     R = sk_float_sqrt(R);
    150 #else
    151     Sk64    RR, tmp;
    152 
    153     RR.setMul(B,B);
    154     tmp.setMul(A,C);
    155     tmp.shiftLeft(2);
    156     RR.sub(tmp);
    157     if (RR.isNeg())
    158         return 0;
    159     SkFixed R = RR.getSqrt();
    160 #endif
    161 
    162     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    163     r += valid_unit_divide(Q, A, r);
    164     r += valid_unit_divide(C, Q, r);
    165     if (r - roots == 2)
    166     {
    167         if (roots[0] > roots[1])
    168             SkTSwap<SkScalar>(roots[0], roots[1]);
    169         else if (roots[0] == roots[1])  // nearly-equal?
    170             r -= 1; // skip the double root
    171     }
    172     return (int)(r - roots);
    173 }
    174 
    175 #ifdef SK_SCALAR_IS_FIXED
    176 /** Trim A/B/C down so that they are all <= 32bits
    177     and then call SkFindUnitQuadRoots()
    178 */
    179 static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
    180 {
    181     int na = A.shiftToMake32();
    182     int nb = B.shiftToMake32();
    183     int nc = C.shiftToMake32();
    184 
    185     int shift = SkMax32(na, SkMax32(nb, nc));
    186     SkASSERT(shift >= 0);
    187 
    188     return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
    189 }
    190 #endif
    191 
    192 /////////////////////////////////////////////////////////////////////////////////////
    193 /////////////////////////////////////////////////////////////////////////////////////
    194 
    195 static SkScalar eval_quad(const SkScalar src[], SkScalar t)
    196 {
    197     SkASSERT(src);
    198     SkASSERT(t >= 0 && t <= SK_Scalar1);
    199 
    200 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    201     SkScalar    C = src[0];
    202     SkScalar    A = src[4] - 2 * src[2] + C;
    203     SkScalar    B = 2 * (src[2] - C);
    204     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    205 #else
    206     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    207     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    208     return SkScalarInterp(ab, bc, t);
    209 #endif
    210 }
    211 
    212 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
    213 {
    214     SkScalar A = src[4] - 2 * src[2] + src[0];
    215     SkScalar B = src[2] - src[0];
    216 
    217     return 2 * SkScalarMulAdd(A, t, B);
    218 }
    219 
    220 static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
    221 {
    222     SkScalar A = src[4] - 2 * src[2] + src[0];
    223     SkScalar B = src[2] - src[0];
    224     return A + 2 * B;
    225 }
    226 
    227 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
    228 {
    229     SkASSERT(src);
    230     SkASSERT(t >= 0 && t <= SK_Scalar1);
    231 
    232     if (pt)
    233         pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
    234     if (tangent)
    235         tangent->set(eval_quad_derivative(&src[0].fX, t),
    236                      eval_quad_derivative(&src[0].fY, t));
    237 }
    238 
    239 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
    240 {
    241     SkASSERT(src);
    242 
    243     if (pt)
    244     {
    245         SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    246         SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    247         SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    248         SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    249         pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    250     }
    251     if (tangent)
    252         tangent->set(eval_quad_derivative_at_half(&src[0].fX),
    253                      eval_quad_derivative_at_half(&src[0].fY));
    254 }
    255 
    256 static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
    257 {
    258     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    259     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    260 
    261     dst[0] = src[0];
    262     dst[2] = ab;
    263     dst[4] = SkScalarInterp(ab, bc, t);
    264     dst[6] = bc;
    265     dst[8] = src[4];
    266 }
    267 
    268 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
    269 {
    270     SkASSERT(t > 0 && t < SK_Scalar1);
    271 
    272     interp_quad_coords(&src[0].fX, &dst[0].fX, t);
    273     interp_quad_coords(&src[0].fY, &dst[0].fY, t);
    274 }
    275 
    276 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
    277 {
    278     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    279     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    280     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    281     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    282 
    283     dst[0] = src[0];
    284     dst[1].set(x01, y01);
    285     dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    286     dst[3].set(x12, y12);
    287     dst[4] = src[2];
    288 }
    289 
    290 /** Quad'(t) = At + B, where
    291     A = 2(a - 2b + c)
    292     B = 2(b - a)
    293     Solve for t, only if it fits between 0 < t < 1
    294 */
    295 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
    296 {
    297     /*  At + B == 0
    298         t = -B / A
    299     */
    300 #ifdef SK_SCALAR_IS_FIXED
    301     return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
    302 #else
    303     return valid_unit_divide(a - b, a - b - b + c, tValue);
    304 #endif
    305 }
    306 
    307 static inline void flatten_double_quad_extrema(SkScalar coords[14])
    308 {
    309     coords[2] = coords[6] = coords[4];
    310 }
    311 
    312 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    313  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    314  */
    315 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
    316 {
    317     SkASSERT(src);
    318     SkASSERT(dst);
    319 
    320 #if 0
    321     static bool once = true;
    322     if (once)
    323     {
    324         once = false;
    325         SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
    326         SkPoint d[6];
    327 
    328         int n = SkChopQuadAtYExtrema(s, d);
    329         SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
    330     }
    331 #endif
    332 
    333     SkScalar a = src[0].fY;
    334     SkScalar b = src[1].fY;
    335     SkScalar c = src[2].fY;
    336 
    337     if (is_not_monotonic(a, b, c))
    338     {
    339         SkScalar    tValue;
    340         if (valid_unit_divide(a - b, a - b - b + c, &tValue))
    341         {
    342             SkChopQuadAt(src, dst, tValue);
    343             flatten_double_quad_extrema(&dst[0].fY);
    344             return 1;
    345         }
    346         // if we get here, we need to force dst to be monotonic, even though
    347         // we couldn't compute a unit_divide value (probably underflow).
    348         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    349     }
    350     dst[0].set(src[0].fX, a);
    351     dst[1].set(src[1].fX, b);
    352     dst[2].set(src[2].fX, c);
    353     return 0;
    354 }
    355 
    356 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    357     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    358  */
    359 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
    360 {
    361     SkASSERT(src);
    362     SkASSERT(dst);
    363 
    364     SkScalar a = src[0].fX;
    365     SkScalar b = src[1].fX;
    366     SkScalar c = src[2].fX;
    367 
    368     if (is_not_monotonic(a, b, c)) {
    369         SkScalar tValue;
    370         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    371             SkChopQuadAt(src, dst, tValue);
    372             flatten_double_quad_extrema(&dst[0].fX);
    373             return 1;
    374         }
    375         // if we get here, we need to force dst to be monotonic, even though
    376         // we couldn't compute a unit_divide value (probably underflow).
    377         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    378     }
    379     dst[0].set(a, src[0].fY);
    380     dst[1].set(b, src[1].fY);
    381     dst[2].set(c, src[2].fY);
    382     return 0;
    383 }
    384 
    385 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    386 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    387 //  F''(t)  = 2 (a - 2b + c)
    388 //
    389 //  A = 2 (b - a)
    390 //  B = 2 (a - 2b + c)
    391 //
    392 //  Maximum curvature for a quadratic means solving
    393 //  Fx' Fx'' + Fy' Fy'' = 0
    394 //
    395 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    396 //
    397 float SkFindQuadMaxCurvature(const SkPoint src[3]) {
    398     SkScalar    Ax = src[1].fX - src[0].fX;
    399     SkScalar    Ay = src[1].fY - src[0].fY;
    400     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    401     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    402     SkScalar    t = 0;  // 0 means don't chop
    403 
    404 #ifdef SK_SCALAR_IS_FLOAT
    405     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    406 #else
    407     // !!! should I use SkFloat here? seems like it
    408     Sk64    numer, denom, tmp;
    409 
    410     numer.setMul(Ax, -Bx);
    411     tmp.setMul(Ay, -By);
    412     numer.add(tmp);
    413 
    414     if (numer.isPos())  // do nothing if numer <= 0
    415     {
    416         denom.setMul(Bx, Bx);
    417         tmp.setMul(By, By);
    418         denom.add(tmp);
    419         SkASSERT(!denom.isNeg());
    420         if (numer < denom)
    421         {
    422             t = numer.getFixedDiv(denom);
    423             SkASSERT(t >= 0 && t <= SK_Fixed1);     // assert that we're numerically stable (ha!)
    424             if ((unsigned)t >= SK_Fixed1)           // runtime check for numerical stability
    425                 t = 0;  // ignore the chop
    426         }
    427     }
    428 #endif
    429     return t;
    430 }
    431 
    432 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
    433 {
    434     SkScalar t = SkFindQuadMaxCurvature(src);
    435     if (t == 0) {
    436         memcpy(dst, src, 3 * sizeof(SkPoint));
    437         return 1;
    438     } else {
    439         SkChopQuadAt(src, dst, t);
    440         return 2;
    441     }
    442 }
    443 
    444 #ifdef SK_SCALAR_IS_FLOAT
    445     #define SK_ScalarTwoThirds  (0.666666666f)
    446 #else
    447     #define SK_ScalarTwoThirds  ((SkFixed)(43691))
    448 #endif
    449 
    450 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    451     const SkScalar scale = SK_ScalarTwoThirds;
    452     dst[0] = src[0];
    453     dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
    454                src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
    455     dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
    456                src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
    457     dst[3] = src[2];
    458 }
    459 
    460 ////////////////////////////////////////////////////////////////////////////////////////
    461 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    462 ////////////////////////////////////////////////////////////////////////////////////////
    463 
    464 static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
    465 {
    466     coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
    467     coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
    468     coeff[2] = 3*(pt[2] - pt[0]);
    469     coeff[3] = pt[0];
    470 }
    471 
    472 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
    473 {
    474     SkASSERT(pts);
    475 
    476     if (cx)
    477         get_cubic_coeff(&pts[0].fX, cx);
    478     if (cy)
    479         get_cubic_coeff(&pts[0].fY, cy);
    480 }
    481 
    482 static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
    483 {
    484     SkASSERT(src);
    485     SkASSERT(t >= 0 && t <= SK_Scalar1);
    486 
    487     if (t == 0)
    488         return src[0];
    489 
    490 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    491     SkScalar D = src[0];
    492     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    493     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    494     SkScalar C = 3*(src[2] - D);
    495 
    496     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
    497 #else
    498     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    499     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    500     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    501     SkScalar    abc = SkScalarInterp(ab, bc, t);
    502     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    503     return SkScalarInterp(abc, bcd, t);
    504 #endif
    505 }
    506 
    507 /** return At^2 + Bt + C
    508 */
    509 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
    510 {
    511     SkASSERT(t >= 0 && t <= SK_Scalar1);
    512 
    513     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    514 }
    515 
    516 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
    517 {
    518     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    519     SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
    520     SkScalar C = src[2] - src[0];
    521 
    522     return eval_quadratic(A, B, C, t);
    523 }
    524 
    525 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
    526 {
    527     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    528     SkScalar B = src[4] - 2 * src[2] + src[0];
    529 
    530     return SkScalarMulAdd(A, t, B);
    531 }
    532 
    533 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
    534 {
    535     SkASSERT(src);
    536     SkASSERT(t >= 0 && t <= SK_Scalar1);
    537 
    538     if (loc)
    539         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    540     if (tangent)
    541         tangent->set(eval_cubic_derivative(&src[0].fX, t),
    542                      eval_cubic_derivative(&src[0].fY, t));
    543     if (curvature)
    544         curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
    545                        eval_cubic_2ndDerivative(&src[0].fY, t));
    546 }
    547 
    548 /** Cubic'(t) = At^2 + Bt + C, where
    549     A = 3(-a + 3(b - c) + d)
    550     B = 6(a - 2b + c)
    551     C = 3(b - a)
    552     Solve for t, keeping only those that fit betwee 0 < t < 1
    553 */
    554 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
    555 {
    556 #ifdef SK_SCALAR_IS_FIXED
    557     if (!is_not_monotonic(a, b, c, d))
    558         return 0;
    559 #endif
    560 
    561     // we divide A,B,C by 3 to simplify
    562     SkScalar A = d - a + 3*(b - c);
    563     SkScalar B = 2*(a - b - b + c);
    564     SkScalar C = b - a;
    565 
    566     return SkFindUnitQuadRoots(A, B, C, tValues);
    567 }
    568 
    569 static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
    570 {
    571     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    572     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    573     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    574     SkScalar    abc = SkScalarInterp(ab, bc, t);
    575     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    576     SkScalar    abcd = SkScalarInterp(abc, bcd, t);
    577 
    578     dst[0] = src[0];
    579     dst[2] = ab;
    580     dst[4] = abc;
    581     dst[6] = abcd;
    582     dst[8] = bcd;
    583     dst[10] = cd;
    584     dst[12] = src[6];
    585 }
    586 
    587 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
    588 {
    589     SkASSERT(t > 0 && t < SK_Scalar1);
    590 
    591     interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
    592     interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
    593 }
    594 
    595 /*  http://code.google.com/p/skia/issues/detail?id=32
    596 
    597     This test code would fail when we didn't check the return result of
    598     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    599     that after the first chop, the parameters to valid_unit_divide are equal
    600     (thanks to finite float precision and rounding in the subtracts). Thus
    601     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    602     up with 1.0, hence the need to check and just return the last cubic as
    603     a degenerate clump of 4 points in the sampe place.
    604 
    605     static void test_cubic() {
    606         SkPoint src[4] = {
    607             { 556.25000, 523.03003 },
    608             { 556.23999, 522.96002 },
    609             { 556.21997, 522.89001 },
    610             { 556.21997, 522.82001 }
    611         };
    612         SkPoint dst[10];
    613         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    614         SkChopCubicAt(src, dst, tval, 2);
    615     }
    616  */
    617 
    618 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
    619 {
    620 #ifdef SK_DEBUG
    621     {
    622         for (int i = 0; i < roots - 1; i++)
    623         {
    624             SkASSERT(is_unit_interval(tValues[i]));
    625             SkASSERT(is_unit_interval(tValues[i+1]));
    626             SkASSERT(tValues[i] < tValues[i+1]);
    627         }
    628     }
    629 #endif
    630 
    631     if (dst)
    632     {
    633         if (roots == 0) // nothing to chop
    634             memcpy(dst, src, 4*sizeof(SkPoint));
    635         else
    636         {
    637             SkScalar    t = tValues[0];
    638             SkPoint     tmp[4];
    639 
    640             for (int i = 0; i < roots; i++)
    641             {
    642                 SkChopCubicAt(src, dst, t);
    643                 if (i == roots - 1)
    644                     break;
    645 
    646                 dst += 3;
    647                 // have src point to the remaining cubic (after the chop)
    648                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    649                 src = tmp;
    650 
    651                 // watch out in case the renormalized t isn't in range
    652                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    653                                        SK_Scalar1 - tValues[i], &t)) {
    654                     // if we can't, just create a degenerate cubic
    655                     dst[4] = dst[5] = dst[6] = src[3];
    656                     break;
    657                 }
    658             }
    659         }
    660     }
    661 }
    662 
    663 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
    664 {
    665     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    666     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    667     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    668     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    669     SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
    670     SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
    671 
    672     SkScalar x012 = SkScalarAve(x01, x12);
    673     SkScalar y012 = SkScalarAve(y01, y12);
    674     SkScalar x123 = SkScalarAve(x12, x23);
    675     SkScalar y123 = SkScalarAve(y12, y23);
    676 
    677     dst[0] = src[0];
    678     dst[1].set(x01, y01);
    679     dst[2].set(x012, y012);
    680     dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
    681     dst[4].set(x123, y123);
    682     dst[5].set(x23, y23);
    683     dst[6] = src[3];
    684 }
    685 
    686 static void flatten_double_cubic_extrema(SkScalar coords[14])
    687 {
    688     coords[4] = coords[8] = coords[6];
    689 }
    690 
    691 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    692     the resulting beziers are monotonic in Y. This is called by the scan converter.
    693     Depending on what is returned, dst[] is treated as follows
    694     0   dst[0..3] is the original cubic
    695     1   dst[0..3] and dst[3..6] are the two new cubics
    696     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    697     If dst == null, it is ignored and only the count is returned.
    698 */
    699 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    700     SkScalar    tValues[2];
    701     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    702                                            src[3].fY, tValues);
    703 
    704     SkChopCubicAt(src, dst, tValues, roots);
    705     if (dst && roots > 0) {
    706         // we do some cleanup to ensure our Y extrema are flat
    707         flatten_double_cubic_extrema(&dst[0].fY);
    708         if (roots == 2) {
    709             flatten_double_cubic_extrema(&dst[3].fY);
    710         }
    711     }
    712     return roots;
    713 }
    714 
    715 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    716     SkScalar    tValues[2];
    717     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    718                                            src[3].fX, tValues);
    719 
    720     SkChopCubicAt(src, dst, tValues, roots);
    721     if (dst && roots > 0) {
    722         // we do some cleanup to ensure our Y extrema are flat
    723         flatten_double_cubic_extrema(&dst[0].fX);
    724         if (roots == 2) {
    725             flatten_double_cubic_extrema(&dst[3].fX);
    726         }
    727     }
    728     return roots;
    729 }
    730 
    731 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    732 
    733     Inflection means that curvature is zero.
    734     Curvature is [F' x F''] / [F'^3]
    735     So we solve F'x X F''y - F'y X F''y == 0
    736     After some canceling of the cubic term, we get
    737     A = b - a
    738     B = c - 2b + a
    739     C = d - 3c + 3b - a
    740     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    741 */
    742 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
    743 {
    744     SkScalar    Ax = src[1].fX - src[0].fX;
    745     SkScalar    Ay = src[1].fY - src[0].fY;
    746     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    747     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    748     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    749     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    750     int         count;
    751 
    752 #ifdef SK_SCALAR_IS_FLOAT
    753     count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
    754 #else
    755     Sk64    A, B, C, tmp;
    756 
    757     A.setMul(Bx, Cy);
    758     tmp.setMul(By, Cx);
    759     A.sub(tmp);
    760 
    761     B.setMul(Ax, Cy);
    762     tmp.setMul(Ay, Cx);
    763     B.sub(tmp);
    764 
    765     C.setMul(Ax, By);
    766     tmp.setMul(Ay, Bx);
    767     C.sub(tmp);
    768 
    769     count = Sk64FindFixedQuadRoots(A, B, C, tValues);
    770 #endif
    771 
    772     return count;
    773 }
    774 
    775 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
    776 {
    777     SkScalar    tValues[2];
    778     int         count = SkFindCubicInflections(src, tValues);
    779 
    780     if (dst)
    781     {
    782         if (count == 0)
    783             memcpy(dst, src, 4 * sizeof(SkPoint));
    784         else
    785             SkChopCubicAt(src, dst, tValues, count);
    786     }
    787     return count + 1;
    788 }
    789 
    790 template <typename T> void bubble_sort(T array[], int count)
    791 {
    792     for (int i = count - 1; i > 0; --i)
    793         for (int j = i; j > 0; --j)
    794             if (array[j] < array[j-1])
    795             {
    796                 T   tmp(array[j]);
    797                 array[j] = array[j-1];
    798                 array[j-1] = tmp;
    799             }
    800 }
    801 
    802 #include "SkFP.h"
    803 
    804 // newton refinement
    805 #if 0
    806 static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
    807 {
    808     //  x1 = x0 - f(t) / f'(t)
    809 
    810     SkFP    T = SkScalarToFloat(root);
    811     SkFP    N, D;
    812 
    813     // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
    814     D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
    815     D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
    816     D = SkFPAdd(D, coeff[2]);
    817 
    818     if (D == 0)
    819         return root;
    820 
    821     // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
    822     N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
    823     N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
    824     N = SkFPAdd(N, SkFPMul(T, coeff[2]));
    825     N = SkFPAdd(N, coeff[3]);
    826 
    827     if (N)
    828     {
    829         SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
    830 
    831         if (delta)
    832             root -= delta;
    833     }
    834     return root;
    835 }
    836 #endif
    837 
    838 /**
    839  *  Given an array and count, remove all pair-wise duplicates from the array,
    840  *  keeping the existing sorting, and return the new count
    841  */
    842 static int collaps_duplicates(float array[], int count) {
    843     for (int n = count; n > 1; --n) {
    844         if (array[0] == array[1]) {
    845             for (int i = 1; i < n; ++i) {
    846                 array[i - 1] = array[i];
    847             }
    848             count -= 1;
    849         } else {
    850             array += 1;
    851         }
    852     }
    853     return count;
    854 }
    855 
    856 #ifdef SK_DEBUG
    857 
    858 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    859 
    860 static void test_collaps_duplicates() {
    861     static bool gOnce;
    862     if (gOnce) { return; }
    863     gOnce = true;
    864     const float src0[] = { 0 };
    865     const float src1[] = { 0, 0 };
    866     const float src2[] = { 0, 1 };
    867     const float src3[] = { 0, 0, 0 };
    868     const float src4[] = { 0, 0, 1 };
    869     const float src5[] = { 0, 1, 1 };
    870     const float src6[] = { 0, 1, 2 };
    871     const struct {
    872         const float* fData;
    873         int fCount;
    874         int fCollapsedCount;
    875     } data[] = {
    876         { TEST_COLLAPS_ENTRY(src0), 1 },
    877         { TEST_COLLAPS_ENTRY(src1), 1 },
    878         { TEST_COLLAPS_ENTRY(src2), 2 },
    879         { TEST_COLLAPS_ENTRY(src3), 1 },
    880         { TEST_COLLAPS_ENTRY(src4), 2 },
    881         { TEST_COLLAPS_ENTRY(src5), 2 },
    882         { TEST_COLLAPS_ENTRY(src6), 3 },
    883     };
    884     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    885         float dst[3];
    886         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    887         int count = collaps_duplicates(dst, data[i].fCount);
    888         SkASSERT(data[i].fCollapsedCount == count);
    889         for (int j = 1; j < count; ++j) {
    890             SkASSERT(dst[j-1] < dst[j]);
    891         }
    892     }
    893 }
    894 #endif
    895 
    896 #if defined _WIN32 && _MSC_VER >= 1300  && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
    897 #pragma warning ( disable : 4702 )
    898 #endif
    899 
    900 /*  Solve coeff(t) == 0, returning the number of roots that
    901     lie withing 0 < t < 1.
    902     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    903 
    904     Eliminates repeated roots (so that all tValues are distinct, and are always
    905     in increasing order.
    906 */
    907 static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
    908 {
    909 #ifndef SK_SCALAR_IS_FLOAT
    910     return 0;   // this is not yet implemented for software float
    911 #endif
    912 
    913     if (SkScalarNearlyZero(coeff[0]))   // we're just a quadratic
    914     {
    915         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    916     }
    917 
    918     SkFP    a, b, c, Q, R;
    919 
    920     {
    921         SkASSERT(coeff[0] != 0);
    922 
    923         SkFP inva = SkFPInvert(coeff[0]);
    924         a = SkFPMul(coeff[1], inva);
    925         b = SkFPMul(coeff[2], inva);
    926         c = SkFPMul(coeff[3], inva);
    927     }
    928     Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
    929 //  R = (2*a*a*a - 9*a*b + 27*c) / 54;
    930     R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
    931     R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
    932     R = SkFPAdd(R, SkFPMulInt(c, 27));
    933     R = SkFPDivInt(R, 54);
    934 
    935     SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
    936     SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
    937     SkFP adiv3 = SkFPDivInt(a, 3);
    938 
    939     SkScalar*   roots = tValues;
    940     SkScalar    r;
    941 
    942     if (SkFPLT(R2MinusQ3, 0))   // we have 3 real roots
    943     {
    944 #ifdef SK_SCALAR_IS_FLOAT
    945         float theta = sk_float_acos(R / sk_float_sqrt(Q3));
    946         float neg2RootQ = -2 * sk_float_sqrt(Q);
    947 
    948         r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
    949         if (is_unit_interval(r))
    950             *roots++ = r;
    951 
    952         r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
    953         if (is_unit_interval(r))
    954             *roots++ = r;
    955 
    956         r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
    957         if (is_unit_interval(r))
    958             *roots++ = r;
    959 
    960         SkDEBUGCODE(test_collaps_duplicates();)
    961 
    962         // now sort the roots
    963         int count = (int)(roots - tValues);
    964         SkASSERT((unsigned)count <= 3);
    965         bubble_sort(tValues, count);
    966         count = collaps_duplicates(tValues, count);
    967         roots = tValues + count;    // so we compute the proper count below
    968 #endif
    969     }
    970     else                // we have 1 real root
    971     {
    972         SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
    973         A = SkFPCubeRoot(A);
    974         if (SkFPGT(R, 0))
    975             A = SkFPNeg(A);
    976 
    977         if (A != 0)
    978             A = SkFPAdd(A, SkFPDiv(Q, A));
    979         r = SkFPToScalar(SkFPSub(A, adiv3));
    980         if (is_unit_interval(r))
    981             *roots++ = r;
    982     }
    983 
    984     return (int)(roots - tValues);
    985 }
    986 
    987 /*  Looking for F' dot F'' == 0
    988 
    989     A = b - a
    990     B = c - 2b + a
    991     C = d - 3c + 3b - a
    992 
    993     F' = 3Ct^2 + 6Bt + 3A
    994     F'' = 6Ct + 6B
    995 
    996     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    997 */
    998 static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
    999 {
   1000     SkScalar    a = src[2] - src[0];
   1001     SkScalar    b = src[4] - 2 * src[2] + src[0];
   1002     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
   1003 
   1004     SkFP    A = SkScalarToFP(a);
   1005     SkFP    B = SkScalarToFP(b);
   1006     SkFP    C = SkScalarToFP(c);
   1007 
   1008     coeff[0] = SkFPMul(C, C);
   1009     coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
   1010     coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
   1011     coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
   1012     coeff[3] = SkFPMul(A, B);
   1013 }
   1014 
   1015 // EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
   1016 //#define kMinTValueForChopping (SK_Scalar1 / 256)
   1017 #define kMinTValueForChopping   0
   1018 
   1019 /*  Looking for F' dot F'' == 0
   1020 
   1021     A = b - a
   1022     B = c - 2b + a
   1023     C = d - 3c + 3b - a
   1024 
   1025     F' = 3Ct^2 + 6Bt + 3A
   1026     F'' = 6Ct + 6B
   1027 
   1028     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
   1029 */
   1030 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
   1031 {
   1032     SkFP    coeffX[4], coeffY[4];
   1033     int     i;
   1034 
   1035     formulate_F1DotF2(&src[0].fX, coeffX);
   1036     formulate_F1DotF2(&src[0].fY, coeffY);
   1037 
   1038     for (i = 0; i < 4; i++)
   1039         coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
   1040 
   1041     SkScalar    t[3];
   1042     int         count = solve_cubic_polynomial(coeffX, t);
   1043     int         maxCount = 0;
   1044 
   1045     // now remove extrema where the curvature is zero (mins)
   1046     // !!!! need a test for this !!!!
   1047     for (i = 0; i < count; i++)
   1048     {
   1049         // if (not_min_curvature())
   1050         if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
   1051             tValues[maxCount++] = t[i];
   1052     }
   1053     return maxCount;
   1054 }
   1055 
   1056 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
   1057 {
   1058     SkScalar    t_storage[3];
   1059 
   1060     if (tValues == NULL)
   1061         tValues = t_storage;
   1062 
   1063     int count = SkFindCubicMaxCurvature(src, tValues);
   1064 
   1065     if (dst) {
   1066         if (count == 0)
   1067             memcpy(dst, src, 4 * sizeof(SkPoint));
   1068         else
   1069             SkChopCubicAt(src, dst, tValues, count);
   1070     }
   1071     return count + 1;
   1072 }
   1073 
   1074 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
   1075     if (ambiguous) {
   1076         *ambiguous = false;
   1077     }
   1078 
   1079     // Find the minimum and maximum y of the extrema, which are the
   1080     // first and last points since this cubic is monotonic
   1081     SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
   1082     SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
   1083 
   1084     if (pt.fY == cubic[0].fY
   1085         || pt.fY < min_y
   1086         || pt.fY > max_y) {
   1087         // The query line definitely does not cross the curve
   1088         if (ambiguous) {
   1089             *ambiguous = (pt.fY == cubic[0].fY);
   1090         }
   1091         return false;
   1092     }
   1093 
   1094     bool pt_at_extremum = (pt.fY == cubic[3].fY);
   1095 
   1096     SkScalar min_x =
   1097         SkMinScalar(
   1098             SkMinScalar(
   1099                 SkMinScalar(cubic[0].fX, cubic[1].fX),
   1100                 cubic[2].fX),
   1101             cubic[3].fX);
   1102     if (pt.fX < min_x) {
   1103         // The query line definitely crosses the curve
   1104         if (ambiguous) {
   1105             *ambiguous = pt_at_extremum;
   1106         }
   1107         return true;
   1108     }
   1109 
   1110     SkScalar max_x =
   1111         SkMaxScalar(
   1112             SkMaxScalar(
   1113                 SkMaxScalar(cubic[0].fX, cubic[1].fX),
   1114                 cubic[2].fX),
   1115             cubic[3].fX);
   1116     if (pt.fX > max_x) {
   1117         // The query line definitely does not cross the curve
   1118         return false;
   1119     }
   1120 
   1121     // Do a binary search to find the parameter value which makes y as
   1122     // close as possible to the query point. See whether the query
   1123     // line's origin is to the left of the associated x coordinate.
   1124 
   1125     // kMaxIter is chosen as the number of mantissa bits for a float,
   1126     // since there's no way we are going to get more precision by
   1127     // iterating more times than that.
   1128     const int kMaxIter = 23;
   1129     SkPoint eval;
   1130     int iter = 0;
   1131     SkScalar upper_t;
   1132     SkScalar lower_t;
   1133     // Need to invert direction of t parameter if cubic goes up
   1134     // instead of down
   1135     if (cubic[3].fY > cubic[0].fY) {
   1136         upper_t = SK_Scalar1;
   1137         lower_t = 0;
   1138     } else {
   1139         upper_t = 0;
   1140         lower_t = SK_Scalar1;
   1141     }
   1142     do {
   1143         SkScalar t = SkScalarAve(upper_t, lower_t);
   1144         SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
   1145         if (pt.fY > eval.fY) {
   1146             lower_t = t;
   1147         } else {
   1148             upper_t = t;
   1149         }
   1150     } while (++iter < kMaxIter
   1151              && !SkScalarNearlyZero(eval.fY - pt.fY));
   1152     if (pt.fX <= eval.fX) {
   1153         if (ambiguous) {
   1154             *ambiguous = pt_at_extremum;
   1155         }
   1156         return true;
   1157     }
   1158     return false;
   1159 }
   1160 
   1161 int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
   1162     int num_crossings = 0;
   1163     SkPoint monotonic_cubics[10];
   1164     int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
   1165     if (ambiguous) {
   1166         *ambiguous = false;
   1167     }
   1168     bool locally_ambiguous;
   1169     if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
   1170         ++num_crossings;
   1171     if (ambiguous) {
   1172         *ambiguous |= locally_ambiguous;
   1173     }
   1174     if (num_monotonic_cubics > 0)
   1175         if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
   1176             ++num_crossings;
   1177     if (ambiguous) {
   1178         *ambiguous |= locally_ambiguous;
   1179     }
   1180     if (num_monotonic_cubics > 1)
   1181         if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
   1182             ++num_crossings;
   1183     if (ambiguous) {
   1184         *ambiguous |= locally_ambiguous;
   1185     }
   1186     return num_crossings;
   1187 }
   1188 ////////////////////////////////////////////////////////////////////////////////
   1189 
   1190 /*  Find t value for quadratic [a, b, c] = d.
   1191     Return 0 if there is no solution within [0, 1)
   1192 */
   1193 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
   1194 {
   1195     // At^2 + Bt + C = d
   1196     SkScalar A = a - 2 * b + c;
   1197     SkScalar B = 2 * (b - a);
   1198     SkScalar C = a - d;
   1199 
   1200     SkScalar    roots[2];
   1201     int         count = SkFindUnitQuadRoots(A, B, C, roots);
   1202 
   1203     SkASSERT(count <= 1);
   1204     return count == 1 ? roots[0] : 0;
   1205 }
   1206 
   1207 /*  given a quad-curve and a point (x,y), chop the quad at that point and place
   1208     the new off-curve point and endpoint into 'dest'.
   1209     Should only return false if the computed pos is the start of the curve
   1210     (i.e. root == 0)
   1211 */
   1212 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest)
   1213 {
   1214     const SkScalar* base;
   1215     SkScalar        value;
   1216 
   1217     if (SkScalarAbs(x) < SkScalarAbs(y)) {
   1218         base = &quad[0].fX;
   1219         value = x;
   1220     } else {
   1221         base = &quad[0].fY;
   1222         value = y;
   1223     }
   1224 
   1225     // note: this returns 0 if it thinks value is out of range, meaning the
   1226     // root might return something outside of [0, 1)
   1227     SkScalar t = quad_solve(base[0], base[2], base[4], value);
   1228 
   1229     if (t > 0)
   1230     {
   1231         SkPoint tmp[5];
   1232         SkChopQuadAt(quad, tmp, t);
   1233         dest[0] = tmp[1];
   1234         dest[1].set(x, y);
   1235         return true;
   1236     } else {
   1237         /*  t == 0 means either the value triggered a root outside of [0, 1)
   1238             For our purposes, we can ignore the <= 0 roots, but we want to
   1239             catch the >= 1 roots (which given our caller, will basically mean
   1240             a root of 1, give-or-take numerical instability). If we are in the
   1241             >= 1 case, return the existing offCurve point.
   1242 
   1243             The test below checks to see if we are close to the "end" of the
   1244             curve (near base[4]). Rather than specifying a tolerance, I just
   1245             check to see if value is on to the right/left of the middle point
   1246             (depending on the direction/sign of the end points).
   1247         */
   1248         if ((base[0] < base[4] && value > base[2]) ||
   1249             (base[0] > base[4] && value < base[2]))   // should root have been 1
   1250         {
   1251             dest[0] = quad[1];
   1252             dest[1].set(x, y);
   1253             return true;
   1254         }
   1255     }
   1256     return false;
   1257 }
   1258 
   1259 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
   1260 // The mid point of the quadratic arc approximation is half way between the two
   1261 // control points. The float epsilon adjustment moves the on curve point out by
   1262 // two bits, distributing the convex test error between the round rect approximation
   1263 // and the convex cross product sign equality test.
   1264 #define SK_MID_RRECT_OFFSET (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
   1265     { SK_Scalar1,            0                      },
   1266     { SK_Scalar1,            SK_ScalarTanPIOver8    },
   1267     { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
   1268     { SK_ScalarTanPIOver8,   SK_Scalar1             },
   1269 
   1270     { 0,                     SK_Scalar1             },
   1271     { -SK_ScalarTanPIOver8,  SK_Scalar1             },
   1272     { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
   1273     { -SK_Scalar1,           SK_ScalarTanPIOver8    },
   1274 
   1275     { -SK_Scalar1,           0                      },
   1276     { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
   1277     { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
   1278     { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
   1279 
   1280     { 0,                     -SK_Scalar1            },
   1281     { SK_ScalarTanPIOver8,   -SK_Scalar1            },
   1282     { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
   1283     { SK_Scalar1,            -SK_ScalarTanPIOver8   },
   1284 
   1285     { SK_Scalar1,            0                      }
   1286 #undef SK_MID_RRECT_OFFSET
   1287 };
   1288 
   1289 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
   1290                    SkRotationDirection dir, const SkMatrix* userMatrix,
   1291                    SkPoint quadPoints[])
   1292 {
   1293     // rotate by x,y so that uStart is (1.0)
   1294     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1295     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1296 
   1297     SkScalar absX = SkScalarAbs(x);
   1298     SkScalar absY = SkScalarAbs(y);
   1299 
   1300     int pointCount;
   1301 
   1302     // check for (effectively) coincident vectors
   1303     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1304     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1305     if (absY <= SK_ScalarNearlyZero && x > 0 &&
   1306         ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1307          (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1308 
   1309         // just return the start-point
   1310         quadPoints[0].set(SK_Scalar1, 0);
   1311         pointCount = 1;
   1312     } else {
   1313         if (dir == kCCW_SkRotationDirection)
   1314             y = -y;
   1315 
   1316         // what octant (quadratic curve) is [xy] in?
   1317         int oct = 0;
   1318         bool sameSign = true;
   1319 
   1320         if (0 == y)
   1321         {
   1322             oct = 4;        // 180
   1323             SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1324         }
   1325         else if (0 == x)
   1326         {
   1327             SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1328             if (y > 0)
   1329                 oct = 2;    // 90
   1330             else
   1331                 oct = 6;    // 270
   1332         }
   1333         else
   1334         {
   1335             if (y < 0)
   1336                 oct += 4;
   1337             if ((x < 0) != (y < 0))
   1338             {
   1339                 oct += 2;
   1340                 sameSign = false;
   1341             }
   1342             if ((absX < absY) == sameSign)
   1343                 oct += 1;
   1344         }
   1345 
   1346         int wholeCount = oct << 1;
   1347         memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
   1348 
   1349         const SkPoint* arc = &gQuadCirclePts[wholeCount];
   1350         if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1]))
   1351         {
   1352             wholeCount += 2;
   1353         }
   1354         pointCount = wholeCount + 1;
   1355     }
   1356 
   1357     // now handle counter-clockwise and the initial unitStart rotation
   1358     SkMatrix    matrix;
   1359     matrix.setSinCos(uStart.fY, uStart.fX);
   1360     if (dir == kCCW_SkRotationDirection) {
   1361         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1362     }
   1363     if (userMatrix) {
   1364         matrix.postConcat(*userMatrix);
   1365     }
   1366     matrix.mapPoints(quadPoints, pointCount);
   1367     return pointCount;
   1368 }
   1369 
   1370 ///////////////////////////////////////////////////////////////////////////////
   1371 
   1372 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
   1373 //     ------------------------------------------
   1374 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
   1375 //
   1376 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
   1377 //     ------------------------------------------------
   1378 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
   1379 //
   1380 
   1381 // Take the parametric specification for the conic (either X or Y) and return
   1382 // in coeff[] the coefficients for the simple quadratic polynomial
   1383 //    coeff[0] for t^2
   1384 //    coeff[1] for t
   1385 //    coeff[2] for constant term
   1386 //
   1387 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
   1388     SkASSERT(src);
   1389     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1390 
   1391     SkScalar    src2w = SkScalarMul(src[2], w);
   1392     SkScalar    C = src[0];
   1393     SkScalar    A = src[4] - 2 * src2w + C;
   1394     SkScalar    B = 2 * (src2w - C);
   1395     SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1396 
   1397     B = 2 * (w - SK_Scalar1);
   1398     C = SK_Scalar1;
   1399     A = -B;
   1400     SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1401 
   1402     return SkScalarDiv(numer, denom);
   1403 }
   1404 
   1405 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
   1406 //
   1407 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
   1408 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
   1409 //  t^0 : -2 P0 w + 2 P1 w
   1410 //
   1411 //  We disregard magnitude, so we can freely ignore the denominator of F', and
   1412 //  divide the numerator by 2
   1413 //
   1414 //    coeff[0] for t^2
   1415 //    coeff[1] for t^1
   1416 //    coeff[2] for t^0
   1417 //
   1418 static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
   1419     const SkScalar P20 = src[4] - src[0];
   1420     const SkScalar P10 = src[2] - src[0];
   1421     const SkScalar wP10 = w * P10;
   1422     coeff[0] = w * P20 - P20;
   1423     coeff[1] = P20 - 2 * wP10;
   1424     coeff[2] = wP10;
   1425 }
   1426 
   1427 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
   1428     SkScalar coeff[3];
   1429     conic_deriv_coeff(coord, w, coeff);
   1430     return t * (t * coeff[0] + coeff[1]) + coeff[2];
   1431 }
   1432 
   1433 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
   1434     SkScalar coeff[3];
   1435     conic_deriv_coeff(src, w, coeff);
   1436 
   1437     SkScalar tValues[2];
   1438     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
   1439     SkASSERT(0 == roots || 1 == roots);
   1440 
   1441     if (1 == roots) {
   1442         *t = tValues[0];
   1443         return true;
   1444     }
   1445     return false;
   1446 }
   1447 
   1448 struct SkP3D {
   1449     SkScalar fX, fY, fZ;
   1450 
   1451     void set(SkScalar x, SkScalar y, SkScalar z) {
   1452         fX = x; fY = y; fZ = z;
   1453     }
   1454 
   1455     void projectDown(SkPoint* dst) const {
   1456         dst->set(fX / fZ, fY / fZ);
   1457     }
   1458 };
   1459 
   1460 // we just return the middle 3 points, since the first and last are dups of src
   1461 //
   1462 static void p3d_interp(const SkScalar src[3], SkScalar dst[3], SkScalar t) {
   1463     SkScalar ab = SkScalarInterp(src[0], src[3], t);
   1464     SkScalar bc = SkScalarInterp(src[3], src[6], t);
   1465     dst[0] = ab;
   1466     dst[3] = SkScalarInterp(ab, bc, t);
   1467     dst[6] = bc;
   1468 }
   1469 
   1470 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
   1471     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
   1472     dst[1].set(src[1].fX * w, src[1].fY * w, w);
   1473     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
   1474 }
   1475 
   1476 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1477     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1478 
   1479     if (pt) {
   1480         pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
   1481                 conic_eval_pos(&fPts[0].fY, fW, t));
   1482     }
   1483     if (tangent) {
   1484         tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
   1485                      conic_eval_tan(&fPts[0].fY, fW, t));
   1486     }
   1487 }
   1488 
   1489 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
   1490     SkP3D tmp[3], tmp2[3];
   1491 
   1492     ratquad_mapTo3D(fPts, fW, tmp);
   1493 
   1494     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
   1495     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
   1496     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
   1497 
   1498     dst[0].fPts[0] = fPts[0];
   1499     tmp2[0].projectDown(&dst[0].fPts[1]);
   1500     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
   1501     tmp2[2].projectDown(&dst[1].fPts[1]);
   1502     dst[1].fPts[2] = fPts[2];
   1503 
   1504     // to put in "standard form", where w0 and w2 are both 1, we compute the
   1505     // new w1 as sqrt(w1*w1/w0*w2)
   1506     // or
   1507     // w1 /= sqrt(w0*w2)
   1508     //
   1509     // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
   1510     //
   1511     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1512     dst[0].fW = tmp2[0].fZ / root;
   1513     dst[1].fW = tmp2[2].fZ / root;
   1514 }
   1515 
   1516 static SkScalar subdivide_w_value(SkScalar w) {
   1517     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1518 }
   1519 
   1520 void SkConic::chop(SkConic dst[2]) const {
   1521     SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
   1522     SkScalar p1x = fW * fPts[1].fX;
   1523     SkScalar p1y = fW * fPts[1].fY;
   1524     SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
   1525     SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
   1526 
   1527     dst[0].fPts[0] = fPts[0];
   1528     dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
   1529                        (fPts[0].fY + p1y) * scale);
   1530     dst[0].fPts[2].set(mx, my);
   1531 
   1532     dst[1].fPts[0].set(mx, my);
   1533     dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
   1534                        (p1y + fPts[2].fY) * scale);
   1535     dst[1].fPts[2] = fPts[2];
   1536 
   1537     dst[0].fW = dst[1].fW = subdivide_w_value(fW);
   1538 }
   1539 
   1540 /*
   1541  *  "High order approximation of conic sections by quadratic splines"
   1542  *      by Michael Floater, 1993
   1543  */
   1544 #define AS_QUAD_ERROR_SETUP                                         \
   1545     SkScalar a = fW - 1;                                            \
   1546     SkScalar k = a / (4 * (2 + a));                                 \
   1547     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1548     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1549 
   1550 void SkConic::computeAsQuadError(SkVector* err) const {
   1551     AS_QUAD_ERROR_SETUP
   1552     err->set(x, y);
   1553 }
   1554 
   1555 bool SkConic::asQuadTol(SkScalar tol) const {
   1556     AS_QUAD_ERROR_SETUP
   1557     return (x * x + y * y) <= tol * tol;
   1558 }
   1559 
   1560 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1561     AS_QUAD_ERROR_SETUP
   1562     SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
   1563 
   1564     if (error <= 0) {
   1565         return 0;
   1566     }
   1567     uint32_t ierr = (uint32_t)error;
   1568     return (34 - SkCLZ(ierr)) >> 1;
   1569 }
   1570 
   1571 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1572     SkASSERT(level >= 0);
   1573 
   1574     if (0 == level) {
   1575         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1576         return pts + 2;
   1577     } else {
   1578         SkConic dst[2];
   1579         src.chop(dst);
   1580         --level;
   1581         pts = subdivide(dst[0], pts, level);
   1582         return subdivide(dst[1], pts, level);
   1583     }
   1584 }
   1585 
   1586 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1587     SkASSERT(pow2 >= 0);
   1588     *pts = fPts[0];
   1589     SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
   1590     SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
   1591     return 1 << pow2;
   1592 }
   1593 
   1594 bool SkConic::findXExtrema(SkScalar* t) const {
   1595     return conic_find_extrema(&fPts[0].fX, fW, t);
   1596 }
   1597 
   1598 bool SkConic::findYExtrema(SkScalar* t) const {
   1599     return conic_find_extrema(&fPts[0].fY, fW, t);
   1600 }
   1601 
   1602 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1603     SkScalar t;
   1604     if (this->findXExtrema(&t)) {
   1605         this->chopAt(t, dst);
   1606         // now clean-up the middle, since we know t was meant to be at
   1607         // an X-extrema
   1608         SkScalar value = dst[0].fPts[2].fX;
   1609         dst[0].fPts[1].fX = value;
   1610         dst[1].fPts[0].fX = value;
   1611         dst[1].fPts[1].fX = value;
   1612         return true;
   1613     }
   1614     return false;
   1615 }
   1616 
   1617 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1618     SkScalar t;
   1619     if (this->findYExtrema(&t)) {
   1620         this->chopAt(t, dst);
   1621         // now clean-up the middle, since we know t was meant to be at
   1622         // an Y-extrema
   1623         SkScalar value = dst[0].fPts[2].fY;
   1624         dst[0].fPts[1].fY = value;
   1625         dst[1].fPts[0].fY = value;
   1626         dst[1].fPts[1].fY = value;
   1627         return true;
   1628     }
   1629     return false;
   1630 }
   1631 
   1632 void SkConic::computeTightBounds(SkRect* bounds) const {
   1633     SkPoint pts[4];
   1634     pts[0] = fPts[0];
   1635     pts[1] = fPts[2];
   1636     int count = 2;
   1637 
   1638     SkScalar t;
   1639     if (this->findXExtrema(&t)) {
   1640         this->evalAt(t, &pts[count++]);
   1641     }
   1642     if (this->findYExtrema(&t)) {
   1643         this->evalAt(t, &pts[count++]);
   1644     }
   1645     bounds->set(pts, count);
   1646 }
   1647 
   1648 void SkConic::computeFastBounds(SkRect* bounds) const {
   1649     bounds->set(fPts, 3);
   1650 }
   1651