1 /* 2 * Copyright 2013 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkBuffer.h" 9 #include "SkOnce.h" 10 #include "SkPath.h" 11 #include "SkPathRef.h" 12 13 ////////////////////////////////////////////////////////////////////////////// 14 SkPathRef::Editor::Editor(SkAutoTUnref<SkPathRef>* pathRef, 15 int incReserveVerbs, 16 int incReservePoints) 17 { 18 if ((*pathRef)->unique()) { 19 (*pathRef)->incReserve(incReserveVerbs, incReservePoints); 20 } else { 21 SkPathRef* copy = SkNEW(SkPathRef); 22 copy->copy(**pathRef, incReserveVerbs, incReservePoints); 23 pathRef->reset(copy); 24 } 25 fPathRef = *pathRef; 26 fPathRef->fGenerationID = 0; 27 SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) 28 } 29 30 ////////////////////////////////////////////////////////////////////////////// 31 void SkPathRef::CreateEmptyImpl(SkPathRef** empty) { 32 *empty = SkNEW(SkPathRef); 33 (*empty)->computeBounds(); // Preemptively avoid a race to clear fBoundsIsDirty. 34 } 35 36 SkPathRef* SkPathRef::CreateEmpty() { 37 static SkPathRef* gEmptyPathRef; 38 SK_DECLARE_STATIC_ONCE(once); 39 SkOnce(&once, SkPathRef::CreateEmptyImpl, &gEmptyPathRef); 40 return SkRef(gEmptyPathRef); 41 } 42 43 void SkPathRef::CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst, 44 const SkPathRef& src, 45 const SkMatrix& matrix) { 46 SkDEBUGCODE(src.validate();) 47 if (matrix.isIdentity()) { 48 if (*dst != &src) { 49 src.ref(); 50 dst->reset(const_cast<SkPathRef*>(&src)); 51 SkDEBUGCODE((*dst)->validate();) 52 } 53 return; 54 } 55 56 if (!(*dst)->unique()) { 57 dst->reset(SkNEW(SkPathRef)); 58 } 59 60 if (*dst != &src) { 61 (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); 62 memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); 63 (*dst)->fConicWeights = src.fConicWeights; 64 } 65 66 SkASSERT((*dst)->countPoints() == src.countPoints()); 67 SkASSERT((*dst)->countVerbs() == src.countVerbs()); 68 SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count()); 69 70 // Need to check this here in case (&src == dst) 71 bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; 72 73 matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); 74 75 /* 76 * Here we optimize the bounds computation, by noting if the bounds are 77 * already known, and if so, we just transform those as well and mark 78 * them as "known", rather than force the transformed path to have to 79 * recompute them. 80 * 81 * Special gotchas if the path is effectively empty (<= 1 point) or 82 * if it is non-finite. In those cases bounds need to stay empty, 83 * regardless of the matrix. 84 */ 85 if (canXformBounds) { 86 (*dst)->fBoundsIsDirty = false; 87 if (src.fIsFinite) { 88 matrix.mapRect(&(*dst)->fBounds, src.fBounds); 89 if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { 90 (*dst)->fBounds.setEmpty(); 91 } 92 } else { 93 (*dst)->fIsFinite = false; 94 (*dst)->fBounds.setEmpty(); 95 } 96 } else { 97 (*dst)->fBoundsIsDirty = true; 98 } 99 100 (*dst)->fSegmentMask = src.fSegmentMask; 101 102 // It's an oval only if it stays a rect. 103 (*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect(); 104 105 SkDEBUGCODE((*dst)->validate();) 106 } 107 108 SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer 109 #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO 110 , bool newFormat, int32_t oldPacked 111 #endif 112 ) { 113 SkPathRef* ref = SkNEW(SkPathRef); 114 bool isOval; 115 uint8_t segmentMask; 116 117 int32_t packed; 118 if (!buffer->readS32(&packed)) { 119 SkDELETE(ref); 120 return NULL; 121 } 122 123 ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1; 124 125 #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO 126 if (newFormat) { 127 #endif 128 segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF; 129 isOval = (packed >> kIsOval_SerializationShift) & 1; 130 #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO 131 } else { 132 segmentMask = (oldPacked >> SkPath::kOldSegmentMask_SerializationShift) & 0xF; 133 isOval = (oldPacked >> SkPath::kOldIsOval_SerializationShift) & 1; 134 } 135 #endif 136 137 int32_t verbCount, pointCount, conicCount; 138 if (!buffer->readU32(&(ref->fGenerationID)) || 139 !buffer->readS32(&verbCount) || 140 !buffer->readS32(&pointCount) || 141 !buffer->readS32(&conicCount)) { 142 SkDELETE(ref); 143 return NULL; 144 } 145 146 ref->resetToSize(verbCount, pointCount, conicCount); 147 SkASSERT(verbCount == ref->countVerbs()); 148 SkASSERT(pointCount == ref->countPoints()); 149 SkASSERT(conicCount == ref->fConicWeights.count()); 150 151 if (!buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)) || 152 !buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)) || 153 !buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)) || 154 !buffer->read(&ref->fBounds, sizeof(SkRect))) { 155 SkDELETE(ref); 156 return NULL; 157 } 158 ref->fBoundsIsDirty = false; 159 160 // resetToSize clears fSegmentMask and fIsOval 161 ref->fSegmentMask = segmentMask; 162 ref->fIsOval = isOval; 163 return ref; 164 } 165 166 void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) { 167 if ((*pathRef)->unique()) { 168 SkDEBUGCODE((*pathRef)->validate();) 169 (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite 170 (*pathRef)->fVerbCnt = 0; 171 (*pathRef)->fPointCnt = 0; 172 (*pathRef)->fFreeSpace = (*pathRef)->currSize(); 173 (*pathRef)->fGenerationID = 0; 174 (*pathRef)->fConicWeights.rewind(); 175 (*pathRef)->fSegmentMask = 0; 176 (*pathRef)->fIsOval = false; 177 SkDEBUGCODE((*pathRef)->validate();) 178 } else { 179 int oldVCnt = (*pathRef)->countVerbs(); 180 int oldPCnt = (*pathRef)->countPoints(); 181 pathRef->reset(SkNEW(SkPathRef)); 182 (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); 183 } 184 } 185 186 bool SkPathRef::operator== (const SkPathRef& ref) const { 187 SkDEBUGCODE(this->validate();) 188 SkDEBUGCODE(ref.validate();) 189 190 // We explicitly check fSegmentMask as a quick-reject. We could skip it, 191 // since it is only a cache of info in the fVerbs, but its a fast way to 192 // notice a difference 193 if (fSegmentMask != ref.fSegmentMask) { 194 return false; 195 } 196 197 bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; 198 #ifdef SK_RELEASE 199 if (genIDMatch) { 200 return true; 201 } 202 #endif 203 if (fPointCnt != ref.fPointCnt || 204 fVerbCnt != ref.fVerbCnt) { 205 SkASSERT(!genIDMatch); 206 return false; 207 } 208 if (0 != memcmp(this->verbsMemBegin(), 209 ref.verbsMemBegin(), 210 ref.fVerbCnt * sizeof(uint8_t))) { 211 SkASSERT(!genIDMatch); 212 return false; 213 } 214 if (0 != memcmp(this->points(), 215 ref.points(), 216 ref.fPointCnt * sizeof(SkPoint))) { 217 SkASSERT(!genIDMatch); 218 return false; 219 } 220 if (fConicWeights != ref.fConicWeights) { 221 SkASSERT(!genIDMatch); 222 return false; 223 } 224 // We've done the work to determine that these are equal. If either has a zero genID, copy 225 // the other's. If both are 0 then genID() will compute the next ID. 226 if (0 == fGenerationID) { 227 fGenerationID = ref.genID(); 228 } else if (0 == ref.fGenerationID) { 229 ref.fGenerationID = this->genID(); 230 } 231 return true; 232 } 233 234 void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { 235 SkDEBUGCODE(this->validate();) 236 SkDEBUGCODE(size_t beforePos = buffer->pos();) 237 238 // Call getBounds() to ensure (as a side-effect) that fBounds 239 // and fIsFinite are computed. 240 const SkRect& bounds = this->getBounds(); 241 242 int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | 243 ((fIsOval & 1) << kIsOval_SerializationShift) | 244 (fSegmentMask << kSegmentMask_SerializationShift); 245 buffer->write32(packed); 246 247 // TODO: write gen ID here. Problem: We don't know if we're cross process or not from 248 // SkWBuffer. Until this is fixed we write 0. 249 buffer->write32(0); 250 buffer->write32(fVerbCnt); 251 buffer->write32(fPointCnt); 252 buffer->write32(fConicWeights.count()); 253 buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); 254 buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); 255 buffer->write(fConicWeights.begin(), fConicWeights.bytes()); 256 buffer->write(&bounds, sizeof(bounds)); 257 258 SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); 259 } 260 261 uint32_t SkPathRef::writeSize() const { 262 return uint32_t(5 * sizeof(uint32_t) + 263 fVerbCnt * sizeof(uint8_t) + 264 fPointCnt * sizeof(SkPoint) + 265 fConicWeights.bytes() + 266 sizeof(SkRect)); 267 } 268 269 void SkPathRef::copy(const SkPathRef& ref, 270 int additionalReserveVerbs, 271 int additionalReservePoints) { 272 SkDEBUGCODE(this->validate();) 273 this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), 274 additionalReserveVerbs, additionalReservePoints); 275 memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t)); 276 memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); 277 fConicWeights = ref.fConicWeights; 278 // We could call genID() here to force a real ID (instead of 0). However, if we're making 279 // a copy then presumably we intend to make a modification immediately afterwards. 280 fGenerationID = ref.fGenerationID; 281 fBoundsIsDirty = ref.fBoundsIsDirty; 282 if (!fBoundsIsDirty) { 283 fBounds = ref.fBounds; 284 fIsFinite = ref.fIsFinite; 285 } 286 fSegmentMask = ref.fSegmentMask; 287 fIsOval = ref.fIsOval; 288 SkDEBUGCODE(this->validate();) 289 } 290 291 SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, 292 int numVbs, 293 SkScalar** weights) { 294 // This value is just made-up for now. When count is 4, calling memset was much 295 // slower than just writing the loop. This seems odd, and hopefully in the 296 // future this will appear to have been a fluke... 297 static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16; 298 299 SkDEBUGCODE(this->validate();) 300 int pCnt; 301 bool dirtyAfterEdit = true; 302 switch (verb) { 303 case SkPath::kMove_Verb: 304 pCnt = numVbs; 305 dirtyAfterEdit = false; 306 break; 307 case SkPath::kLine_Verb: 308 fSegmentMask |= SkPath::kLine_SegmentMask; 309 pCnt = numVbs; 310 break; 311 case SkPath::kQuad_Verb: 312 fSegmentMask |= SkPath::kQuad_SegmentMask; 313 pCnt = 2 * numVbs; 314 break; 315 case SkPath::kConic_Verb: 316 fSegmentMask |= SkPath::kConic_SegmentMask; 317 pCnt = 2 * numVbs; 318 break; 319 case SkPath::kCubic_Verb: 320 fSegmentMask |= SkPath::kCubic_SegmentMask; 321 pCnt = 3 * numVbs; 322 break; 323 case SkPath::kClose_Verb: 324 SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); 325 pCnt = 0; 326 dirtyAfterEdit = false; 327 break; 328 case SkPath::kDone_Verb: 329 SkDEBUGFAIL("growForRepeatedVerb called for kDone"); 330 // fall through 331 default: 332 SkDEBUGFAIL("default should not be reached"); 333 pCnt = 0; 334 dirtyAfterEdit = false; 335 } 336 337 size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint); 338 this->makeSpace(space); 339 340 SkPoint* ret = fPoints + fPointCnt; 341 uint8_t* vb = fVerbs - fVerbCnt; 342 343 // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to 344 // be 0, the compiler will remove the test/branch entirely. 345 if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) { 346 memset(vb - numVbs, verb, numVbs); 347 } else { 348 for (int i = 0; i < numVbs; ++i) { 349 vb[~i] = verb; 350 } 351 } 352 353 fVerbCnt += numVbs; 354 fPointCnt += pCnt; 355 fFreeSpace -= space; 356 fBoundsIsDirty = true; // this also invalidates fIsFinite 357 if (dirtyAfterEdit) { 358 fIsOval = false; 359 } 360 361 if (SkPath::kConic_Verb == verb) { 362 SkASSERT(NULL != weights); 363 *weights = fConicWeights.append(numVbs); 364 } 365 366 SkDEBUGCODE(this->validate();) 367 return ret; 368 } 369 370 SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { 371 SkDEBUGCODE(this->validate();) 372 int pCnt; 373 bool dirtyAfterEdit = true; 374 switch (verb) { 375 case SkPath::kMove_Verb: 376 pCnt = 1; 377 dirtyAfterEdit = false; 378 break; 379 case SkPath::kLine_Verb: 380 fSegmentMask |= SkPath::kLine_SegmentMask; 381 pCnt = 1; 382 break; 383 case SkPath::kQuad_Verb: 384 fSegmentMask |= SkPath::kQuad_SegmentMask; 385 pCnt = 2; 386 break; 387 case SkPath::kConic_Verb: 388 fSegmentMask |= SkPath::kConic_SegmentMask; 389 pCnt = 2; 390 break; 391 case SkPath::kCubic_Verb: 392 fSegmentMask |= SkPath::kCubic_SegmentMask; 393 pCnt = 3; 394 break; 395 case SkPath::kClose_Verb: 396 pCnt = 0; 397 dirtyAfterEdit = false; 398 break; 399 case SkPath::kDone_Verb: 400 SkDEBUGFAIL("growForVerb called for kDone"); 401 // fall through 402 default: 403 SkDEBUGFAIL("default is not reached"); 404 dirtyAfterEdit = false; 405 pCnt = 0; 406 } 407 size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); 408 this->makeSpace(space); 409 this->fVerbs[~fVerbCnt] = verb; 410 SkPoint* ret = fPoints + fPointCnt; 411 fVerbCnt += 1; 412 fPointCnt += pCnt; 413 fFreeSpace -= space; 414 fBoundsIsDirty = true; // this also invalidates fIsFinite 415 if (dirtyAfterEdit) { 416 fIsOval = false; 417 } 418 419 if (SkPath::kConic_Verb == verb) { 420 *fConicWeights.append() = weight; 421 } 422 423 SkDEBUGCODE(this->validate();) 424 return ret; 425 } 426 427 uint32_t SkPathRef::genID() const { 428 SkASSERT(!fEditorsAttached); 429 static const uint32_t kMask = (static_cast<int64_t>(1) << SkPath::kPathRefGenIDBitCnt) - 1; 430 if (!fGenerationID) { 431 if (0 == fPointCnt && 0 == fVerbCnt) { 432 fGenerationID = kEmptyGenID; 433 } else { 434 static int32_t gPathRefGenerationID; 435 // do a loop in case our global wraps around, as we never want to return a 0 or the 436 // empty ID 437 do { 438 fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask; 439 } while (fGenerationID <= kEmptyGenID); 440 } 441 } 442 return fGenerationID; 443 } 444 445 #ifdef SK_DEBUG 446 void SkPathRef::validate() const { 447 this->INHERITED::validate(); 448 SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0); 449 SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0); 450 SkASSERT((NULL == fPoints) == (NULL == fVerbs)); 451 SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); 452 SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); 453 SkASSERT(!(NULL == fPoints && fPointCnt)); 454 SkASSERT(!(NULL == fVerbs && fVerbCnt)); 455 SkASSERT(this->currSize() == 456 fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt); 457 458 if (!fBoundsIsDirty && !fBounds.isEmpty()) { 459 bool isFinite = true; 460 for (int i = 0; i < fPointCnt; ++i) { 461 SkASSERT(!fPoints[i].isFinite() || ( 462 fBounds.fLeft - fPoints[i].fX < SK_ScalarNearlyZero && 463 fPoints[i].fX - fBounds.fRight < SK_ScalarNearlyZero && 464 fBounds.fTop - fPoints[i].fY < SK_ScalarNearlyZero && 465 fPoints[i].fY - fBounds.fBottom < SK_ScalarNearlyZero)); 466 if (!fPoints[i].isFinite()) { 467 isFinite = false; 468 } 469 } 470 SkASSERT(SkToBool(fIsFinite) == isFinite); 471 } 472 473 #ifdef SK_DEBUG_PATH 474 uint32_t mask = 0; 475 for (int i = 0; i < fVerbCnt; ++i) { 476 switch (fVerbs[~i]) { 477 case SkPath::kMove_Verb: 478 break; 479 case SkPath::kLine_Verb: 480 mask |= SkPath::kLine_SegmentMask; 481 break; 482 case SkPath::kQuad_Verb: 483 mask |= SkPath::kQuad_SegmentMask; 484 break; 485 case SkPath::kConic_Verb: 486 mask |= SkPath::kConic_SegmentMask; 487 break; 488 case SkPath::kCubic_Verb: 489 mask |= SkPath::kCubic_SegmentMask; 490 break; 491 case SkPath::kClose_Verb: 492 break; 493 case SkPath::kDone_Verb: 494 SkDEBUGFAIL("Done verb shouldn't be recorded."); 495 break; 496 default: 497 SkDEBUGFAIL("Unknown Verb"); 498 break; 499 } 500 } 501 SkASSERT(mask == fSegmentMask); 502 #endif // SK_DEBUG_PATH 503 } 504 #endif 505