Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrPoint.h"
     11 #include "SkGeometry.h"
     12 
     13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     14                                           const SkMatrix& viewM,
     15                                           const SkRect& pathBounds) {
     16     // In order to tesselate the path we get a bound on how much the matrix can
     17     // stretch when mapping to screen coordinates.
     18     SkScalar stretch = viewM.getMaxStretch();
     19     SkScalar srcTol = devTol;
     20 
     21     if (stretch < 0) {
     22         // take worst case mapRadius amoung four corners.
     23         // (less than perfect)
     24         for (int i = 0; i < 4; ++i) {
     25             SkMatrix mat;
     26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     28             mat.postConcat(viewM);
     29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     30         }
     31     }
     32     srcTol = SkScalarDiv(srcTol, stretch);
     33     return srcTol;
     34 }
     35 
     36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     37 static const SkScalar gMinCurveTol = 0.0001f;
     38 
     39 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
     40                                           SkScalar tol) {
     41     if (tol < gMinCurveTol) {
     42         tol = gMinCurveTol;
     43     }
     44     SkASSERT(tol > 0);
     45 
     46     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     47     if (d <= tol) {
     48         return 1;
     49     } else {
     50         // Each time we subdivide, d should be cut in 4. So we need to
     51         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     52         // points.
     53         // 2^(log4(x)) = sqrt(x);
     54         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
     55         int pow2 = GrNextPow2(temp);
     56         // Because of NaNs & INFs we can wind up with a degenerate temp
     57         // such that pow2 comes out negative. Also, our point generator
     58         // will always output at least one pt.
     59         if (pow2 < 1) {
     60             pow2 = 1;
     61         }
     62         return GrMin(pow2, MAX_POINTS_PER_CURVE);
     63     }
     64 }
     65 
     66 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
     67                                               const GrPoint& p1,
     68                                               const GrPoint& p2,
     69                                               SkScalar tolSqd,
     70                                               GrPoint** points,
     71                                               uint32_t pointsLeft) {
     72     if (pointsLeft < 2 ||
     73         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     74         (*points)[0] = p2;
     75         *points += 1;
     76         return 1;
     77     }
     78 
     79     GrPoint q[] = {
     80         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     81         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     82     };
     83     GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     84 
     85     pointsLeft >>= 1;
     86     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     87     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     88     return a + b;
     89 }
     90 
     91 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
     92                                            SkScalar tol) {
     93     if (tol < gMinCurveTol) {
     94         tol = gMinCurveTol;
     95     }
     96     SkASSERT(tol > 0);
     97 
     98     SkScalar d = GrMax(
     99         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    100         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    101     d = SkScalarSqrt(d);
    102     if (d <= tol) {
    103         return 1;
    104     } else {
    105         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
    106         int pow2 = GrNextPow2(temp);
    107         // Because of NaNs & INFs we can wind up with a degenerate temp
    108         // such that pow2 comes out negative. Also, our point generator
    109         // will always output at least one pt.
    110         if (pow2 < 1) {
    111             pow2 = 1;
    112         }
    113         return GrMin(pow2, MAX_POINTS_PER_CURVE);
    114     }
    115 }
    116 
    117 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
    118                                           const GrPoint& p1,
    119                                           const GrPoint& p2,
    120                                           const GrPoint& p3,
    121                                           SkScalar tolSqd,
    122                                           GrPoint** points,
    123                                           uint32_t pointsLeft) {
    124     if (pointsLeft < 2 ||
    125         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    126          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    127             (*points)[0] = p3;
    128             *points += 1;
    129             return 1;
    130         }
    131     GrPoint q[] = {
    132         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    133         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    134         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    135     };
    136     GrPoint r[] = {
    137         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    138         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    139     };
    140     GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    141     pointsLeft >>= 1;
    142     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    143     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    144     return a + b;
    145 }
    146 
    147 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    148                                      SkScalar tol) {
    149     if (tol < gMinCurveTol) {
    150         tol = gMinCurveTol;
    151     }
    152     SkASSERT(tol > 0);
    153 
    154     int pointCount = 0;
    155     *subpaths = 1;
    156 
    157     bool first = true;
    158 
    159     SkPath::Iter iter(path, false);
    160     SkPath::Verb verb;
    161 
    162     GrPoint pts[4];
    163     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    164 
    165         switch (verb) {
    166             case SkPath::kLine_Verb:
    167                 pointCount += 1;
    168                 break;
    169             case SkPath::kQuad_Verb:
    170                 pointCount += quadraticPointCount(pts, tol);
    171                 break;
    172             case SkPath::kCubic_Verb:
    173                 pointCount += cubicPointCount(pts, tol);
    174                 break;
    175             case SkPath::kMove_Verb:
    176                 pointCount += 1;
    177                 if (!first) {
    178                     ++(*subpaths);
    179                 }
    180                 break;
    181             default:
    182                 break;
    183         }
    184         first = false;
    185     }
    186     return pointCount;
    187 }
    188 
    189 void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
    190 #ifndef SK_SCALAR_IS_FLOAT
    191     GrCrash("Expected scalar is float.");
    192 #endif
    193     SkMatrix m;
    194     // We want M such that M * xy_pt = uv_pt
    195     // We know M * control_pts = [0  1/2 1]
    196     //                           [0  0   1]
    197     //                           [1  1   1]
    198     // And control_pts = [x0 x1 x2]
    199     //                   [y0 y1 y2]
    200     //                   [1  1  1 ]
    201     // We invert the control pt matrix and post concat to both sides to get M.
    202     // Using the known form of the control point matrix and the result, we can
    203     // optimize and improve precision.
    204 
    205     double x0 = qPts[0].fX;
    206     double y0 = qPts[0].fY;
    207     double x1 = qPts[1].fX;
    208     double y1 = qPts[1].fY;
    209     double x2 = qPts[2].fX;
    210     double y2 = qPts[2].fY;
    211     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
    212 
    213     if (!sk_float_isfinite(det)
    214         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
    215         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    216         // farthest apart to compute a line (unless it is really a pt).
    217         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    218         int maxEdge = 0;
    219         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    220         if (d > maxD) {
    221             maxD = d;
    222             maxEdge = 1;
    223         }
    224         d = qPts[2].distanceToSqd(qPts[0]);
    225         if (d > maxD) {
    226             maxD = d;
    227             maxEdge = 2;
    228         }
    229         // We could have a tolerance here, not sure if it would improve anything
    230         if (maxD > 0) {
    231             // Set the matrix to give (u = 0, v = distance_to_line)
    232             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    233             // when looking from the point 0 down the line we want positive
    234             // distances to be to the left. This matches the non-degenerate
    235             // case.
    236             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
    237             lineVec.dot(qPts[0]);
    238             // first row
    239             fM[0] = 0;
    240             fM[1] = 0;
    241             fM[2] = 0;
    242             // second row
    243             fM[3] = lineVec.fX;
    244             fM[4] = lineVec.fY;
    245             fM[5] = -lineVec.dot(qPts[maxEdge]);
    246         } else {
    247             // It's a point. It should cover zero area. Just set the matrix such
    248             // that (u, v) will always be far away from the quad.
    249             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    250             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    251         }
    252     } else {
    253         double scale = 1.0/det;
    254 
    255         // compute adjugate matrix
    256         double a0, a1, a2, a3, a4, a5, a6, a7, a8;
    257         a0 = y1-y2;
    258         a1 = x2-x1;
    259         a2 = x1*y2-x2*y1;
    260 
    261         a3 = y2-y0;
    262         a4 = x0-x2;
    263         a5 = x2*y0-x0*y2;
    264 
    265         a6 = y0-y1;
    266         a7 = x1-x0;
    267         a8 = x0*y1-x1*y0;
    268 
    269         // this performs the uv_pts*adjugate(control_pts) multiply,
    270         // then does the scale by 1/det afterwards to improve precision
    271         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
    272         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
    273         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
    274 
    275         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
    276         m[SkMatrix::kMScaleY] = (float)(a7*scale);
    277         m[SkMatrix::kMTransY] = (float)(a8*scale);
    278 
    279         m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
    280         m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
    281         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
    282 
    283         // The matrix should not have perspective.
    284         SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
    285         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
    286         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
    287 
    288         // It may not be normalized to have 1.0 in the bottom right
    289         float m33 = m.get(SkMatrix::kMPersp2);
    290         if (1.f != m33) {
    291             m33 = 1.f / m33;
    292             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    293             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    294             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    295             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    296             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    297             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    298         } else {
    299             fM[0] = m.get(SkMatrix::kMScaleX);
    300             fM[1] = m.get(SkMatrix::kMSkewX);
    301             fM[2] = m.get(SkMatrix::kMTransX);
    302             fM[3] = m.get(SkMatrix::kMSkewY);
    303             fM[4] = m.get(SkMatrix::kMScaleY);
    304             fM[5] = m.get(SkMatrix::kMTransY);
    305         }
    306     }
    307 }
    308 
    309 ////////////////////////////////////////////////////////////////////////////////
    310 
    311 // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
    312 // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
    313 // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
    314 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
    315     const SkScalar w2 = 2.f * weight;
    316     klm[0] = p[2].fY - p[0].fY;
    317     klm[1] = p[0].fX - p[2].fX;
    318     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
    319 
    320     klm[3] = w2 * (p[1].fY - p[0].fY);
    321     klm[4] = w2 * (p[0].fX - p[1].fX);
    322     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
    323 
    324     klm[6] = w2 * (p[2].fY - p[1].fY);
    325     klm[7] = w2 * (p[1].fX - p[2].fX);
    326     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
    327 
    328     // scale the max absolute value of coeffs to 10
    329     SkScalar scale = 0.f;
    330     for (int i = 0; i < 9; ++i) {
    331        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    332     }
    333     SkASSERT(scale > 0.f);
    334     scale = 10.f / scale;
    335     for (int i = 0; i < 9; ++i) {
    336         klm[i] *= scale;
    337     }
    338 }
    339 
    340 ////////////////////////////////////////////////////////////////////////////////
    341 
    342 namespace {
    343 
    344 // a is the first control point of the cubic.
    345 // ab is the vector from a to the second control point.
    346 // dc is the vector from the fourth to the third control point.
    347 // d is the fourth control point.
    348 // p is the candidate quadratic control point.
    349 // this assumes that the cubic doesn't inflect and is simple
    350 bool is_point_within_cubic_tangents(const SkPoint& a,
    351                                     const SkVector& ab,
    352                                     const SkVector& dc,
    353                                     const SkPoint& d,
    354                                     SkPath::Direction dir,
    355                                     const SkPoint p) {
    356     SkVector ap = p - a;
    357     SkScalar apXab = ap.cross(ab);
    358     if (SkPath::kCW_Direction == dir) {
    359         if (apXab > 0) {
    360             return false;
    361         }
    362     } else {
    363         SkASSERT(SkPath::kCCW_Direction == dir);
    364         if (apXab < 0) {
    365             return false;
    366         }
    367     }
    368 
    369     SkVector dp = p - d;
    370     SkScalar dpXdc = dp.cross(dc);
    371     if (SkPath::kCW_Direction == dir) {
    372         if (dpXdc < 0) {
    373             return false;
    374         }
    375     } else {
    376         SkASSERT(SkPath::kCCW_Direction == dir);
    377         if (dpXdc > 0) {
    378             return false;
    379         }
    380     }
    381     return true;
    382 }
    383 
    384 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    385                                        SkScalar toleranceSqd,
    386                                        bool constrainWithinTangents,
    387                                        SkPath::Direction dir,
    388                                        SkTArray<SkPoint, true>* quads,
    389                                        int sublevel = 0) {
    390 
    391     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    392     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    393 
    394     SkVector ab = p[1] - p[0];
    395     SkVector dc = p[2] - p[3];
    396 
    397     if (ab.isZero()) {
    398         if (dc.isZero()) {
    399             SkPoint* degQuad = quads->push_back_n(3);
    400             degQuad[0] = p[0];
    401             degQuad[1] = p[0];
    402             degQuad[2] = p[3];
    403             return;
    404         }
    405         ab = p[2] - p[0];
    406     }
    407     if (dc.isZero()) {
    408         dc = p[1] - p[3];
    409     }
    410 
    411     // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
    412     // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
    413     // the max subdivision count. However, in this case the cubic is approaching a line and the
    414     // accuracy of the quad point isn't so important. We check if the two middle cubic control
    415     // points are very close to the baseline vector. If so then we just pick quadratic points on the
    416     // control polygon.
    417 
    418     if (constrainWithinTangents) {
    419         SkVector da = p[0] - p[3];
    420         SkScalar invDALengthSqd = da.lengthSqd();
    421         if (invDALengthSqd > SK_ScalarNearlyZero) {
    422             invDALengthSqd = SkScalarInvert(invDALengthSqd);
    423             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    424             // same goed for point c using vector cd.
    425             SkScalar detABSqd = ab.cross(da);
    426             detABSqd = SkScalarSquare(detABSqd);
    427             SkScalar detDCSqd = dc.cross(da);
    428             detDCSqd = SkScalarSquare(detDCSqd);
    429             if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
    430                 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
    431                 SkPoint b = p[0] + ab;
    432                 SkPoint c = p[3] + dc;
    433                 SkPoint mid = b + c;
    434                 mid.scale(SK_ScalarHalf);
    435                 // Insert two quadratics to cover the case when ab points away from d and/or dc
    436                 // points away from a.
    437                 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    438                     SkPoint* qpts = quads->push_back_n(6);
    439                     qpts[0] = p[0];
    440                     qpts[1] = b;
    441                     qpts[2] = mid;
    442                     qpts[3] = mid;
    443                     qpts[4] = c;
    444                     qpts[5] = p[3];
    445                 } else {
    446                     SkPoint* qpts = quads->push_back_n(3);
    447                     qpts[0] = p[0];
    448                     qpts[1] = mid;
    449                     qpts[2] = p[3];
    450                 }
    451                 return;
    452             }
    453         }
    454     }
    455 
    456     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    457     static const int kMaxSubdivs = 10;
    458 
    459     ab.scale(kLengthScale);
    460     dc.scale(kLengthScale);
    461 
    462     // e0 and e1 are extrapolations along vectors ab and dc.
    463     SkVector c0 = p[0];
    464     c0 += ab;
    465     SkVector c1 = p[3];
    466     c1 += dc;
    467 
    468     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    469     if (dSqd < toleranceSqd) {
    470         SkPoint cAvg = c0;
    471         cAvg += c1;
    472         cAvg.scale(SK_ScalarHalf);
    473 
    474         bool subdivide = false;
    475 
    476         if (constrainWithinTangents &&
    477             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    478             // choose a new cAvg that is the intersection of the two tangent lines.
    479             ab.setOrthog(ab);
    480             SkScalar z0 = -ab.dot(p[0]);
    481             dc.setOrthog(dc);
    482             SkScalar z1 = -dc.dot(p[3]);
    483             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
    484             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
    485             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
    486             z = SkScalarInvert(z);
    487             cAvg.fX *= z;
    488             cAvg.fY *= z;
    489             if (sublevel <= kMaxSubdivs) {
    490                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    491                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    492                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    493                 // the distances and tolerance can't be negative.
    494                 // (d0 + d1)^2 > toleranceSqd
    495                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    496                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
    497                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    498             }
    499         }
    500         if (!subdivide) {
    501             SkPoint* pts = quads->push_back_n(3);
    502             pts[0] = p[0];
    503             pts[1] = cAvg;
    504             pts[2] = p[3];
    505             return;
    506         }
    507     }
    508     SkPoint choppedPts[7];
    509     SkChopCubicAtHalf(p, choppedPts);
    510     convert_noninflect_cubic_to_quads(choppedPts + 0,
    511                                       toleranceSqd,
    512                                       constrainWithinTangents,
    513                                       dir,
    514                                       quads,
    515                                       sublevel + 1);
    516     convert_noninflect_cubic_to_quads(choppedPts + 3,
    517                                       toleranceSqd,
    518                                       constrainWithinTangents,
    519                                       dir,
    520                                       quads,
    521                                       sublevel + 1);
    522 }
    523 }
    524 
    525 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
    526                                       SkScalar tolScale,
    527                                       bool constrainWithinTangents,
    528                                       SkPath::Direction dir,
    529                                       SkTArray<SkPoint, true>* quads) {
    530     SkPoint chopped[10];
    531     int count = SkChopCubicAtInflections(p, chopped);
    532 
    533     // base tolerance is 1 pixel.
    534     static const SkScalar kTolerance = SK_Scalar1;
    535     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
    536 
    537     for (int i = 0; i < count; ++i) {
    538         SkPoint* cubic = chopped + 3*i;
    539         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
    540     }
    541 
    542 }
    543 
    544 ////////////////////////////////////////////////////////////////////////////////
    545 
    546 enum CubicType {
    547     kSerpentine_CubicType,
    548     kCusp_CubicType,
    549     kLoop_CubicType,
    550     kQuadratic_CubicType,
    551     kLine_CubicType,
    552     kPoint_CubicType
    553 };
    554 
    555 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
    556 // Classification:
    557 // discr(I) > 0        Serpentine
    558 // discr(I) = 0        Cusp
    559 // discr(I) < 0        Loop
    560 // d0 = d1 = 0         Quadratic
    561 // d0 = d1 = d2 = 0    Line
    562 // p0 = p1 = p2 = p3   Point
    563 static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
    564     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
    565         return kPoint_CubicType;
    566     }
    567     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
    568     if (discr > SK_ScalarNearlyZero) {
    569         return kSerpentine_CubicType;
    570     } else if (discr < -SK_ScalarNearlyZero) {
    571         return kLoop_CubicType;
    572     } else {
    573         if (0.f == d[0] && 0.f == d[1]) {
    574             return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
    575         } else {
    576             return kCusp_CubicType;
    577         }
    578     }
    579 }
    580 
    581 // Assumes the third component of points is 1.
    582 // Calcs p0 . (p1 x p2)
    583 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    584     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
    585     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
    586     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
    587     return (xComp + yComp + wComp);
    588 }
    589 
    590 // Solves linear system to extract klm
    591 // P.K = k (similarly for l, m)
    592 // Where P is matrix of control points
    593 // K is coefficients for the line K
    594 // k is vector of values of K evaluated at the control points
    595 // Solving for K, thus K = P^(-1) . k
    596 static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
    597                            const SkScalar controlL[4], const SkScalar controlM[4],
    598                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
    599     SkMatrix matrix;
    600     matrix.setAll(p[0].fX, p[0].fY, 1.f,
    601                   p[1].fX, p[1].fY, 1.f,
    602                   p[2].fX, p[2].fY, 1.f);
    603     SkMatrix inverse;
    604     if (matrix.invert(&inverse)) {
    605        inverse.mapHomogeneousPoints(k, controlK, 1);
    606        inverse.mapHomogeneousPoints(l, controlL, 1);
    607        inverse.mapHomogeneousPoints(m, controlM, 1);
    608     }
    609 
    610 }
    611 
    612 static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    613     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
    614     SkScalar ls = 3.f * d[1] - tempSqrt;
    615     SkScalar lt = 6.f * d[0];
    616     SkScalar ms = 3.f * d[1] + tempSqrt;
    617     SkScalar mt = 6.f * d[0];
    618 
    619     k[0] = ls * ms;
    620     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
    621     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    622     k[3] = (lt - ls) * (mt - ms);
    623 
    624     l[0] = ls * ls * ls;
    625     const SkScalar lt_ls = lt - ls;
    626     l[1] = ls * ls * lt_ls * -1.f;
    627     l[2] = lt_ls * lt_ls * ls;
    628     l[3] = -1.f * lt_ls * lt_ls * lt_ls;
    629 
    630     m[0] = ms * ms * ms;
    631     const SkScalar mt_ms = mt - ms;
    632     m[1] = ms * ms * mt_ms * -1.f;
    633     m[2] = mt_ms * mt_ms * ms;
    634     m[3] = -1.f * mt_ms * mt_ms * mt_ms;
    635 
    636     // If d0 < 0 we need to flip the orientation of our curve
    637     // This is done by negating the k and l values
    638     // We want negative distance values to be on the inside
    639     if ( d[0] > 0) {
    640         for (int i = 0; i < 4; ++i) {
    641             k[i] = -k[i];
    642             l[i] = -l[i];
    643         }
    644     }
    645 }
    646 
    647 static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    648     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    649     SkScalar ls = d[1] - tempSqrt;
    650     SkScalar lt = 2.f * d[0];
    651     SkScalar ms = d[1] + tempSqrt;
    652     SkScalar mt = 2.f * d[0];
    653 
    654     k[0] = ls * ms;
    655     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
    656     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    657     k[3] = (lt - ls) * (mt - ms);
    658 
    659     l[0] = ls * ls * ms;
    660     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
    661     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
    662     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
    663 
    664     m[0] = ls * ms * ms;
    665     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
    666     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
    667     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
    668 
    669 
    670     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
    671     // we need to flip the orientation of our curve.
    672     // This is done by negating the k and l values
    673     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
    674         for (int i = 0; i < 4; ++i) {
    675             k[i] = -k[i];
    676             l[i] = -l[i];
    677         }
    678     }
    679 }
    680 
    681 static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    682     const SkScalar ls = d[2];
    683     const SkScalar lt = 3.f * d[1];
    684 
    685     k[0] = ls;
    686     k[1] = ls - lt / 3.f;
    687     k[2] = ls - 2.f * lt / 3.f;
    688     k[3] = ls - lt;
    689 
    690     l[0] = ls * ls * ls;
    691     const SkScalar ls_lt = ls - lt;
    692     l[1] = ls * ls * ls_lt;
    693     l[2] = ls_lt * ls_lt * ls;
    694     l[3] = ls_lt * ls_lt * ls_lt;
    695 
    696     m[0] = 1.f;
    697     m[1] = 1.f;
    698     m[2] = 1.f;
    699     m[3] = 1.f;
    700 }
    701 
    702 // For the case when a cubic is actually a quadratic
    703 // M =
    704 // 0     0     0
    705 // 1/3   0     1/3
    706 // 2/3   1/3   2/3
    707 // 1     1     1
    708 static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    709     k[0] = 0.f;
    710     k[1] = 1.f/3.f;
    711     k[2] = 2.f/3.f;
    712     k[3] = 1.f;
    713 
    714     l[0] = 0.f;
    715     l[1] = 0.f;
    716     l[2] = 1.f/3.f;
    717     l[3] = 1.f;
    718 
    719     m[0] = 0.f;
    720     m[1] = 1.f/3.f;
    721     m[2] = 2.f/3.f;
    722     m[3] = 1.f;
    723 
    724     // If d2 < 0 we need to flip the orientation of our curve
    725     // This is done by negating the k and l values
    726     if ( d[2] > 0) {
    727         for (int i = 0; i < 4; ++i) {
    728             k[i] = -k[i];
    729             l[i] = -l[i];
    730         }
    731     }
    732 }
    733 
    734 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    735 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    736 // d0 = a1 - 2*a2+3*a3
    737 // d1 = -a2 + 3*a3
    738 // d2 = 3*a3
    739 // a1 = p0 . (p3 x p2)
    740 // a2 = p1 . (p0 x p3)
    741 // a3 = p2 . (p1 x p0)
    742 // Places the values of d1, d2, d3 in array d passed in
    743 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
    744     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    745     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    746     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    747 
    748     // need to scale a's or values in later calculations will grow to high
    749     SkScalar max = SkScalarAbs(a1);
    750     max = SkMaxScalar(max, SkScalarAbs(a2));
    751     max = SkMaxScalar(max, SkScalarAbs(a3));
    752     max = 1.f/max;
    753     a1 = a1 * max;
    754     a2 = a2 * max;
    755     a3 = a3 * max;
    756 
    757     d[2] = 3.f * a3;
    758     d[1] = d[2] - a2;
    759     d[0] = d[1] - a2 + a1;
    760 }
    761 
    762 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
    763                                              SkScalar klm_rev[3]) {
    764     // Variable to store the two parametric values at the loop double point
    765     SkScalar smallS = 0.f;
    766     SkScalar largeS = 0.f;
    767 
    768     SkScalar d[3];
    769     calc_cubic_inflection_func(src, d);
    770 
    771     CubicType cType = classify_cubic(src, d);
    772 
    773     int chop_count = 0;
    774     if (kLoop_CubicType == cType) {
    775         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    776         SkScalar ls = d[1] - tempSqrt;
    777         SkScalar lt = 2.f * d[0];
    778         SkScalar ms = d[1] + tempSqrt;
    779         SkScalar mt = 2.f * d[0];
    780         ls = ls / lt;
    781         ms = ms / mt;
    782         // need to have t values sorted since this is what is expected by SkChopCubicAt
    783         if (ls <= ms) {
    784             smallS = ls;
    785             largeS = ms;
    786         } else {
    787             smallS = ms;
    788             largeS = ls;
    789         }
    790 
    791         SkScalar chop_ts[2];
    792         if (smallS > 0.f && smallS < 1.f) {
    793             chop_ts[chop_count++] = smallS;
    794         }
    795         if (largeS > 0.f && largeS < 1.f) {
    796             chop_ts[chop_count++] = largeS;
    797         }
    798         if(dst) {
    799             SkChopCubicAt(src, dst, chop_ts, chop_count);
    800         }
    801     } else {
    802         if (dst) {
    803             memcpy(dst, src, sizeof(SkPoint) * 4);
    804         }
    805     }
    806 
    807     if (klm && klm_rev) {
    808         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
    809         // flipped. This will always be the section that is the "loop"
    810         if (2 == chop_count) {
    811             klm_rev[0] = 1.f;
    812             klm_rev[1] = -1.f;
    813             klm_rev[2] = 1.f;
    814         } else if (1 == chop_count) {
    815             if (smallS < 0.f) {
    816                 klm_rev[0] = -1.f;
    817                 klm_rev[1] = 1.f;
    818             } else {
    819                 klm_rev[0] = 1.f;
    820                 klm_rev[1] = -1.f;
    821             }
    822         } else {
    823             if (smallS < 0.f && largeS > 1.f) {
    824                 klm_rev[0] = -1.f;
    825             } else {
    826                 klm_rev[0] = 1.f;
    827             }
    828         }
    829         SkScalar controlK[4];
    830         SkScalar controlL[4];
    831         SkScalar controlM[4];
    832 
    833         if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
    834             set_serp_klm(d, controlK, controlL, controlM);
    835         } else if (kLoop_CubicType == cType) {
    836             set_loop_klm(d, controlK, controlL, controlM);
    837         } else if (kCusp_CubicType == cType) {
    838             SkASSERT(0.f == d[0]);
    839             set_cusp_klm(d, controlK, controlL, controlM);
    840         } else if (kQuadratic_CubicType == cType) {
    841             set_quadratic_klm(d, controlK, controlL, controlM);
    842         }
    843 
    844         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    845     }
    846     return chop_count + 1;
    847 }
    848 
    849 void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
    850     SkScalar d[3];
    851     calc_cubic_inflection_func(p, d);
    852 
    853     CubicType cType = classify_cubic(p, d);
    854 
    855     SkScalar controlK[4];
    856     SkScalar controlL[4];
    857     SkScalar controlM[4];
    858 
    859     if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
    860         set_serp_klm(d, controlK, controlL, controlM);
    861     } else if (kLoop_CubicType == cType) {
    862         set_loop_klm(d, controlK, controlL, controlM);
    863     } else if (kCusp_CubicType == cType) {
    864         SkASSERT(0.f == d[0]);
    865         set_cusp_klm(d, controlK, controlL, controlM);
    866     } else if (kQuadratic_CubicType == cType) {
    867         set_quadratic_klm(d, controlK, controlL, controlM);
    868     }
    869 
    870     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    871 }
    872