1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 #include "SkLineParameters.h" 8 #include "SkPathOpsCubic.h" 9 #include "SkPathOpsLine.h" 10 #include "SkPathOpsQuad.h" 11 #include "SkPathOpsRect.h" 12 13 const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in test framework 14 15 // FIXME: cache keep the bounds and/or precision with the caller? 16 double SkDCubic::calcPrecision() const { 17 SkDRect dRect; 18 dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ? 19 double width = dRect.fRight - dRect.fLeft; 20 double height = dRect.fBottom - dRect.fTop; 21 return (width > height ? width : height) / gPrecisionUnit; 22 } 23 24 bool SkDCubic::clockwise() const { 25 double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY); 26 for (int idx = 0; idx < 3; ++idx) { 27 sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); 28 } 29 return sum <= 0; 30 } 31 32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) { 33 *A = src[6]; // d 34 *B = src[4] * 3; // 3*c 35 *C = src[2] * 3; // 3*b 36 *D = src[0]; // a 37 *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d 38 *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c 39 *C -= 3 * *D; // C = -3*a + 3*b 40 } 41 42 bool SkDCubic::controlsContainedByEnds() const { 43 SkDVector startTan = fPts[1] - fPts[0]; 44 if (startTan.fX == 0 && startTan.fY == 0) { 45 startTan = fPts[2] - fPts[0]; 46 } 47 SkDVector endTan = fPts[2] - fPts[3]; 48 if (endTan.fX == 0 && endTan.fY == 0) { 49 endTan = fPts[1] - fPts[3]; 50 } 51 if (startTan.dot(endTan) >= 0) { 52 return false; 53 } 54 SkDLine startEdge = {{fPts[0], fPts[0]}}; 55 startEdge[1].fX -= startTan.fY; 56 startEdge[1].fY += startTan.fX; 57 SkDLine endEdge = {{fPts[3], fPts[3]}}; 58 endEdge[1].fX -= endTan.fY; 59 endEdge[1].fY += endTan.fX; 60 double leftStart1 = startEdge.isLeft(fPts[1]); 61 if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) { 62 return false; 63 } 64 double leftEnd1 = endEdge.isLeft(fPts[1]); 65 if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) { 66 return false; 67 } 68 return leftStart1 * leftEnd1 >= 0; 69 } 70 71 bool SkDCubic::endsAreExtremaInXOrY() const { 72 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) 73 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) 74 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) 75 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); 76 } 77 78 bool SkDCubic::isLinear(int startIndex, int endIndex) const { 79 SkLineParameters lineParameters; 80 lineParameters.cubicEndPoints(*this, startIndex, endIndex); 81 // FIXME: maybe it's possible to avoid this and compare non-normalized 82 lineParameters.normalize(); 83 double distance = lineParameters.controlPtDistance(*this, 1); 84 if (!approximately_zero(distance)) { 85 return false; 86 } 87 distance = lineParameters.controlPtDistance(*this, 2); 88 return approximately_zero(distance); 89 } 90 91 bool SkDCubic::monotonicInY() const { 92 return between(fPts[0].fY, fPts[1].fY, fPts[3].fY) 93 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY); 94 } 95 96 bool SkDCubic::serpentine() const { 97 if (!controlsContainedByEnds()) { 98 return false; 99 } 100 double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY); 101 for (int idx = 0; idx < 2; ++idx) { 102 wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); 103 } 104 double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY); 105 for (int idx = 1; idx < 3; ++idx) { 106 waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); 107 } 108 return wiggle * waggle < 0; 109 } 110 111 // cubic roots 112 113 static const double PI = 3.141592653589793; 114 115 // from SkGeometry.cpp (and Numeric Solutions, 5.6) 116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { 117 double s[3]; 118 int realRoots = RootsReal(A, B, C, D, s); 119 int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); 120 return foundRoots; 121 } 122 123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { 124 #ifdef SK_DEBUG 125 // create a string mathematica understands 126 // GDB set print repe 15 # if repeated digits is a bother 127 // set print elements 400 # if line doesn't fit 128 char str[1024]; 129 sk_bzero(str, sizeof(str)); 130 SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", 131 A, B, C, D); 132 SkPathOpsDebug::MathematicaIze(str, sizeof(str)); 133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA 134 SkDebugf("%s\n", str); 135 #endif 136 #endif 137 if (approximately_zero(A) 138 && approximately_zero_when_compared_to(A, B) 139 && approximately_zero_when_compared_to(A, C) 140 && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic 141 return SkDQuad::RootsReal(B, C, D, s); 142 } 143 if (approximately_zero_when_compared_to(D, A) 144 && approximately_zero_when_compared_to(D, B) 145 && approximately_zero_when_compared_to(D, C)) { // 0 is one root 146 int num = SkDQuad::RootsReal(A, B, C, s); 147 for (int i = 0; i < num; ++i) { 148 if (approximately_zero(s[i])) { 149 return num; 150 } 151 } 152 s[num++] = 0; 153 return num; 154 } 155 if (approximately_zero(A + B + C + D)) { // 1 is one root 156 int num = SkDQuad::RootsReal(A, A + B, -D, s); 157 for (int i = 0; i < num; ++i) { 158 if (AlmostDequalUlps(s[i], 1)) { 159 return num; 160 } 161 } 162 s[num++] = 1; 163 return num; 164 } 165 double a, b, c; 166 { 167 double invA = 1 / A; 168 a = B * invA; 169 b = C * invA; 170 c = D * invA; 171 } 172 double a2 = a * a; 173 double Q = (a2 - b * 3) / 9; 174 double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; 175 double R2 = R * R; 176 double Q3 = Q * Q * Q; 177 double R2MinusQ3 = R2 - Q3; 178 double adiv3 = a / 3; 179 double r; 180 double* roots = s; 181 if (R2MinusQ3 < 0) { // we have 3 real roots 182 double theta = acos(R / sqrt(Q3)); 183 double neg2RootQ = -2 * sqrt(Q); 184 185 r = neg2RootQ * cos(theta / 3) - adiv3; 186 *roots++ = r; 187 188 r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; 189 if (!AlmostDequalUlps(s[0], r)) { 190 *roots++ = r; 191 } 192 r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; 193 if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) { 194 *roots++ = r; 195 } 196 } else { // we have 1 real root 197 double sqrtR2MinusQ3 = sqrt(R2MinusQ3); 198 double A = fabs(R) + sqrtR2MinusQ3; 199 A = SkDCubeRoot(A); 200 if (R > 0) { 201 A = -A; 202 } 203 if (A != 0) { 204 A += Q / A; 205 } 206 r = A - adiv3; 207 *roots++ = r; 208 if (AlmostDequalUlps(R2, Q3)) { 209 r = -A / 2 - adiv3; 210 if (!AlmostDequalUlps(s[0], r)) { 211 *roots++ = r; 212 } 213 } 214 } 215 return static_cast<int>(roots - s); 216 } 217 218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf 219 // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 221 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 222 static double derivative_at_t(const double* src, double t) { 223 double one_t = 1 - t; 224 double a = src[0]; 225 double b = src[2]; 226 double c = src[4]; 227 double d = src[6]; 228 return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); 229 } 230 231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? 232 SkDVector SkDCubic::dxdyAtT(double t) const { 233 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; 234 return result; 235 } 236 237 // OPTIMIZE? share code with formulate_F1DotF2 238 int SkDCubic::findInflections(double tValues[]) const { 239 double Ax = fPts[1].fX - fPts[0].fX; 240 double Ay = fPts[1].fY - fPts[0].fY; 241 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; 242 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; 243 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; 244 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; 245 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); 246 } 247 248 static void formulate_F1DotF2(const double src[], double coeff[4]) { 249 double a = src[2] - src[0]; 250 double b = src[4] - 2 * src[2] + src[0]; 251 double c = src[6] + 3 * (src[2] - src[4]) - src[0]; 252 coeff[0] = c * c; 253 coeff[1] = 3 * b * c; 254 coeff[2] = 2 * b * b + c * a; 255 coeff[3] = a * b; 256 } 257 258 /** SkDCubic'(t) = At^2 + Bt + C, where 259 A = 3(-a + 3(b - c) + d) 260 B = 6(a - 2b + c) 261 C = 3(b - a) 262 Solve for t, keeping only those that fit between 0 < t < 1 263 */ 264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) { 265 // we divide A,B,C by 3 to simplify 266 double A = d - a + 3*(b - c); 267 double B = 2*(a - b - b + c); 268 double C = b - a; 269 270 return SkDQuad::RootsValidT(A, B, C, tValues); 271 } 272 273 /* from SkGeometry.cpp 274 Looking for F' dot F'' == 0 275 276 A = b - a 277 B = c - 2b + a 278 C = d - 3c + 3b - a 279 280 F' = 3Ct^2 + 6Bt + 3A 281 F'' = 6Ct + 6B 282 283 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB 284 */ 285 int SkDCubic::findMaxCurvature(double tValues[]) const { 286 double coeffX[4], coeffY[4]; 287 int i; 288 formulate_F1DotF2(&fPts[0].fX, coeffX); 289 formulate_F1DotF2(&fPts[0].fY, coeffY); 290 for (i = 0; i < 4; i++) { 291 coeffX[i] = coeffX[i] + coeffY[i]; 292 } 293 return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); 294 } 295 296 SkDPoint SkDCubic::top(double startT, double endT) const { 297 SkDCubic sub = subDivide(startT, endT); 298 SkDPoint topPt = sub[0]; 299 if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) { 300 topPt = sub[3]; 301 } 302 double extremeTs[2]; 303 if (!sub.monotonicInY()) { 304 int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs); 305 for (int index = 0; index < roots; ++index) { 306 double t = startT + (endT - startT) * extremeTs[index]; 307 SkDPoint mid = ptAtT(t); 308 if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) { 309 topPt = mid; 310 } 311 } 312 } 313 return topPt; 314 } 315 316 SkDPoint SkDCubic::ptAtT(double t) const { 317 if (0 == t) { 318 return fPts[0]; 319 } 320 if (1 == t) { 321 return fPts[3]; 322 } 323 double one_t = 1 - t; 324 double one_t2 = one_t * one_t; 325 double a = one_t2 * one_t; 326 double b = 3 * one_t2 * t; 327 double t2 = t * t; 328 double c = 3 * one_t * t2; 329 double d = t2 * t; 330 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, 331 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; 332 return result; 333 } 334 335 /* 336 Given a cubic c, t1, and t2, find a small cubic segment. 337 338 The new cubic is defined as points A, B, C, and D, where 339 s1 = 1 - t1 340 s2 = 1 - t2 341 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 342 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 343 344 We don't have B or C. So We define two equations to isolate them. 345 First, compute two reference T values 1/3 and 2/3 from t1 to t2: 346 347 c(at (2*t1 + t2)/3) == E 348 c(at (t1 + 2*t2)/3) == F 349 350 Next, compute where those values must be if we know the values of B and C: 351 352 _12 = A*2/3 + B*1/3 353 12_ = A*1/3 + B*2/3 354 _23 = B*2/3 + C*1/3 355 23_ = B*1/3 + C*2/3 356 _34 = C*2/3 + D*1/3 357 34_ = C*1/3 + D*2/3 358 _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 359 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 360 _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 361 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 362 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 363 = A*8/27 + B*12/27 + C*6/27 + D*1/27 364 = E 365 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 366 = A*1/27 + B*6/27 + C*12/27 + D*8/27 367 = F 368 E*27 = A*8 + B*12 + C*6 + D 369 F*27 = A + B*6 + C*12 + D*8 370 371 Group the known values on one side: 372 373 M = E*27 - A*8 - D = B*12 + C* 6 374 N = F*27 - A - D*8 = B* 6 + C*12 375 M*2 - N = B*18 376 N*2 - M = C*18 377 B = (M*2 - N)/18 378 C = (N*2 - M)/18 379 */ 380 381 static double interp_cubic_coords(const double* src, double t) { 382 double ab = SkDInterp(src[0], src[2], t); 383 double bc = SkDInterp(src[2], src[4], t); 384 double cd = SkDInterp(src[4], src[6], t); 385 double abc = SkDInterp(ab, bc, t); 386 double bcd = SkDInterp(bc, cd, t); 387 double abcd = SkDInterp(abc, bcd, t); 388 return abcd; 389 } 390 391 SkDCubic SkDCubic::subDivide(double t1, double t2) const { 392 if (t1 == 0 || t2 == 1) { 393 if (t1 == 0 && t2 == 1) { 394 return *this; 395 } 396 SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1); 397 SkDCubic dst = t1 == 0 ? pair.first() : pair.second(); 398 return dst; 399 } 400 SkDCubic dst; 401 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); 402 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); 403 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); 404 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); 405 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); 406 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); 407 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); 408 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); 409 double mx = ex * 27 - ax * 8 - dx; 410 double my = ey * 27 - ay * 8 - dy; 411 double nx = fx * 27 - ax - dx * 8; 412 double ny = fy * 27 - ay - dy * 8; 413 /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; 414 /* by = */ dst[1].fY = (my * 2 - ny) / 18; 415 /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; 416 /* cy = */ dst[2].fY = (ny * 2 - my) / 18; 417 // FIXME: call align() ? 418 return dst; 419 } 420 421 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const { 422 if (fPts[endIndex].fX == fPts[ctrlIndex].fX) { 423 dstPt->fX = fPts[endIndex].fX; 424 } 425 if (fPts[endIndex].fY == fPts[ctrlIndex].fY) { 426 dstPt->fY = fPts[endIndex].fY; 427 } 428 } 429 430 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, 431 double t1, double t2, SkDPoint dst[2]) const { 432 SkASSERT(t1 != t2); 433 #if 0 434 double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3); 435 double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3); 436 double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3); 437 double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3); 438 double mx = ex * 27 - a.fX * 8 - d.fX; 439 double my = ey * 27 - a.fY * 8 - d.fY; 440 double nx = fx * 27 - a.fX - d.fX * 8; 441 double ny = fy * 27 - a.fY - d.fY * 8; 442 /* bx = */ dst[0].fX = (mx * 2 - nx) / 18; 443 /* by = */ dst[0].fY = (my * 2 - ny) / 18; 444 /* cx = */ dst[1].fX = (nx * 2 - mx) / 18; 445 /* cy = */ dst[1].fY = (ny * 2 - my) / 18; 446 #else 447 // this approach assumes that the control points computed directly are accurate enough 448 SkDCubic sub = subDivide(t1, t2); 449 dst[0] = sub[1] + (a - sub[0]); 450 dst[1] = sub[2] + (d - sub[3]); 451 #endif 452 if (t1 == 0 || t2 == 0) { 453 align(0, 1, t1 == 0 ? &dst[0] : &dst[1]); 454 } 455 if (t1 == 1 || t2 == 1) { 456 align(3, 2, t1 == 1 ? &dst[0] : &dst[1]); 457 } 458 if (precisely_subdivide_equal(dst[0].fX, a.fX)) { 459 dst[0].fX = a.fX; 460 } 461 if (precisely_subdivide_equal(dst[0].fY, a.fY)) { 462 dst[0].fY = a.fY; 463 } 464 if (precisely_subdivide_equal(dst[1].fX, d.fX)) { 465 dst[1].fX = d.fX; 466 } 467 if (precisely_subdivide_equal(dst[1].fY, d.fY)) { 468 dst[1].fY = d.fY; 469 } 470 } 471 472 /* classic one t subdivision */ 473 static void interp_cubic_coords(const double* src, double* dst, double t) { 474 double ab = SkDInterp(src[0], src[2], t); 475 double bc = SkDInterp(src[2], src[4], t); 476 double cd = SkDInterp(src[4], src[6], t); 477 double abc = SkDInterp(ab, bc, t); 478 double bcd = SkDInterp(bc, cd, t); 479 double abcd = SkDInterp(abc, bcd, t); 480 481 dst[0] = src[0]; 482 dst[2] = ab; 483 dst[4] = abc; 484 dst[6] = abcd; 485 dst[8] = bcd; 486 dst[10] = cd; 487 dst[12] = src[6]; 488 } 489 490 SkDCubicPair SkDCubic::chopAt(double t) const { 491 SkDCubicPair dst; 492 if (t == 0.5) { 493 dst.pts[0] = fPts[0]; 494 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; 495 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; 496 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; 497 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; 498 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; 499 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; 500 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; 501 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; 502 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; 503 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; 504 dst.pts[6] = fPts[3]; 505 return dst; 506 } 507 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); 508 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); 509 return dst; 510 } 511 512 #ifdef SK_DEBUG 513 void SkDCubic::dump() { 514 SkDebugf("{{"); 515 int index = 0; 516 do { 517 fPts[index].dump(); 518 SkDebugf(", "); 519 } while (++index < 3); 520 fPts[index].dump(); 521 SkDebugf("}}\n"); 522 } 523 #endif 524