Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkFloatBits.h"
      8 #include "SkPathOpsTypes.h"
      9 
     10 static bool arguments_denormalized(float a, float b, int epsilon) {
     11     float denormalizedCheck = FLT_EPSILON * epsilon / 2;
     12     return fabsf(a) <= denormalizedCheck && fabsf(b) <= denormalizedCheck;
     13 }
     14 
     15 // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
     16 // FIXME: move to SkFloatBits.h
     17 static bool equal_ulps(float a, float b, int epsilon, int depsilon) {
     18     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     19         return false;
     20     }
     21     if (arguments_denormalized(a, b, depsilon)) {
     22         return true;
     23     }
     24     int aBits = SkFloatAs2sCompliment(a);
     25     int bBits = SkFloatAs2sCompliment(b);
     26     // Find the difference in ULPs.
     27     return aBits < bBits + epsilon && bBits < aBits + epsilon;
     28 }
     29 
     30 static bool d_equal_ulps(float a, float b, int epsilon) {
     31     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     32         return false;
     33     }
     34     int aBits = SkFloatAs2sCompliment(a);
     35     int bBits = SkFloatAs2sCompliment(b);
     36     // Find the difference in ULPs.
     37     return aBits < bBits + epsilon && bBits < aBits + epsilon;
     38 }
     39 
     40 static bool not_equal_ulps(float a, float b, int epsilon) {
     41     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     42         return false;
     43     }
     44     if (arguments_denormalized(a, b, epsilon)) {
     45         return false;
     46     }
     47     int aBits = SkFloatAs2sCompliment(a);
     48     int bBits = SkFloatAs2sCompliment(b);
     49     // Find the difference in ULPs.
     50     return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
     51 }
     52 
     53 static bool d_not_equal_ulps(float a, float b, int epsilon) {
     54     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     55         return false;
     56     }
     57     int aBits = SkFloatAs2sCompliment(a);
     58     int bBits = SkFloatAs2sCompliment(b);
     59     // Find the difference in ULPs.
     60     return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
     61 }
     62 
     63 static bool less_ulps(float a, float b, int epsilon) {
     64     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     65         return false;
     66     }
     67     if (arguments_denormalized(a, b, epsilon)) {
     68         return a <= b - FLT_EPSILON * epsilon;
     69     }
     70     int aBits = SkFloatAs2sCompliment(a);
     71     int bBits = SkFloatAs2sCompliment(b);
     72     // Find the difference in ULPs.
     73     return aBits <= bBits - epsilon;
     74 }
     75 
     76 static bool less_or_equal_ulps(float a, float b, int epsilon) {
     77     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
     78         return false;
     79     }
     80     if (arguments_denormalized(a, b, epsilon)) {
     81         return a < b + FLT_EPSILON * epsilon;
     82     }
     83     int aBits = SkFloatAs2sCompliment(a);
     84     int bBits = SkFloatAs2sCompliment(b);
     85     // Find the difference in ULPs.
     86     return aBits < bBits + epsilon;
     87 }
     88 
     89 // equality using the same error term as between
     90 bool AlmostBequalUlps(float a, float b) {
     91     const int UlpsEpsilon = 2;
     92     return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
     93 }
     94 
     95 bool AlmostPequalUlps(float a, float b) {
     96     const int UlpsEpsilon = 8;
     97     return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
     98 }
     99 
    100 bool AlmostDequalUlps(float a, float b) {
    101     const int UlpsEpsilon = 16;
    102     return d_equal_ulps(a, b, UlpsEpsilon);
    103 }
    104 
    105 bool AlmostEqualUlps(float a, float b) {
    106     const int UlpsEpsilon = 16;
    107     return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
    108 }
    109 
    110 bool NotAlmostEqualUlps(float a, float b) {
    111     const int UlpsEpsilon = 16;
    112     return not_equal_ulps(a, b, UlpsEpsilon);
    113 }
    114 
    115 bool NotAlmostDequalUlps(float a, float b) {
    116     const int UlpsEpsilon = 16;
    117     return d_not_equal_ulps(a, b, UlpsEpsilon);
    118 }
    119 
    120 bool RoughlyEqualUlps(float a, float b) {
    121     const int UlpsEpsilon = 256;
    122     const int DUlpsEpsilon = 1024;
    123     return equal_ulps(a, b, UlpsEpsilon, DUlpsEpsilon);
    124 }
    125 
    126 bool AlmostBetweenUlps(float a, float b, float c) {
    127     const int UlpsEpsilon = 2;
    128     return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon)
    129         : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon);
    130 }
    131 
    132 bool AlmostLessUlps(float a, float b) {
    133     const int UlpsEpsilon = 16;
    134     return less_ulps(a, b, UlpsEpsilon);
    135 }
    136 
    137 bool AlmostLessOrEqualUlps(float a, float b) {
    138     const int UlpsEpsilon = 16;
    139     return less_or_equal_ulps(a, b, UlpsEpsilon);
    140 }
    141 
    142 int UlpsDistance(float a, float b) {
    143     if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
    144         return SK_MaxS32;
    145     }
    146     SkFloatIntUnion floatIntA, floatIntB;
    147     floatIntA.fFloat = a;
    148     floatIntB.fFloat = b;
    149     // Different signs means they do not match.
    150     if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) {
    151         // Check for equality to make sure +0 == -0
    152         return a == b ? 0 : SK_MaxS32;
    153     }
    154     // Find the difference in ULPs.
    155     return abs(floatIntA.fSignBitInt - floatIntB.fSignBitInt);
    156 }
    157 
    158 // cube root approximation using bit hack for 64-bit float
    159 // adapted from Kahan's cbrt
    160 static double cbrt_5d(double d) {
    161     const unsigned int B1 = 715094163;
    162     double t = 0.0;
    163     unsigned int* pt = (unsigned int*) &t;
    164     unsigned int* px = (unsigned int*) &d;
    165     pt[1] = px[1] / 3 + B1;
    166     return t;
    167 }
    168 
    169 // iterative cube root approximation using Halley's method (double)
    170 static double cbrta_halleyd(const double a, const double R) {
    171     const double a3 = a * a * a;
    172     const double b = a * (a3 + R + R) / (a3 + a3 + R);
    173     return b;
    174 }
    175 
    176 // cube root approximation using 3 iterations of Halley's method (double)
    177 static double halley_cbrt3d(double d) {
    178     double a = cbrt_5d(d);
    179     a = cbrta_halleyd(a, d);
    180     a = cbrta_halleyd(a, d);
    181     return cbrta_halleyd(a, d);
    182 }
    183 
    184 double SkDCubeRoot(double x) {
    185     if (approximately_zero_cubed(x)) {
    186         return 0;
    187     }
    188     double result = halley_cbrt3d(fabs(x));
    189     if (x < 0) {
    190         result = -result;
    191     }
    192     return result;
    193 }
    194