Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "Test.h"
      9 #include "TestClassDef.h"
     10 #include "SkRandom.h"
     11 #include "SkTSort.h"
     12 
     13 static bool anderson_darling_test(double p[32]) {
     14     // Min and max Anderson-Darling values allowable for k=32
     15     const double kADMin32 = 0.202;        // p-value of ~0.1
     16     const double kADMax32 = 3.89;         // p-value of ~0.99
     17 
     18     // sort p values
     19     SkTQSort<double>(p, p + 31);
     20 
     21     // and compute Anderson-Darling statistic to ensure these are uniform
     22     double s = 0.0;
     23     for(int k = 0; k < 32; k++) {
     24         double v = p[k]*(1.0 - p[31-k]);
     25         if (v < 1.0e-30) {
     26            v = 1.0e-30;
     27         }
     28         s += (2.0*(k+1)-1.0)*log(v);
     29     }
     30     double a2 = -32.0 - 0.03125*s;
     31 
     32     return (kADMin32 < a2 && a2 < kADMax32);
     33 }
     34 
     35 static bool chi_square_test(int bins[256], int e) {
     36     // Min and max chisquare values allowable
     37     const double kChiSqMin256 = 206.3179;        // probability of chance = 0.99 with k=256
     38     const double kChiSqMax256 = 311.5603;        // probability of chance = 0.01 with k=256
     39 
     40     // compute chi-square
     41     double chi2 = 0.0;
     42     for (int j = 0; j < 256; ++j) {
     43         double delta = bins[j] - e;
     44         chi2 += delta*delta/e;
     45     }
     46 
     47     return (kChiSqMin256 < chi2 && chi2 < kChiSqMax256);
     48 }
     49 
     50 // Approximation to the normal distribution CDF
     51 // From Waissi and Rossin, 1996
     52 static double normal_cdf(double z) {
     53     double t = ((-0.0004406*z*z* + 0.0418198)*z*z + 0.9)*z;
     54     t *= -1.77245385091;  // -sqrt(PI)
     55     double p = 1.0/(1.0 + exp(t));
     56 
     57     return p;
     58 }
     59 
     60 static void test_random_byte(skiatest::Reporter* reporter, int shift) {
     61     int bins[256];
     62     memset(bins, 0, sizeof(int)*256);
     63 
     64     SkRandom rand;
     65     for (int i = 0; i < 256*10000; ++i) {
     66         bins[(rand.nextU() >> shift) & 0xff]++;
     67     }
     68 
     69     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
     70 }
     71 
     72 static void test_random_float(skiatest::Reporter* reporter) {
     73     int bins[256];
     74     memset(bins, 0, sizeof(int)*256);
     75 
     76     SkRandom rand;
     77     for (int i = 0; i < 256*10000; ++i) {
     78         float f = rand.nextF();
     79         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
     80         bins[(int)(f*256.f)]++;
     81     }
     82     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
     83 
     84     double p[32];
     85     for (int j = 0; j < 32; ++j) {
     86         float f = rand.nextF();
     87         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
     88         p[j] = f;
     89     }
     90     REPORTER_ASSERT(reporter, anderson_darling_test(p));
     91 }
     92 
     93 // This is a test taken from tuftests by Marsaglia and Tsang. The idea here is that
     94 // we are using the random bit generated from a single shift position to generate
     95 // "strings" of 16 bits in length, shifting the string and adding a new bit with each
     96 // iteration. We track the numbers generated. The ones that we don't generate will
     97 // have a normal distribution with mean ~24108 and standard deviation ~127. By
     98 // creating a z-score (# of deviations from the mean) for one iteration of this step
     99 // we can determine its probability.
    100 //
    101 // The original test used 26 bit strings, but is somewhat slow. This version uses 16
    102 // bits which is less rigorous but much faster to generate.
    103 static double test_single_gorilla(skiatest::Reporter* reporter, int shift) {
    104     const int kWordWidth = 16;
    105     const double kMean = 24108.0;
    106     const double kStandardDeviation = 127.0;
    107     const int kN = (1 << kWordWidth);
    108     const int kNumEntries = kN >> 5;  // dividing by 32
    109     unsigned int entries[kNumEntries];
    110 
    111     SkRandom rand;
    112     memset(entries, 0, sizeof(unsigned int)*kNumEntries);
    113     // pre-seed our string value
    114     int value = 0;
    115     for (int i = 0; i < kWordWidth-1; ++i) {
    116         value <<= 1;
    117         unsigned int rnd = rand.nextU();
    118         value |= ((rnd >> shift) & 0x1);
    119     }
    120 
    121     // now make some strings and track them
    122     for (int i = 0; i < kN; ++i) {
    123         value <<= 1;
    124         unsigned int rnd = rand.nextU();
    125         value |= ((rnd >> shift) & 0x1);
    126 
    127         int index = value & (kNumEntries-1);
    128         SkASSERT(index < kNumEntries);
    129         int entry_shift = (value >> (kWordWidth-5)) & 0x1f;
    130         entries[index] |= (0x1 << entry_shift);
    131     }
    132 
    133     // count entries
    134     int total = 0;
    135     for (int i = 0; i < kNumEntries; ++i) {
    136         unsigned int entry = entries[i];
    137         while (entry) {
    138             total += (entry & 0x1);
    139             entry >>= 1;
    140         }
    141     }
    142 
    143     // convert counts to normal distribution z-score
    144     double z = ((kN-total)-kMean)/kStandardDeviation;
    145 
    146     // compute probability from normal distibution CDF
    147     double p = normal_cdf(z);
    148 
    149     REPORTER_ASSERT(reporter, 0.01 < p && p < 0.99);
    150     return p;
    151 }
    152 
    153 static void test_gorilla(skiatest::Reporter* reporter) {
    154 
    155     double p[32];
    156     for (int bit_position = 0; bit_position < 32; ++bit_position) {
    157         p[bit_position] = test_single_gorilla(reporter, bit_position);
    158     }
    159 
    160     REPORTER_ASSERT(reporter, anderson_darling_test(p));
    161 }
    162 
    163 static void test_range(skiatest::Reporter* reporter) {
    164     SkRandom rand;
    165 
    166     // just to make sure we don't crash in this case
    167     (void) rand.nextRangeU(0, 0xffffffff);
    168 
    169     // check a case to see if it's uniform
    170     int bins[256];
    171     memset(bins, 0, sizeof(int)*256);
    172     for (int i = 0; i < 256*10000; ++i) {
    173         unsigned int u = rand.nextRangeU(17, 17+255);
    174         REPORTER_ASSERT(reporter, 17 <= u && u <= 17+255);
    175         bins[u - 17]++;
    176     }
    177 
    178     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
    179 }
    180 
    181 DEF_TEST(Random, reporter) {
    182     // check uniform distributions of each byte in 32-bit word
    183     test_random_byte(reporter, 0);
    184     test_random_byte(reporter, 8);
    185     test_random_byte(reporter, 16);
    186     test_random_byte(reporter, 24);
    187 
    188     test_random_float(reporter);
    189 
    190     test_gorilla(reporter);
    191 
    192     test_range(reporter);
    193 }
    194