1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 #include "assembler.h" 36 37 #include <math.h> // For cos, log, pow, sin, tan, etc. 38 #include "api.h" 39 #include "builtins.h" 40 #include "counters.h" 41 #include "cpu.h" 42 #include "debug.h" 43 #include "deoptimizer.h" 44 #include "execution.h" 45 #include "ic.h" 46 #include "isolate.h" 47 #include "jsregexp.h" 48 #include "lazy-instance.h" 49 #include "platform.h" 50 #include "regexp-macro-assembler.h" 51 #include "regexp-stack.h" 52 #include "runtime.h" 53 #include "serialize.h" 54 #include "store-buffer-inl.h" 55 #include "stub-cache.h" 56 #include "token.h" 57 58 #if V8_TARGET_ARCH_IA32 59 #include "ia32/assembler-ia32-inl.h" 60 #elif V8_TARGET_ARCH_X64 61 #include "x64/assembler-x64-inl.h" 62 #elif V8_TARGET_ARCH_ARM 63 #include "arm/assembler-arm-inl.h" 64 #elif V8_TARGET_ARCH_MIPS 65 #include "mips/assembler-mips-inl.h" 66 #else 67 #error "Unknown architecture." 68 #endif 69 70 // Include native regexp-macro-assembler. 71 #ifndef V8_INTERPRETED_REGEXP 72 #if V8_TARGET_ARCH_IA32 73 #include "ia32/regexp-macro-assembler-ia32.h" 74 #elif V8_TARGET_ARCH_X64 75 #include "x64/regexp-macro-assembler-x64.h" 76 #elif V8_TARGET_ARCH_ARM 77 #include "arm/regexp-macro-assembler-arm.h" 78 #elif V8_TARGET_ARCH_MIPS 79 #include "mips/regexp-macro-assembler-mips.h" 80 #else // Unknown architecture. 81 #error "Unknown architecture." 82 #endif // Target architecture. 83 #endif // V8_INTERPRETED_REGEXP 84 85 namespace v8 { 86 namespace internal { 87 88 // ----------------------------------------------------------------------------- 89 // Common double constants. 90 91 struct DoubleConstant BASE_EMBEDDED { 92 double min_int; 93 double one_half; 94 double minus_zero; 95 double zero; 96 double uint8_max_value; 97 double negative_infinity; 98 double canonical_non_hole_nan; 99 double the_hole_nan; 100 }; 101 102 struct InitializeDoubleConstants { 103 static void Construct(DoubleConstant* double_constants) { 104 double_constants->min_int = kMinInt; 105 double_constants->one_half = 0.5; 106 double_constants->minus_zero = -0.0; 107 double_constants->uint8_max_value = 255; 108 double_constants->zero = 0.0; 109 double_constants->canonical_non_hole_nan = OS::nan_value(); 110 double_constants->the_hole_nan = BitCast<double>(kHoleNanInt64); 111 double_constants->negative_infinity = -V8_INFINITY; 112 } 113 }; 114 115 static LazyInstance<DoubleConstant, InitializeDoubleConstants>::type 116 double_constants = LAZY_INSTANCE_INITIALIZER; 117 118 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; 119 120 // ----------------------------------------------------------------------------- 121 // Implementation of AssemblerBase 122 123 AssemblerBase::AssemblerBase(Isolate* isolate) 124 : isolate_(isolate), 125 jit_cookie_(0) { 126 if (FLAG_mask_constants_with_cookie && isolate != NULL) { 127 jit_cookie_ = V8::RandomPrivate(isolate); 128 } 129 } 130 131 132 // ----------------------------------------------------------------------------- 133 // Implementation of Label 134 135 int Label::pos() const { 136 if (pos_ < 0) return -pos_ - 1; 137 if (pos_ > 0) return pos_ - 1; 138 UNREACHABLE(); 139 return 0; 140 } 141 142 143 // ----------------------------------------------------------------------------- 144 // Implementation of RelocInfoWriter and RelocIterator 145 // 146 // Relocation information is written backwards in memory, from high addresses 147 // towards low addresses, byte by byte. Therefore, in the encodings listed 148 // below, the first byte listed it at the highest address, and successive 149 // bytes in the record are at progressively lower addresses. 150 // 151 // Encoding 152 // 153 // The most common modes are given single-byte encodings. Also, it is 154 // easy to identify the type of reloc info and skip unwanted modes in 155 // an iteration. 156 // 157 // The encoding relies on the fact that there are fewer than 14 158 // different non-compactly encoded relocation modes. 159 // 160 // The first byte of a relocation record has a tag in its low 2 bits: 161 // Here are the record schemes, depending on the low tag and optional higher 162 // tags. 163 // 164 // Low tag: 165 // 00: embedded_object: [6-bit pc delta] 00 166 // 167 // 01: code_target: [6-bit pc delta] 01 168 // 169 // 10: short_data_record: [6-bit pc delta] 10 followed by 170 // [6-bit data delta] [2-bit data type tag] 171 // 172 // 11: long_record [2-bit high tag][4 bit middle_tag] 11 173 // followed by variable data depending on type. 174 // 175 // 2-bit data type tags, used in short_data_record and data_jump long_record: 176 // code_target_with_id: 00 177 // position: 01 178 // statement_position: 10 179 // comment: 11 (not used in short_data_record) 180 // 181 // Long record format: 182 // 4-bit middle_tag: 183 // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2 184 // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM, 185 // and is between 0000 and 1100) 186 // The format is: 187 // 00 [4 bit middle_tag] 11 followed by 188 // 00 [6 bit pc delta] 189 // 190 // 1101: not used (would allow one more relocation mode to be added) 191 // 1110: long_data_record 192 // The format is: [2-bit data_type_tag] 1110 11 193 // signed intptr_t, lowest byte written first 194 // (except data_type code_target_with_id, which 195 // is followed by a signed int, not intptr_t.) 196 // 197 // 1111: long_pc_jump 198 // The format is: 199 // pc-jump: 00 1111 11, 200 // 00 [6 bits pc delta] 201 // or 202 // pc-jump (variable length): 203 // 01 1111 11, 204 // [7 bits data] 0 205 // ... 206 // [7 bits data] 1 207 // (Bits 6..31 of pc delta, with leading zeroes 208 // dropped, and last non-zero chunk tagged with 1.) 209 210 211 const int kMaxRelocModes = 14; 212 213 const int kTagBits = 2; 214 const int kTagMask = (1 << kTagBits) - 1; 215 const int kExtraTagBits = 4; 216 const int kLocatableTypeTagBits = 2; 217 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits; 218 219 const int kEmbeddedObjectTag = 0; 220 const int kCodeTargetTag = 1; 221 const int kLocatableTag = 2; 222 const int kDefaultTag = 3; 223 224 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1; 225 226 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; 227 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; 228 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; 229 230 const int kVariableLengthPCJumpTopTag = 1; 231 const int kChunkBits = 7; 232 const int kChunkMask = (1 << kChunkBits) - 1; 233 const int kLastChunkTagBits = 1; 234 const int kLastChunkTagMask = 1; 235 const int kLastChunkTag = 1; 236 237 238 const int kDataJumpExtraTag = kPCJumpExtraTag - 1; 239 240 const int kCodeWithIdTag = 0; 241 const int kNonstatementPositionTag = 1; 242 const int kStatementPositionTag = 2; 243 const int kCommentTag = 3; 244 245 246 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { 247 // Return if the pc_delta can fit in kSmallPCDeltaBits bits. 248 // Otherwise write a variable length PC jump for the bits that do 249 // not fit in the kSmallPCDeltaBits bits. 250 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; 251 WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag); 252 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; 253 ASSERT(pc_jump > 0); 254 // Write kChunkBits size chunks of the pc_jump. 255 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { 256 byte b = pc_jump & kChunkMask; 257 *--pos_ = b << kLastChunkTagBits; 258 } 259 // Tag the last chunk so it can be identified. 260 *pos_ = *pos_ | kLastChunkTag; 261 // Return the remaining kSmallPCDeltaBits of the pc_delta. 262 return pc_delta & kSmallPCDeltaMask; 263 } 264 265 266 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { 267 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. 268 pc_delta = WriteVariableLengthPCJump(pc_delta); 269 *--pos_ = pc_delta << kTagBits | tag; 270 } 271 272 273 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { 274 *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag); 275 } 276 277 278 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { 279 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | 280 extra_tag << kTagBits | 281 kDefaultTag); 282 } 283 284 285 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { 286 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. 287 pc_delta = WriteVariableLengthPCJump(pc_delta); 288 WriteExtraTag(extra_tag, 0); 289 *--pos_ = pc_delta; 290 } 291 292 293 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) { 294 WriteExtraTag(kDataJumpExtraTag, top_tag); 295 for (int i = 0; i < kIntSize; i++) { 296 *--pos_ = static_cast<byte>(data_delta); 297 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 298 data_delta = data_delta >> kBitsPerByte; 299 } 300 } 301 302 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { 303 WriteExtraTag(kDataJumpExtraTag, top_tag); 304 for (int i = 0; i < kIntptrSize; i++) { 305 *--pos_ = static_cast<byte>(data_delta); 306 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 307 data_delta = data_delta >> kBitsPerByte; 308 } 309 } 310 311 312 void RelocInfoWriter::Write(const RelocInfo* rinfo) { 313 #ifdef DEBUG 314 byte* begin_pos = pos_; 315 #endif 316 ASSERT(rinfo->pc() - last_pc_ >= 0); 317 ASSERT(RelocInfo::NUMBER_OF_MODES - RelocInfo::LAST_COMPACT_ENUM <= 318 kMaxRelocModes); 319 // Use unsigned delta-encoding for pc. 320 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); 321 RelocInfo::Mode rmode = rinfo->rmode(); 322 323 // The two most common modes are given small tags, and usually fit in a byte. 324 if (rmode == RelocInfo::EMBEDDED_OBJECT) { 325 WriteTaggedPC(pc_delta, kEmbeddedObjectTag); 326 } else if (rmode == RelocInfo::CODE_TARGET) { 327 WriteTaggedPC(pc_delta, kCodeTargetTag); 328 ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize); 329 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { 330 // Use signed delta-encoding for id. 331 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); 332 int id_delta = static_cast<int>(rinfo->data()) - last_id_; 333 // Check if delta is small enough to fit in a tagged byte. 334 if (is_intn(id_delta, kSmallDataBits)) { 335 WriteTaggedPC(pc_delta, kLocatableTag); 336 WriteTaggedData(id_delta, kCodeWithIdTag); 337 } else { 338 // Otherwise, use costly encoding. 339 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 340 WriteExtraTaggedIntData(id_delta, kCodeWithIdTag); 341 } 342 last_id_ = static_cast<int>(rinfo->data()); 343 } else if (RelocInfo::IsPosition(rmode)) { 344 // Use signed delta-encoding for position. 345 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); 346 int pos_delta = static_cast<int>(rinfo->data()) - last_position_; 347 int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag 348 : kStatementPositionTag; 349 // Check if delta is small enough to fit in a tagged byte. 350 if (is_intn(pos_delta, kSmallDataBits)) { 351 WriteTaggedPC(pc_delta, kLocatableTag); 352 WriteTaggedData(pos_delta, pos_type_tag); 353 } else { 354 // Otherwise, use costly encoding. 355 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 356 WriteExtraTaggedIntData(pos_delta, pos_type_tag); 357 } 358 last_position_ = static_cast<int>(rinfo->data()); 359 } else if (RelocInfo::IsComment(rmode)) { 360 // Comments are normally not generated, so we use the costly encoding. 361 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 362 WriteExtraTaggedData(rinfo->data(), kCommentTag); 363 ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); 364 } else { 365 ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM); 366 int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM; 367 // For all other modes we simply use the mode as the extra tag. 368 // None of these modes need a data component. 369 ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag); 370 WriteExtraTaggedPC(pc_delta, saved_mode); 371 } 372 last_pc_ = rinfo->pc(); 373 #ifdef DEBUG 374 ASSERT(begin_pos - pos_ <= kMaxSize); 375 #endif 376 } 377 378 379 inline int RelocIterator::AdvanceGetTag() { 380 return *--pos_ & kTagMask; 381 } 382 383 384 inline int RelocIterator::GetExtraTag() { 385 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); 386 } 387 388 389 inline int RelocIterator::GetTopTag() { 390 return *pos_ >> (kTagBits + kExtraTagBits); 391 } 392 393 394 inline void RelocIterator::ReadTaggedPC() { 395 rinfo_.pc_ += *pos_ >> kTagBits; 396 } 397 398 399 inline void RelocIterator::AdvanceReadPC() { 400 rinfo_.pc_ += *--pos_; 401 } 402 403 404 void RelocIterator::AdvanceReadId() { 405 int x = 0; 406 for (int i = 0; i < kIntSize; i++) { 407 x |= static_cast<int>(*--pos_) << i * kBitsPerByte; 408 } 409 last_id_ += x; 410 rinfo_.data_ = last_id_; 411 } 412 413 414 void RelocIterator::AdvanceReadPosition() { 415 int x = 0; 416 for (int i = 0; i < kIntSize; i++) { 417 x |= static_cast<int>(*--pos_) << i * kBitsPerByte; 418 } 419 last_position_ += x; 420 rinfo_.data_ = last_position_; 421 } 422 423 424 void RelocIterator::AdvanceReadData() { 425 intptr_t x = 0; 426 for (int i = 0; i < kIntptrSize; i++) { 427 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; 428 } 429 rinfo_.data_ = x; 430 } 431 432 433 void RelocIterator::AdvanceReadVariableLengthPCJump() { 434 // Read the 32-kSmallPCDeltaBits most significant bits of the 435 // pc jump in kChunkBits bit chunks and shift them into place. 436 // Stop when the last chunk is encountered. 437 uint32_t pc_jump = 0; 438 for (int i = 0; i < kIntSize; i++) { 439 byte pc_jump_part = *--pos_; 440 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; 441 if ((pc_jump_part & kLastChunkTagMask) == 1) break; 442 } 443 // The least significant kSmallPCDeltaBits bits will be added 444 // later. 445 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; 446 } 447 448 449 inline int RelocIterator::GetLocatableTypeTag() { 450 return *pos_ & ((1 << kLocatableTypeTagBits) - 1); 451 } 452 453 454 inline void RelocIterator::ReadTaggedId() { 455 int8_t signed_b = *pos_; 456 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 457 last_id_ += signed_b >> kLocatableTypeTagBits; 458 rinfo_.data_ = last_id_; 459 } 460 461 462 inline void RelocIterator::ReadTaggedPosition() { 463 int8_t signed_b = *pos_; 464 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 465 last_position_ += signed_b >> kLocatableTypeTagBits; 466 rinfo_.data_ = last_position_; 467 } 468 469 470 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) { 471 ASSERT(tag == kNonstatementPositionTag || 472 tag == kStatementPositionTag); 473 return (tag == kNonstatementPositionTag) ? 474 RelocInfo::POSITION : 475 RelocInfo::STATEMENT_POSITION; 476 } 477 478 479 void RelocIterator::next() { 480 ASSERT(!done()); 481 // Basically, do the opposite of RelocInfoWriter::Write. 482 // Reading of data is as far as possible avoided for unwanted modes, 483 // but we must always update the pc. 484 // 485 // We exit this loop by returning when we find a mode we want. 486 while (pos_ > end_) { 487 int tag = AdvanceGetTag(); 488 if (tag == kEmbeddedObjectTag) { 489 ReadTaggedPC(); 490 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; 491 } else if (tag == kCodeTargetTag) { 492 ReadTaggedPC(); 493 if (SetMode(RelocInfo::CODE_TARGET)) return; 494 } else if (tag == kLocatableTag) { 495 ReadTaggedPC(); 496 Advance(); 497 int locatable_tag = GetLocatableTypeTag(); 498 if (locatable_tag == kCodeWithIdTag) { 499 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { 500 ReadTaggedId(); 501 return; 502 } 503 } else { 504 // Compact encoding is never used for comments, 505 // so it must be a position. 506 ASSERT(locatable_tag == kNonstatementPositionTag || 507 locatable_tag == kStatementPositionTag); 508 if (mode_mask_ & RelocInfo::kPositionMask) { 509 ReadTaggedPosition(); 510 if (SetMode(GetPositionModeFromTag(locatable_tag))) return; 511 } 512 } 513 } else { 514 ASSERT(tag == kDefaultTag); 515 int extra_tag = GetExtraTag(); 516 if (extra_tag == kPCJumpExtraTag) { 517 int top_tag = GetTopTag(); 518 if (top_tag == kVariableLengthPCJumpTopTag) { 519 AdvanceReadVariableLengthPCJump(); 520 } else { 521 AdvanceReadPC(); 522 } 523 } else if (extra_tag == kDataJumpExtraTag) { 524 int locatable_tag = GetTopTag(); 525 if (locatable_tag == kCodeWithIdTag) { 526 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { 527 AdvanceReadId(); 528 return; 529 } 530 Advance(kIntSize); 531 } else if (locatable_tag != kCommentTag) { 532 ASSERT(locatable_tag == kNonstatementPositionTag || 533 locatable_tag == kStatementPositionTag); 534 if (mode_mask_ & RelocInfo::kPositionMask) { 535 AdvanceReadPosition(); 536 if (SetMode(GetPositionModeFromTag(locatable_tag))) return; 537 } else { 538 Advance(kIntSize); 539 } 540 } else { 541 ASSERT(locatable_tag == kCommentTag); 542 if (SetMode(RelocInfo::COMMENT)) { 543 AdvanceReadData(); 544 return; 545 } 546 Advance(kIntptrSize); 547 } 548 } else { 549 AdvanceReadPC(); 550 int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM; 551 if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return; 552 } 553 } 554 } 555 done_ = true; 556 } 557 558 559 RelocIterator::RelocIterator(Code* code, int mode_mask) { 560 rinfo_.host_ = code; 561 rinfo_.pc_ = code->instruction_start(); 562 rinfo_.data_ = 0; 563 // Relocation info is read backwards. 564 pos_ = code->relocation_start() + code->relocation_size(); 565 end_ = code->relocation_start(); 566 done_ = false; 567 mode_mask_ = mode_mask; 568 last_id_ = 0; 569 last_position_ = 0; 570 if (mode_mask_ == 0) pos_ = end_; 571 next(); 572 } 573 574 575 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { 576 rinfo_.pc_ = desc.buffer; 577 rinfo_.data_ = 0; 578 // Relocation info is read backwards. 579 pos_ = desc.buffer + desc.buffer_size; 580 end_ = pos_ - desc.reloc_size; 581 done_ = false; 582 mode_mask_ = mode_mask; 583 last_id_ = 0; 584 last_position_ = 0; 585 if (mode_mask_ == 0) pos_ = end_; 586 next(); 587 } 588 589 590 // ----------------------------------------------------------------------------- 591 // Implementation of RelocInfo 592 593 594 #ifdef ENABLE_DISASSEMBLER 595 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { 596 switch (rmode) { 597 case RelocInfo::NONE: 598 return "no reloc"; 599 case RelocInfo::EMBEDDED_OBJECT: 600 return "embedded object"; 601 case RelocInfo::CONSTRUCT_CALL: 602 return "code target (js construct call)"; 603 case RelocInfo::CODE_TARGET_CONTEXT: 604 return "code target (context)"; 605 case RelocInfo::DEBUG_BREAK: 606 #ifndef ENABLE_DEBUGGER_SUPPORT 607 UNREACHABLE(); 608 #endif 609 return "debug break"; 610 case RelocInfo::CODE_TARGET: 611 return "code target"; 612 case RelocInfo::CODE_TARGET_WITH_ID: 613 return "code target with id"; 614 case RelocInfo::GLOBAL_PROPERTY_CELL: 615 return "global property cell"; 616 case RelocInfo::RUNTIME_ENTRY: 617 return "runtime entry"; 618 case RelocInfo::JS_RETURN: 619 return "js return"; 620 case RelocInfo::COMMENT: 621 return "comment"; 622 case RelocInfo::POSITION: 623 return "position"; 624 case RelocInfo::STATEMENT_POSITION: 625 return "statement position"; 626 case RelocInfo::EXTERNAL_REFERENCE: 627 return "external reference"; 628 case RelocInfo::INTERNAL_REFERENCE: 629 return "internal reference"; 630 case RelocInfo::DEBUG_BREAK_SLOT: 631 #ifndef ENABLE_DEBUGGER_SUPPORT 632 UNREACHABLE(); 633 #endif 634 return "debug break slot"; 635 case RelocInfo::NUMBER_OF_MODES: 636 UNREACHABLE(); 637 return "number_of_modes"; 638 } 639 return "unknown relocation type"; 640 } 641 642 643 void RelocInfo::Print(FILE* out) { 644 PrintF(out, "%p %s", pc_, RelocModeName(rmode_)); 645 if (IsComment(rmode_)) { 646 PrintF(out, " (%s)", reinterpret_cast<char*>(data_)); 647 } else if (rmode_ == EMBEDDED_OBJECT) { 648 PrintF(out, " ("); 649 target_object()->ShortPrint(out); 650 PrintF(out, ")"); 651 } else if (rmode_ == EXTERNAL_REFERENCE) { 652 ExternalReferenceEncoder ref_encoder; 653 PrintF(out, " (%s) (%p)", 654 ref_encoder.NameOfAddress(*target_reference_address()), 655 *target_reference_address()); 656 } else if (IsCodeTarget(rmode_)) { 657 Code* code = Code::GetCodeFromTargetAddress(target_address()); 658 PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()), 659 target_address()); 660 if (rmode_ == CODE_TARGET_WITH_ID) { 661 PrintF(" (id=%d)", static_cast<int>(data_)); 662 } 663 } else if (IsPosition(rmode_)) { 664 PrintF(out, " (%" V8_PTR_PREFIX "d)", data()); 665 } else if (rmode_ == RelocInfo::RUNTIME_ENTRY && 666 Isolate::Current()->deoptimizer_data() != NULL) { 667 // Depotimization bailouts are stored as runtime entries. 668 int id = Deoptimizer::GetDeoptimizationId( 669 target_address(), Deoptimizer::EAGER); 670 if (id != Deoptimizer::kNotDeoptimizationEntry) { 671 PrintF(out, " (deoptimization bailout %d)", id); 672 } 673 } 674 675 PrintF(out, "\n"); 676 } 677 #endif // ENABLE_DISASSEMBLER 678 679 680 #ifdef DEBUG 681 void RelocInfo::Verify() { 682 switch (rmode_) { 683 case EMBEDDED_OBJECT: 684 Object::VerifyPointer(target_object()); 685 break; 686 case GLOBAL_PROPERTY_CELL: 687 Object::VerifyPointer(target_cell()); 688 break; 689 case DEBUG_BREAK: 690 #ifndef ENABLE_DEBUGGER_SUPPORT 691 UNREACHABLE(); 692 break; 693 #endif 694 case CONSTRUCT_CALL: 695 case CODE_TARGET_CONTEXT: 696 case CODE_TARGET_WITH_ID: 697 case CODE_TARGET: { 698 // convert inline target address to code object 699 Address addr = target_address(); 700 ASSERT(addr != NULL); 701 // Check that we can find the right code object. 702 Code* code = Code::GetCodeFromTargetAddress(addr); 703 Object* found = HEAP->FindCodeObject(addr); 704 ASSERT(found->IsCode()); 705 ASSERT(code->address() == HeapObject::cast(found)->address()); 706 break; 707 } 708 case RUNTIME_ENTRY: 709 case JS_RETURN: 710 case COMMENT: 711 case POSITION: 712 case STATEMENT_POSITION: 713 case EXTERNAL_REFERENCE: 714 case INTERNAL_REFERENCE: 715 case DEBUG_BREAK_SLOT: 716 case NONE: 717 break; 718 case NUMBER_OF_MODES: 719 UNREACHABLE(); 720 break; 721 } 722 } 723 #endif // DEBUG 724 725 726 // ----------------------------------------------------------------------------- 727 // Implementation of ExternalReference 728 729 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) 730 : address_(Redirect(isolate, Builtins::c_function_address(id))) {} 731 732 733 ExternalReference::ExternalReference( 734 ApiFunction* fun, 735 Type type = ExternalReference::BUILTIN_CALL, 736 Isolate* isolate = NULL) 737 : address_(Redirect(isolate, fun->address(), type)) {} 738 739 740 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) 741 : address_(isolate->builtins()->builtin_address(name)) {} 742 743 744 ExternalReference::ExternalReference(Runtime::FunctionId id, 745 Isolate* isolate) 746 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} 747 748 749 ExternalReference::ExternalReference(const Runtime::Function* f, 750 Isolate* isolate) 751 : address_(Redirect(isolate, f->entry)) {} 752 753 754 ExternalReference ExternalReference::isolate_address() { 755 return ExternalReference(Isolate::Current()); 756 } 757 758 759 ExternalReference::ExternalReference(const IC_Utility& ic_utility, 760 Isolate* isolate) 761 : address_(Redirect(isolate, ic_utility.address())) {} 762 763 #ifdef ENABLE_DEBUGGER_SUPPORT 764 ExternalReference::ExternalReference(const Debug_Address& debug_address, 765 Isolate* isolate) 766 : address_(debug_address.address(isolate)) {} 767 #endif 768 769 ExternalReference::ExternalReference(StatsCounter* counter) 770 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} 771 772 773 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) 774 : address_(isolate->get_address_from_id(id)) {} 775 776 777 ExternalReference::ExternalReference(const SCTableReference& table_ref) 778 : address_(table_ref.address()) {} 779 780 781 ExternalReference ExternalReference:: 782 incremental_marking_record_write_function(Isolate* isolate) { 783 return ExternalReference(Redirect( 784 isolate, 785 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); 786 } 787 788 789 ExternalReference ExternalReference:: 790 incremental_evacuation_record_write_function(Isolate* isolate) { 791 return ExternalReference(Redirect( 792 isolate, 793 FUNCTION_ADDR(IncrementalMarking::RecordWriteForEvacuationFromCode))); 794 } 795 796 797 ExternalReference ExternalReference:: 798 store_buffer_overflow_function(Isolate* isolate) { 799 return ExternalReference(Redirect( 800 isolate, 801 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); 802 } 803 804 805 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) { 806 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache))); 807 } 808 809 810 ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) { 811 return 812 ExternalReference(Redirect(isolate, FUNCTION_ADDR(Runtime::PerformGC))); 813 } 814 815 816 ExternalReference ExternalReference::fill_heap_number_with_random_function( 817 Isolate* isolate) { 818 return ExternalReference(Redirect( 819 isolate, 820 FUNCTION_ADDR(V8::FillHeapNumberWithRandom))); 821 } 822 823 824 ExternalReference ExternalReference::delete_handle_scope_extensions( 825 Isolate* isolate) { 826 return ExternalReference(Redirect( 827 isolate, 828 FUNCTION_ADDR(HandleScope::DeleteExtensions))); 829 } 830 831 832 ExternalReference ExternalReference::random_uint32_function( 833 Isolate* isolate) { 834 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random))); 835 } 836 837 838 ExternalReference ExternalReference::get_date_field_function( 839 Isolate* isolate) { 840 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); 841 } 842 843 844 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { 845 return ExternalReference(isolate->date_cache()->stamp_address()); 846 } 847 848 849 ExternalReference ExternalReference::transcendental_cache_array_address( 850 Isolate* isolate) { 851 return ExternalReference( 852 isolate->transcendental_cache()->cache_array_address()); 853 } 854 855 856 ExternalReference ExternalReference::new_deoptimizer_function( 857 Isolate* isolate) { 858 return ExternalReference( 859 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); 860 } 861 862 863 ExternalReference ExternalReference::compute_output_frames_function( 864 Isolate* isolate) { 865 return ExternalReference( 866 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); 867 } 868 869 870 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { 871 return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); 872 } 873 874 875 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( 876 Isolate* isolate) { 877 return ExternalReference( 878 isolate->keyed_lookup_cache()->field_offsets_address()); 879 } 880 881 882 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { 883 return ExternalReference(isolate->heap()->roots_array_start()); 884 } 885 886 887 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { 888 return ExternalReference(isolate->stack_guard()->address_of_jslimit()); 889 } 890 891 892 ExternalReference ExternalReference::address_of_real_stack_limit( 893 Isolate* isolate) { 894 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); 895 } 896 897 898 ExternalReference ExternalReference::address_of_regexp_stack_limit( 899 Isolate* isolate) { 900 return ExternalReference(isolate->regexp_stack()->limit_address()); 901 } 902 903 904 ExternalReference ExternalReference::new_space_start(Isolate* isolate) { 905 return ExternalReference(isolate->heap()->NewSpaceStart()); 906 } 907 908 909 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { 910 return ExternalReference(isolate->heap()->store_buffer()->TopAddress()); 911 } 912 913 914 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { 915 return ExternalReference(reinterpret_cast<Address>( 916 isolate->heap()->NewSpaceMask())); 917 } 918 919 920 ExternalReference ExternalReference::new_space_allocation_top_address( 921 Isolate* isolate) { 922 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); 923 } 924 925 926 ExternalReference ExternalReference::heap_always_allocate_scope_depth( 927 Isolate* isolate) { 928 Heap* heap = isolate->heap(); 929 return ExternalReference(heap->always_allocate_scope_depth_address()); 930 } 931 932 933 ExternalReference ExternalReference::new_space_allocation_limit_address( 934 Isolate* isolate) { 935 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); 936 } 937 938 939 ExternalReference ExternalReference::handle_scope_level_address() { 940 return ExternalReference(HandleScope::current_level_address()); 941 } 942 943 944 ExternalReference ExternalReference::handle_scope_next_address() { 945 return ExternalReference(HandleScope::current_next_address()); 946 } 947 948 949 ExternalReference ExternalReference::handle_scope_limit_address() { 950 return ExternalReference(HandleScope::current_limit_address()); 951 } 952 953 954 ExternalReference ExternalReference::scheduled_exception_address( 955 Isolate* isolate) { 956 return ExternalReference(isolate->scheduled_exception_address()); 957 } 958 959 960 ExternalReference ExternalReference::address_of_min_int() { 961 return ExternalReference(reinterpret_cast<void*>( 962 &double_constants.Pointer()->min_int)); 963 } 964 965 966 ExternalReference ExternalReference::address_of_one_half() { 967 return ExternalReference(reinterpret_cast<void*>( 968 &double_constants.Pointer()->one_half)); 969 } 970 971 972 ExternalReference ExternalReference::address_of_minus_zero() { 973 return ExternalReference(reinterpret_cast<void*>( 974 &double_constants.Pointer()->minus_zero)); 975 } 976 977 978 ExternalReference ExternalReference::address_of_zero() { 979 return ExternalReference(reinterpret_cast<void*>( 980 &double_constants.Pointer()->zero)); 981 } 982 983 984 ExternalReference ExternalReference::address_of_uint8_max_value() { 985 return ExternalReference(reinterpret_cast<void*>( 986 &double_constants.Pointer()->uint8_max_value)); 987 } 988 989 990 ExternalReference ExternalReference::address_of_negative_infinity() { 991 return ExternalReference(reinterpret_cast<void*>( 992 &double_constants.Pointer()->negative_infinity)); 993 } 994 995 996 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() { 997 return ExternalReference(reinterpret_cast<void*>( 998 &double_constants.Pointer()->canonical_non_hole_nan)); 999 } 1000 1001 1002 ExternalReference ExternalReference::address_of_the_hole_nan() { 1003 return ExternalReference(reinterpret_cast<void*>( 1004 &double_constants.Pointer()->the_hole_nan)); 1005 } 1006 1007 1008 #ifndef V8_INTERPRETED_REGEXP 1009 1010 ExternalReference ExternalReference::re_check_stack_guard_state( 1011 Isolate* isolate) { 1012 Address function; 1013 #ifdef V8_TARGET_ARCH_X64 1014 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); 1015 #elif V8_TARGET_ARCH_IA32 1016 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); 1017 #elif V8_TARGET_ARCH_ARM 1018 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); 1019 #elif V8_TARGET_ARCH_MIPS 1020 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); 1021 #else 1022 UNREACHABLE(); 1023 #endif 1024 return ExternalReference(Redirect(isolate, function)); 1025 } 1026 1027 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { 1028 return ExternalReference( 1029 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); 1030 } 1031 1032 ExternalReference ExternalReference::re_case_insensitive_compare_uc16( 1033 Isolate* isolate) { 1034 return ExternalReference(Redirect( 1035 isolate, 1036 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); 1037 } 1038 1039 ExternalReference ExternalReference::re_word_character_map() { 1040 return ExternalReference( 1041 NativeRegExpMacroAssembler::word_character_map_address()); 1042 } 1043 1044 ExternalReference ExternalReference::address_of_static_offsets_vector( 1045 Isolate* isolate) { 1046 return ExternalReference( 1047 OffsetsVector::static_offsets_vector_address(isolate)); 1048 } 1049 1050 ExternalReference ExternalReference::address_of_regexp_stack_memory_address( 1051 Isolate* isolate) { 1052 return ExternalReference( 1053 isolate->regexp_stack()->memory_address()); 1054 } 1055 1056 ExternalReference ExternalReference::address_of_regexp_stack_memory_size( 1057 Isolate* isolate) { 1058 return ExternalReference(isolate->regexp_stack()->memory_size_address()); 1059 } 1060 1061 #endif // V8_INTERPRETED_REGEXP 1062 1063 1064 static double add_two_doubles(double x, double y) { 1065 return x + y; 1066 } 1067 1068 1069 static double sub_two_doubles(double x, double y) { 1070 return x - y; 1071 } 1072 1073 1074 static double mul_two_doubles(double x, double y) { 1075 return x * y; 1076 } 1077 1078 1079 static double div_two_doubles(double x, double y) { 1080 return x / y; 1081 } 1082 1083 1084 static double mod_two_doubles(double x, double y) { 1085 return modulo(x, y); 1086 } 1087 1088 1089 static double math_sin_double(double x) { 1090 return sin(x); 1091 } 1092 1093 1094 static double math_cos_double(double x) { 1095 return cos(x); 1096 } 1097 1098 1099 static double math_tan_double(double x) { 1100 return tan(x); 1101 } 1102 1103 1104 static double math_log_double(double x) { 1105 return log(x); 1106 } 1107 1108 1109 ExternalReference ExternalReference::math_sin_double_function( 1110 Isolate* isolate) { 1111 return ExternalReference(Redirect(isolate, 1112 FUNCTION_ADDR(math_sin_double), 1113 BUILTIN_FP_CALL)); 1114 } 1115 1116 1117 ExternalReference ExternalReference::math_cos_double_function( 1118 Isolate* isolate) { 1119 return ExternalReference(Redirect(isolate, 1120 FUNCTION_ADDR(math_cos_double), 1121 BUILTIN_FP_CALL)); 1122 } 1123 1124 1125 ExternalReference ExternalReference::math_tan_double_function( 1126 Isolate* isolate) { 1127 return ExternalReference(Redirect(isolate, 1128 FUNCTION_ADDR(math_tan_double), 1129 BUILTIN_FP_CALL)); 1130 } 1131 1132 1133 ExternalReference ExternalReference::math_log_double_function( 1134 Isolate* isolate) { 1135 return ExternalReference(Redirect(isolate, 1136 FUNCTION_ADDR(math_log_double), 1137 BUILTIN_FP_CALL)); 1138 } 1139 1140 1141 // Helper function to compute x^y, where y is known to be an 1142 // integer. Uses binary decomposition to limit the number of 1143 // multiplications; see the discussion in "Hacker's Delight" by Henry 1144 // S. Warren, Jr., figure 11-6, page 213. 1145 double power_double_int(double x, int y) { 1146 double m = (y < 0) ? 1 / x : x; 1147 unsigned n = (y < 0) ? -y : y; 1148 double p = 1; 1149 while (n != 0) { 1150 if ((n & 1) != 0) p *= m; 1151 m *= m; 1152 if ((n & 2) != 0) p *= m; 1153 m *= m; 1154 n >>= 2; 1155 } 1156 return p; 1157 } 1158 1159 1160 double power_double_double(double x, double y) { 1161 // The checks for special cases can be dropped in ia32 because it has already 1162 // been done in generated code before bailing out here. 1163 if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) return OS::nan_value(); 1164 return pow(x, y); 1165 } 1166 1167 1168 ExternalReference ExternalReference::power_double_double_function( 1169 Isolate* isolate) { 1170 return ExternalReference(Redirect(isolate, 1171 FUNCTION_ADDR(power_double_double), 1172 BUILTIN_FP_FP_CALL)); 1173 } 1174 1175 1176 ExternalReference ExternalReference::power_double_int_function( 1177 Isolate* isolate) { 1178 return ExternalReference(Redirect(isolate, 1179 FUNCTION_ADDR(power_double_int), 1180 BUILTIN_FP_INT_CALL)); 1181 } 1182 1183 1184 static int native_compare_doubles(double y, double x) { 1185 if (x == y) return EQUAL; 1186 return x < y ? LESS : GREATER; 1187 } 1188 1189 1190 bool EvalComparison(Token::Value op, double op1, double op2) { 1191 ASSERT(Token::IsCompareOp(op)); 1192 switch (op) { 1193 case Token::EQ: 1194 case Token::EQ_STRICT: return (op1 == op2); 1195 case Token::NE: return (op1 != op2); 1196 case Token::LT: return (op1 < op2); 1197 case Token::GT: return (op1 > op2); 1198 case Token::LTE: return (op1 <= op2); 1199 case Token::GTE: return (op1 >= op2); 1200 default: 1201 UNREACHABLE(); 1202 return false; 1203 } 1204 } 1205 1206 1207 ExternalReference ExternalReference::double_fp_operation( 1208 Token::Value operation, Isolate* isolate) { 1209 typedef double BinaryFPOperation(double x, double y); 1210 BinaryFPOperation* function = NULL; 1211 switch (operation) { 1212 case Token::ADD: 1213 function = &add_two_doubles; 1214 break; 1215 case Token::SUB: 1216 function = &sub_two_doubles; 1217 break; 1218 case Token::MUL: 1219 function = &mul_two_doubles; 1220 break; 1221 case Token::DIV: 1222 function = &div_two_doubles; 1223 break; 1224 case Token::MOD: 1225 function = &mod_two_doubles; 1226 break; 1227 default: 1228 UNREACHABLE(); 1229 } 1230 return ExternalReference(Redirect(isolate, 1231 FUNCTION_ADDR(function), 1232 BUILTIN_FP_FP_CALL)); 1233 } 1234 1235 1236 ExternalReference ExternalReference::compare_doubles(Isolate* isolate) { 1237 return ExternalReference(Redirect(isolate, 1238 FUNCTION_ADDR(native_compare_doubles), 1239 BUILTIN_COMPARE_CALL)); 1240 } 1241 1242 1243 #ifdef ENABLE_DEBUGGER_SUPPORT 1244 ExternalReference ExternalReference::debug_break(Isolate* isolate) { 1245 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); 1246 } 1247 1248 1249 ExternalReference ExternalReference::debug_step_in_fp_address( 1250 Isolate* isolate) { 1251 return ExternalReference(isolate->debug()->step_in_fp_addr()); 1252 } 1253 #endif 1254 1255 1256 void PositionsRecorder::RecordPosition(int pos) { 1257 ASSERT(pos != RelocInfo::kNoPosition); 1258 ASSERT(pos >= 0); 1259 state_.current_position = pos; 1260 #ifdef ENABLE_GDB_JIT_INTERFACE 1261 if (gdbjit_lineinfo_ != NULL) { 1262 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false); 1263 } 1264 #endif 1265 } 1266 1267 1268 void PositionsRecorder::RecordStatementPosition(int pos) { 1269 ASSERT(pos != RelocInfo::kNoPosition); 1270 ASSERT(pos >= 0); 1271 state_.current_statement_position = pos; 1272 #ifdef ENABLE_GDB_JIT_INTERFACE 1273 if (gdbjit_lineinfo_ != NULL) { 1274 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true); 1275 } 1276 #endif 1277 } 1278 1279 1280 bool PositionsRecorder::WriteRecordedPositions() { 1281 bool written = false; 1282 1283 // Write the statement position if it is different from what was written last 1284 // time. 1285 if (state_.current_statement_position != state_.written_statement_position) { 1286 EnsureSpace ensure_space(assembler_); 1287 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, 1288 state_.current_statement_position); 1289 state_.written_statement_position = state_.current_statement_position; 1290 written = true; 1291 } 1292 1293 // Write the position if it is different from what was written last time and 1294 // also different from the written statement position. 1295 if (state_.current_position != state_.written_position && 1296 state_.current_position != state_.written_statement_position) { 1297 EnsureSpace ensure_space(assembler_); 1298 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); 1299 state_.written_position = state_.current_position; 1300 written = true; 1301 } 1302 1303 // Return whether something was written. 1304 return written; 1305 } 1306 1307 } } // namespace v8::internal 1308