1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 // Platform specific code for Win32. 29 30 #define V8_WIN32_HEADERS_FULL 31 #include "win32-headers.h" 32 33 #include "v8.h" 34 35 #include "codegen.h" 36 #include "platform.h" 37 #include "vm-state-inl.h" 38 39 #ifdef _MSC_VER 40 41 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually 42 // defined in strings.h. 43 int strncasecmp(const char* s1, const char* s2, int n) { 44 return _strnicmp(s1, s2, n); 45 } 46 47 #endif // _MSC_VER 48 49 50 // Extra functions for MinGW. Most of these are the _s functions which are in 51 // the Microsoft Visual Studio C++ CRT. 52 #ifdef __MINGW32__ 53 54 int localtime_s(tm* out_tm, const time_t* time) { 55 tm* posix_local_time_struct = localtime(time); 56 if (posix_local_time_struct == NULL) return 1; 57 *out_tm = *posix_local_time_struct; 58 return 0; 59 } 60 61 62 int fopen_s(FILE** pFile, const char* filename, const char* mode) { 63 *pFile = fopen(filename, mode); 64 return *pFile != NULL ? 0 : 1; 65 } 66 67 68 #ifndef __MINGW64_VERSION_MAJOR 69 70 // Not sure this the correct interpretation of _mkgmtime 71 time_t _mkgmtime(tm* timeptr) { 72 return mktime(timeptr); 73 } 74 75 76 #define _TRUNCATE 0 77 #define STRUNCATE 80 78 79 #endif // __MINGW64_VERSION_MAJOR 80 81 82 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, 83 const char* format, va_list argptr) { 84 ASSERT(count == _TRUNCATE); 85 return _vsnprintf(buffer, sizeOfBuffer, format, argptr); 86 } 87 88 89 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { 90 CHECK(source != NULL); 91 CHECK(dest != NULL); 92 CHECK_GT(dest_size, 0); 93 94 if (count == _TRUNCATE) { 95 while (dest_size > 0 && *source != 0) { 96 *(dest++) = *(source++); 97 --dest_size; 98 } 99 if (dest_size == 0) { 100 *(dest - 1) = 0; 101 return STRUNCATE; 102 } 103 } else { 104 while (dest_size > 0 && count > 0 && *source != 0) { 105 *(dest++) = *(source++); 106 --dest_size; 107 --count; 108 } 109 } 110 CHECK_GT(dest_size, 0); 111 *dest = 0; 112 return 0; 113 } 114 115 116 #ifndef __MINGW64_VERSION_MAJOR 117 118 inline void MemoryBarrier() { 119 int barrier = 0; 120 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); 121 } 122 123 #endif // __MINGW64_VERSION_MAJOR 124 125 126 #endif // __MINGW32__ 127 128 // Generate a pseudo-random number in the range 0-2^31-1. Usually 129 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW. 130 int random() { 131 return rand(); 132 } 133 134 135 namespace v8 { 136 namespace internal { 137 138 intptr_t OS::MaxVirtualMemory() { 139 return 0; 140 } 141 142 143 double ceiling(double x) { 144 return ceil(x); 145 } 146 147 148 static Mutex* limit_mutex = NULL; 149 150 #if defined(V8_TARGET_ARCH_IA32) 151 static OS::MemCopyFunction memcopy_function = NULL; 152 static LazyMutex memcopy_function_mutex = LAZY_MUTEX_INITIALIZER; 153 // Defined in codegen-ia32.cc. 154 OS::MemCopyFunction CreateMemCopyFunction(); 155 156 // Copy memory area to disjoint memory area. 157 void OS::MemCopy(void* dest, const void* src, size_t size) { 158 if (memcopy_function == NULL) { 159 ScopedLock lock(memcopy_function_mutex.Pointer()); 160 if (memcopy_function == NULL) { 161 OS::MemCopyFunction temp = CreateMemCopyFunction(); 162 MemoryBarrier(); 163 memcopy_function = temp; 164 } 165 } 166 // Note: here we rely on dependent reads being ordered. This is true 167 // on all architectures we currently support. 168 (*memcopy_function)(dest, src, size); 169 #ifdef DEBUG 170 CHECK_EQ(0, memcmp(dest, src, size)); 171 #endif 172 } 173 #endif // V8_TARGET_ARCH_IA32 174 175 #ifdef _WIN64 176 typedef double (*ModuloFunction)(double, double); 177 static ModuloFunction modulo_function = NULL; 178 // Defined in codegen-x64.cc. 179 ModuloFunction CreateModuloFunction(); 180 181 void init_modulo_function() { 182 modulo_function = CreateModuloFunction(); 183 } 184 185 double modulo(double x, double y) { 186 // Note: here we rely on dependent reads being ordered. This is true 187 // on all architectures we currently support. 188 return (*modulo_function)(x, y); 189 } 190 #else // Win32 191 192 double modulo(double x, double y) { 193 // Workaround MS fmod bugs. ECMA-262 says: 194 // dividend is finite and divisor is an infinity => result equals dividend 195 // dividend is a zero and divisor is nonzero finite => result equals dividend 196 if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) && 197 !(x == 0 && (y != 0 && isfinite(y)))) { 198 x = fmod(x, y); 199 } 200 return x; 201 } 202 203 #endif // _WIN64 204 205 206 #define UNARY_MATH_FUNCTION(name, generator) \ 207 static UnaryMathFunction fast_##name##_function = NULL; \ 208 void init_fast_##name##_function() { \ 209 fast_##name##_function = generator; \ 210 } \ 211 double fast_##name(double x) { \ 212 return (*fast_##name##_function)(x); \ 213 } 214 215 UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN)) 216 UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS)) 217 UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN)) 218 UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG)) 219 UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction()) 220 221 #undef MATH_FUNCTION 222 223 224 void MathSetup() { 225 #ifdef _WIN64 226 init_modulo_function(); 227 #endif 228 init_fast_sin_function(); 229 init_fast_cos_function(); 230 init_fast_tan_function(); 231 init_fast_log_function(); 232 init_fast_sqrt_function(); 233 } 234 235 236 // ---------------------------------------------------------------------------- 237 // The Time class represents time on win32. A timestamp is represented as 238 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript 239 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, 240 // January 1, 1970. 241 242 class Time { 243 public: 244 // Constructors. 245 Time(); 246 explicit Time(double jstime); 247 Time(int year, int mon, int day, int hour, int min, int sec); 248 249 // Convert timestamp to JavaScript representation. 250 double ToJSTime(); 251 252 // Set timestamp to current time. 253 void SetToCurrentTime(); 254 255 // Returns the local timezone offset in milliseconds east of UTC. This is 256 // the number of milliseconds you must add to UTC to get local time, i.e. 257 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This 258 // routine also takes into account whether daylight saving is effect 259 // at the time. 260 int64_t LocalOffset(); 261 262 // Returns the daylight savings time offset for the time in milliseconds. 263 int64_t DaylightSavingsOffset(); 264 265 // Returns a string identifying the current timezone for the 266 // timestamp taking into account daylight saving. 267 char* LocalTimezone(); 268 269 private: 270 // Constants for time conversion. 271 static const int64_t kTimeEpoc = 116444736000000000LL; 272 static const int64_t kTimeScaler = 10000; 273 static const int64_t kMsPerMinute = 60000; 274 275 // Constants for timezone information. 276 static const int kTzNameSize = 128; 277 static const bool kShortTzNames = false; 278 279 // Timezone information. We need to have static buffers for the 280 // timezone names because we return pointers to these in 281 // LocalTimezone(). 282 static bool tz_initialized_; 283 static TIME_ZONE_INFORMATION tzinfo_; 284 static char std_tz_name_[kTzNameSize]; 285 static char dst_tz_name_[kTzNameSize]; 286 287 // Initialize the timezone information (if not already done). 288 static void TzSet(); 289 290 // Guess the name of the timezone from the bias. 291 static const char* GuessTimezoneNameFromBias(int bias); 292 293 // Return whether or not daylight savings time is in effect at this time. 294 bool InDST(); 295 296 // Return the difference (in milliseconds) between this timestamp and 297 // another timestamp. 298 int64_t Diff(Time* other); 299 300 // Accessor for FILETIME representation. 301 FILETIME& ft() { return time_.ft_; } 302 303 // Accessor for integer representation. 304 int64_t& t() { return time_.t_; } 305 306 // Although win32 uses 64-bit integers for representing timestamps, 307 // these are packed into a FILETIME structure. The FILETIME structure 308 // is just a struct representing a 64-bit integer. The TimeStamp union 309 // allows access to both a FILETIME and an integer representation of 310 // the timestamp. 311 union TimeStamp { 312 FILETIME ft_; 313 int64_t t_; 314 }; 315 316 TimeStamp time_; 317 }; 318 319 // Static variables. 320 bool Time::tz_initialized_ = false; 321 TIME_ZONE_INFORMATION Time::tzinfo_; 322 char Time::std_tz_name_[kTzNameSize]; 323 char Time::dst_tz_name_[kTzNameSize]; 324 325 326 // Initialize timestamp to start of epoc. 327 Time::Time() { 328 t() = 0; 329 } 330 331 332 // Initialize timestamp from a JavaScript timestamp. 333 Time::Time(double jstime) { 334 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; 335 } 336 337 338 // Initialize timestamp from date/time components. 339 Time::Time(int year, int mon, int day, int hour, int min, int sec) { 340 SYSTEMTIME st; 341 st.wYear = year; 342 st.wMonth = mon; 343 st.wDay = day; 344 st.wHour = hour; 345 st.wMinute = min; 346 st.wSecond = sec; 347 st.wMilliseconds = 0; 348 SystemTimeToFileTime(&st, &ft()); 349 } 350 351 352 // Convert timestamp to JavaScript timestamp. 353 double Time::ToJSTime() { 354 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); 355 } 356 357 358 // Guess the name of the timezone from the bias. 359 // The guess is very biased towards the northern hemisphere. 360 const char* Time::GuessTimezoneNameFromBias(int bias) { 361 static const int kHour = 60; 362 switch (-bias) { 363 case -9*kHour: return "Alaska"; 364 case -8*kHour: return "Pacific"; 365 case -7*kHour: return "Mountain"; 366 case -6*kHour: return "Central"; 367 case -5*kHour: return "Eastern"; 368 case -4*kHour: return "Atlantic"; 369 case 0*kHour: return "GMT"; 370 case +1*kHour: return "Central Europe"; 371 case +2*kHour: return "Eastern Europe"; 372 case +3*kHour: return "Russia"; 373 case +5*kHour + 30: return "India"; 374 case +8*kHour: return "China"; 375 case +9*kHour: return "Japan"; 376 case +12*kHour: return "New Zealand"; 377 default: return "Local"; 378 } 379 } 380 381 382 // Initialize timezone information. The timezone information is obtained from 383 // windows. If we cannot get the timezone information we fall back to CET. 384 // Please notice that this code is not thread-safe. 385 void Time::TzSet() { 386 // Just return if timezone information has already been initialized. 387 if (tz_initialized_) return; 388 389 // Initialize POSIX time zone data. 390 _tzset(); 391 // Obtain timezone information from operating system. 392 memset(&tzinfo_, 0, sizeof(tzinfo_)); 393 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { 394 // If we cannot get timezone information we fall back to CET. 395 tzinfo_.Bias = -60; 396 tzinfo_.StandardDate.wMonth = 10; 397 tzinfo_.StandardDate.wDay = 5; 398 tzinfo_.StandardDate.wHour = 3; 399 tzinfo_.StandardBias = 0; 400 tzinfo_.DaylightDate.wMonth = 3; 401 tzinfo_.DaylightDate.wDay = 5; 402 tzinfo_.DaylightDate.wHour = 2; 403 tzinfo_.DaylightBias = -60; 404 } 405 406 // Make standard and DST timezone names. 407 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, 408 std_tz_name_, kTzNameSize, NULL, NULL); 409 std_tz_name_[kTzNameSize - 1] = '\0'; 410 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, 411 dst_tz_name_, kTzNameSize, NULL, NULL); 412 dst_tz_name_[kTzNameSize - 1] = '\0'; 413 414 // If OS returned empty string or resource id (like "@tzres.dll,-211") 415 // simply guess the name from the UTC bias of the timezone. 416 // To properly resolve the resource identifier requires a library load, 417 // which is not possible in a sandbox. 418 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { 419 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1), 420 "%s Standard Time", 421 GuessTimezoneNameFromBias(tzinfo_.Bias)); 422 } 423 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { 424 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1), 425 "%s Daylight Time", 426 GuessTimezoneNameFromBias(tzinfo_.Bias)); 427 } 428 429 // Timezone information initialized. 430 tz_initialized_ = true; 431 } 432 433 434 // Return the difference in milliseconds between this and another timestamp. 435 int64_t Time::Diff(Time* other) { 436 return (t() - other->t()) / kTimeScaler; 437 } 438 439 440 // Set timestamp to current time. 441 void Time::SetToCurrentTime() { 442 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. 443 // Because we're fast, we like fast timers which have at least a 444 // 1ms resolution. 445 // 446 // timeGetTime() provides 1ms granularity when combined with 447 // timeBeginPeriod(). If the host application for v8 wants fast 448 // timers, it can use timeBeginPeriod to increase the resolution. 449 // 450 // Using timeGetTime() has a drawback because it is a 32bit value 451 // and hence rolls-over every ~49days. 452 // 453 // To use the clock, we use GetSystemTimeAsFileTime as our base; 454 // and then use timeGetTime to extrapolate current time from the 455 // start time. To deal with rollovers, we resync the clock 456 // any time when more than kMaxClockElapsedTime has passed or 457 // whenever timeGetTime creates a rollover. 458 459 static bool initialized = false; 460 static TimeStamp init_time; 461 static DWORD init_ticks; 462 static const int64_t kHundredNanosecondsPerSecond = 10000000; 463 static const int64_t kMaxClockElapsedTime = 464 60*kHundredNanosecondsPerSecond; // 1 minute 465 466 // If we are uninitialized, we need to resync the clock. 467 bool needs_resync = !initialized; 468 469 // Get the current time. 470 TimeStamp time_now; 471 GetSystemTimeAsFileTime(&time_now.ft_); 472 DWORD ticks_now = timeGetTime(); 473 474 // Check if we need to resync due to clock rollover. 475 needs_resync |= ticks_now < init_ticks; 476 477 // Check if we need to resync due to elapsed time. 478 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; 479 480 // Resync the clock if necessary. 481 if (needs_resync) { 482 GetSystemTimeAsFileTime(&init_time.ft_); 483 init_ticks = ticks_now = timeGetTime(); 484 initialized = true; 485 } 486 487 // Finally, compute the actual time. Why is this so hard. 488 DWORD elapsed = ticks_now - init_ticks; 489 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); 490 } 491 492 493 // Return the local timezone offset in milliseconds east of UTC. This 494 // takes into account whether daylight saving is in effect at the time. 495 // Only times in the 32-bit Unix range may be passed to this function. 496 // Also, adding the time-zone offset to the input must not overflow. 497 // The function EquivalentTime() in date.js guarantees this. 498 int64_t Time::LocalOffset() { 499 // Initialize timezone information, if needed. 500 TzSet(); 501 502 Time rounded_to_second(*this); 503 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * 504 1000 * kTimeScaler; 505 // Convert to local time using POSIX localtime function. 506 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() 507 // very slow. Other browsers use localtime(). 508 509 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to 510 // POSIX seconds past 1/1/1970 0:00:00. 511 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; 512 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { 513 return 0; 514 } 515 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. 516 time_t posix_time = static_cast<time_t>(unchecked_posix_time); 517 518 // Convert to local time, as struct with fields for day, hour, year, etc. 519 tm posix_local_time_struct; 520 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; 521 // Convert local time in struct to POSIX time as if it were a UTC time. 522 time_t local_posix_time = _mkgmtime(&posix_local_time_struct); 523 Time localtime(1000.0 * local_posix_time); 524 525 return localtime.Diff(&rounded_to_second); 526 } 527 528 529 // Return whether or not daylight savings time is in effect at this time. 530 bool Time::InDST() { 531 // Initialize timezone information, if needed. 532 TzSet(); 533 534 // Determine if DST is in effect at the specified time. 535 bool in_dst = false; 536 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) { 537 // Get the local timezone offset for the timestamp in milliseconds. 538 int64_t offset = LocalOffset(); 539 540 // Compute the offset for DST. The bias parameters in the timezone info 541 // are specified in minutes. These must be converted to milliseconds. 542 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute; 543 544 // If the local time offset equals the timezone bias plus the daylight 545 // bias then DST is in effect. 546 in_dst = offset == dstofs; 547 } 548 549 return in_dst; 550 } 551 552 553 // Return the daylight savings time offset for this time. 554 int64_t Time::DaylightSavingsOffset() { 555 return InDST() ? 60 * kMsPerMinute : 0; 556 } 557 558 559 // Returns a string identifying the current timezone for the 560 // timestamp taking into account daylight saving. 561 char* Time::LocalTimezone() { 562 // Return the standard or DST time zone name based on whether daylight 563 // saving is in effect at the given time. 564 return InDST() ? dst_tz_name_ : std_tz_name_; 565 } 566 567 568 void OS::SetUp() { 569 // Seed the random number generator. 570 // Convert the current time to a 64-bit integer first, before converting it 571 // to an unsigned. Going directly can cause an overflow and the seed to be 572 // set to all ones. The seed will be identical for different instances that 573 // call this setup code within the same millisecond. 574 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); 575 srand(static_cast<unsigned int>(seed)); 576 limit_mutex = CreateMutex(); 577 } 578 579 580 void OS::PostSetUp() { 581 // Math functions depend on CPU features therefore they are initialized after 582 // CPU. 583 MathSetup(); 584 } 585 586 587 // Returns the accumulated user time for thread. 588 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { 589 FILETIME dummy; 590 uint64_t usertime; 591 592 // Get the amount of time that the thread has executed in user mode. 593 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, 594 reinterpret_cast<FILETIME*>(&usertime))) return -1; 595 596 // Adjust the resolution to micro-seconds. 597 usertime /= 10; 598 599 // Convert to seconds and microseconds 600 *secs = static_cast<uint32_t>(usertime / 1000000); 601 *usecs = static_cast<uint32_t>(usertime % 1000000); 602 return 0; 603 } 604 605 606 // Returns current time as the number of milliseconds since 607 // 00:00:00 UTC, January 1, 1970. 608 double OS::TimeCurrentMillis() { 609 Time t; 610 t.SetToCurrentTime(); 611 return t.ToJSTime(); 612 } 613 614 // Returns the tickcounter based on timeGetTime. 615 int64_t OS::Ticks() { 616 return timeGetTime() * 1000; // Convert to microseconds. 617 } 618 619 620 // Returns a string identifying the current timezone taking into 621 // account daylight saving. 622 const char* OS::LocalTimezone(double time) { 623 return Time(time).LocalTimezone(); 624 } 625 626 627 // Returns the local time offset in milliseconds east of UTC without 628 // taking daylight savings time into account. 629 double OS::LocalTimeOffset() { 630 // Use current time, rounded to the millisecond. 631 Time t(TimeCurrentMillis()); 632 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. 633 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset()); 634 } 635 636 637 // Returns the daylight savings offset in milliseconds for the given 638 // time. 639 double OS::DaylightSavingsOffset(double time) { 640 int64_t offset = Time(time).DaylightSavingsOffset(); 641 return static_cast<double>(offset); 642 } 643 644 645 int OS::GetLastError() { 646 return ::GetLastError(); 647 } 648 649 650 // ---------------------------------------------------------------------------- 651 // Win32 console output. 652 // 653 // If a Win32 application is linked as a console application it has a normal 654 // standard output and standard error. In this case normal printf works fine 655 // for output. However, if the application is linked as a GUI application, 656 // the process doesn't have a console, and therefore (debugging) output is lost. 657 // This is the case if we are embedded in a windows program (like a browser). 658 // In order to be able to get debug output in this case the the debugging 659 // facility using OutputDebugString. This output goes to the active debugger 660 // for the process (if any). Else the output can be monitored using DBMON.EXE. 661 662 enum OutputMode { 663 UNKNOWN, // Output method has not yet been determined. 664 CONSOLE, // Output is written to stdout. 665 ODS // Output is written to debug facility. 666 }; 667 668 static OutputMode output_mode = UNKNOWN; // Current output mode. 669 670 671 // Determine if the process has a console for output. 672 static bool HasConsole() { 673 // Only check the first time. Eventual race conditions are not a problem, 674 // because all threads will eventually determine the same mode. 675 if (output_mode == UNKNOWN) { 676 // We cannot just check that the standard output is attached to a console 677 // because this would fail if output is redirected to a file. Therefore we 678 // say that a process does not have an output console if either the 679 // standard output handle is invalid or its file type is unknown. 680 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && 681 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) 682 output_mode = CONSOLE; 683 else 684 output_mode = ODS; 685 } 686 return output_mode == CONSOLE; 687 } 688 689 690 static void VPrintHelper(FILE* stream, const char* format, va_list args) { 691 if (HasConsole()) { 692 vfprintf(stream, format, args); 693 } else { 694 // It is important to use safe print here in order to avoid 695 // overflowing the buffer. We might truncate the output, but this 696 // does not crash. 697 EmbeddedVector<char, 4096> buffer; 698 OS::VSNPrintF(buffer, format, args); 699 OutputDebugStringA(buffer.start()); 700 } 701 } 702 703 704 FILE* OS::FOpen(const char* path, const char* mode) { 705 FILE* result; 706 if (fopen_s(&result, path, mode) == 0) { 707 return result; 708 } else { 709 return NULL; 710 } 711 } 712 713 714 bool OS::Remove(const char* path) { 715 return (DeleteFileA(path) != 0); 716 } 717 718 719 FILE* OS::OpenTemporaryFile() { 720 // tmpfile_s tries to use the root dir, don't use it. 721 char tempPathBuffer[MAX_PATH]; 722 DWORD path_result = 0; 723 path_result = GetTempPathA(MAX_PATH, tempPathBuffer); 724 if (path_result > MAX_PATH || path_result == 0) return NULL; 725 UINT name_result = 0; 726 char tempNameBuffer[MAX_PATH]; 727 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); 728 if (name_result == 0) return NULL; 729 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. 730 if (result != NULL) { 731 Remove(tempNameBuffer); // Delete on close. 732 } 733 return result; 734 } 735 736 737 // Open log file in binary mode to avoid /n -> /r/n conversion. 738 const char* const OS::LogFileOpenMode = "wb"; 739 740 741 // Print (debug) message to console. 742 void OS::Print(const char* format, ...) { 743 va_list args; 744 va_start(args, format); 745 VPrint(format, args); 746 va_end(args); 747 } 748 749 750 void OS::VPrint(const char* format, va_list args) { 751 VPrintHelper(stdout, format, args); 752 } 753 754 755 void OS::FPrint(FILE* out, const char* format, ...) { 756 va_list args; 757 va_start(args, format); 758 VFPrint(out, format, args); 759 va_end(args); 760 } 761 762 763 void OS::VFPrint(FILE* out, const char* format, va_list args) { 764 VPrintHelper(out, format, args); 765 } 766 767 768 // Print error message to console. 769 void OS::PrintError(const char* format, ...) { 770 va_list args; 771 va_start(args, format); 772 VPrintError(format, args); 773 va_end(args); 774 } 775 776 777 void OS::VPrintError(const char* format, va_list args) { 778 VPrintHelper(stderr, format, args); 779 } 780 781 782 int OS::SNPrintF(Vector<char> str, const char* format, ...) { 783 va_list args; 784 va_start(args, format); 785 int result = VSNPrintF(str, format, args); 786 va_end(args); 787 return result; 788 } 789 790 791 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) { 792 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args); 793 // Make sure to zero-terminate the string if the output was 794 // truncated or if there was an error. 795 if (n < 0 || n >= str.length()) { 796 if (str.length() > 0) 797 str[str.length() - 1] = '\0'; 798 return -1; 799 } else { 800 return n; 801 } 802 } 803 804 805 char* OS::StrChr(char* str, int c) { 806 return const_cast<char*>(strchr(str, c)); 807 } 808 809 810 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) { 811 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. 812 size_t buffer_size = static_cast<size_t>(dest.length()); 813 if (n + 1 > buffer_size) // count for trailing '\0' 814 n = _TRUNCATE; 815 int result = strncpy_s(dest.start(), dest.length(), src, n); 816 USE(result); 817 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); 818 } 819 820 821 // We keep the lowest and highest addresses mapped as a quick way of 822 // determining that pointers are outside the heap (used mostly in assertions 823 // and verification). The estimate is conservative, i.e., not all addresses in 824 // 'allocated' space are actually allocated to our heap. The range is 825 // [lowest, highest), inclusive on the low and and exclusive on the high end. 826 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); 827 static void* highest_ever_allocated = reinterpret_cast<void*>(0); 828 829 830 static void UpdateAllocatedSpaceLimits(void* address, int size) { 831 ASSERT(limit_mutex != NULL); 832 ScopedLock lock(limit_mutex); 833 834 lowest_ever_allocated = Min(lowest_ever_allocated, address); 835 highest_ever_allocated = 836 Max(highest_ever_allocated, 837 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); 838 } 839 840 841 bool OS::IsOutsideAllocatedSpace(void* pointer) { 842 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) 843 return true; 844 // Ask the Windows API 845 if (IsBadWritePtr(pointer, 1)) 846 return true; 847 return false; 848 } 849 850 851 // Get the system's page size used by VirtualAlloc() or the next power 852 // of two. The reason for always returning a power of two is that the 853 // rounding up in OS::Allocate expects that. 854 static size_t GetPageSize() { 855 static size_t page_size = 0; 856 if (page_size == 0) { 857 SYSTEM_INFO info; 858 GetSystemInfo(&info); 859 page_size = RoundUpToPowerOf2(info.dwPageSize); 860 } 861 return page_size; 862 } 863 864 865 // The allocation alignment is the guaranteed alignment for 866 // VirtualAlloc'ed blocks of memory. 867 size_t OS::AllocateAlignment() { 868 static size_t allocate_alignment = 0; 869 if (allocate_alignment == 0) { 870 SYSTEM_INFO info; 871 GetSystemInfo(&info); 872 allocate_alignment = info.dwAllocationGranularity; 873 } 874 return allocate_alignment; 875 } 876 877 878 static void* GetRandomAddr() { 879 Isolate* isolate = Isolate::UncheckedCurrent(); 880 // Note that the current isolate isn't set up in a call path via 881 // CpuFeatures::Probe. We don't care about randomization in this case because 882 // the code page is immediately freed. 883 if (isolate != NULL) { 884 // The address range used to randomize RWX allocations in OS::Allocate 885 // Try not to map pages into the default range that windows loads DLLs 886 // Use a multiple of 64k to prevent committing unused memory. 887 // Note: This does not guarantee RWX regions will be within the 888 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax 889 #ifdef V8_HOST_ARCH_64_BIT 890 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; 891 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; 892 #else 893 static const intptr_t kAllocationRandomAddressMin = 0x04000000; 894 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; 895 #endif 896 uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits) 897 | kAllocationRandomAddressMin; 898 address &= kAllocationRandomAddressMax; 899 return reinterpret_cast<void *>(address); 900 } 901 return NULL; 902 } 903 904 905 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) { 906 LPVOID base = NULL; 907 908 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) { 909 // For exectutable pages try and randomize the allocation address 910 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) { 911 base = VirtualAlloc(GetRandomAddr(), size, action, protection); 912 } 913 } 914 915 // After three attempts give up and let the OS find an address to use. 916 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection); 917 918 return base; 919 } 920 921 922 void* OS::Allocate(const size_t requested, 923 size_t* allocated, 924 bool is_executable) { 925 // VirtualAlloc rounds allocated size to page size automatically. 926 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); 927 928 // Windows XP SP2 allows Data Excution Prevention (DEP). 929 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; 930 931 LPVOID mbase = RandomizedVirtualAlloc(msize, 932 MEM_COMMIT | MEM_RESERVE, 933 prot); 934 935 if (mbase == NULL) { 936 LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed")); 937 return NULL; 938 } 939 940 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment())); 941 942 *allocated = msize; 943 UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize)); 944 return mbase; 945 } 946 947 948 void OS::Free(void* address, const size_t size) { 949 // TODO(1240712): VirtualFree has a return value which is ignored here. 950 VirtualFree(address, 0, MEM_RELEASE); 951 USE(size); 952 } 953 954 955 intptr_t OS::CommitPageSize() { 956 return 4096; 957 } 958 959 960 void OS::ProtectCode(void* address, const size_t size) { 961 DWORD old_protect; 962 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); 963 } 964 965 966 void OS::Guard(void* address, const size_t size) { 967 DWORD oldprotect; 968 VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect); 969 } 970 971 972 void OS::Sleep(int milliseconds) { 973 ::Sleep(milliseconds); 974 } 975 976 977 void OS::Abort() { 978 if (IsDebuggerPresent() || FLAG_break_on_abort) { 979 DebugBreak(); 980 } else { 981 // Make the MSVCRT do a silent abort. 982 raise(SIGABRT); 983 } 984 } 985 986 987 void OS::DebugBreak() { 988 #ifdef _MSC_VER 989 __debugbreak(); 990 #else 991 ::DebugBreak(); 992 #endif 993 } 994 995 996 class Win32MemoryMappedFile : public OS::MemoryMappedFile { 997 public: 998 Win32MemoryMappedFile(HANDLE file, 999 HANDLE file_mapping, 1000 void* memory, 1001 int size) 1002 : file_(file), 1003 file_mapping_(file_mapping), 1004 memory_(memory), 1005 size_(size) { } 1006 virtual ~Win32MemoryMappedFile(); 1007 virtual void* memory() { return memory_; } 1008 virtual int size() { return size_; } 1009 private: 1010 HANDLE file_; 1011 HANDLE file_mapping_; 1012 void* memory_; 1013 int size_; 1014 }; 1015 1016 1017 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { 1018 // Open a physical file 1019 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, 1020 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); 1021 if (file == INVALID_HANDLE_VALUE) return NULL; 1022 1023 int size = static_cast<int>(GetFileSize(file, NULL)); 1024 1025 // Create a file mapping for the physical file 1026 HANDLE file_mapping = CreateFileMapping(file, NULL, 1027 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); 1028 if (file_mapping == NULL) return NULL; 1029 1030 // Map a view of the file into memory 1031 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); 1032 return new Win32MemoryMappedFile(file, file_mapping, memory, size); 1033 } 1034 1035 1036 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, 1037 void* initial) { 1038 // Open a physical file 1039 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, 1040 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); 1041 if (file == NULL) return NULL; 1042 // Create a file mapping for the physical file 1043 HANDLE file_mapping = CreateFileMapping(file, NULL, 1044 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); 1045 if (file_mapping == NULL) return NULL; 1046 // Map a view of the file into memory 1047 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); 1048 if (memory) memmove(memory, initial, size); 1049 return new Win32MemoryMappedFile(file, file_mapping, memory, size); 1050 } 1051 1052 1053 Win32MemoryMappedFile::~Win32MemoryMappedFile() { 1054 if (memory_ != NULL) 1055 UnmapViewOfFile(memory_); 1056 CloseHandle(file_mapping_); 1057 CloseHandle(file_); 1058 } 1059 1060 1061 // The following code loads functions defined in DbhHelp.h and TlHelp32.h 1062 // dynamically. This is to avoid being depending on dbghelp.dll and 1063 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to 1064 // kernel32.dll at some point so loading functions defines in TlHelp32.h 1065 // dynamically might not be necessary any more - for some versions of Windows?). 1066 1067 // Function pointers to functions dynamically loaded from dbghelp.dll. 1068 #define DBGHELP_FUNCTION_LIST(V) \ 1069 V(SymInitialize) \ 1070 V(SymGetOptions) \ 1071 V(SymSetOptions) \ 1072 V(SymGetSearchPath) \ 1073 V(SymLoadModule64) \ 1074 V(StackWalk64) \ 1075 V(SymGetSymFromAddr64) \ 1076 V(SymGetLineFromAddr64) \ 1077 V(SymFunctionTableAccess64) \ 1078 V(SymGetModuleBase64) 1079 1080 // Function pointers to functions dynamically loaded from dbghelp.dll. 1081 #define TLHELP32_FUNCTION_LIST(V) \ 1082 V(CreateToolhelp32Snapshot) \ 1083 V(Module32FirstW) \ 1084 V(Module32NextW) 1085 1086 // Define the decoration to use for the type and variable name used for 1087 // dynamically loaded DLL function.. 1088 #define DLL_FUNC_TYPE(name) _##name##_ 1089 #define DLL_FUNC_VAR(name) _##name 1090 1091 // Define the type for each dynamically loaded DLL function. The function 1092 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros 1093 // from the Windows include files are redefined here to have the function 1094 // definitions to be as close to the ones in the original .h files as possible. 1095 #ifndef IN 1096 #define IN 1097 #endif 1098 #ifndef VOID 1099 #define VOID void 1100 #endif 1101 1102 // DbgHelp isn't supported on MinGW yet 1103 #ifndef __MINGW32__ 1104 // DbgHelp.h functions. 1105 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, 1106 IN PSTR UserSearchPath, 1107 IN BOOL fInvadeProcess); 1108 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); 1109 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); 1110 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( 1111 IN HANDLE hProcess, 1112 OUT PSTR SearchPath, 1113 IN DWORD SearchPathLength); 1114 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( 1115 IN HANDLE hProcess, 1116 IN HANDLE hFile, 1117 IN PSTR ImageName, 1118 IN PSTR ModuleName, 1119 IN DWORD64 BaseOfDll, 1120 IN DWORD SizeOfDll); 1121 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( 1122 DWORD MachineType, 1123 HANDLE hProcess, 1124 HANDLE hThread, 1125 LPSTACKFRAME64 StackFrame, 1126 PVOID ContextRecord, 1127 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, 1128 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, 1129 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, 1130 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); 1131 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( 1132 IN HANDLE hProcess, 1133 IN DWORD64 qwAddr, 1134 OUT PDWORD64 pdwDisplacement, 1135 OUT PIMAGEHLP_SYMBOL64 Symbol); 1136 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( 1137 IN HANDLE hProcess, 1138 IN DWORD64 qwAddr, 1139 OUT PDWORD pdwDisplacement, 1140 OUT PIMAGEHLP_LINE64 Line64); 1141 // DbgHelp.h typedefs. Implementation found in dbghelp.dll. 1142 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( 1143 HANDLE hProcess, 1144 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 1145 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( 1146 HANDLE hProcess, 1147 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 1148 1149 // TlHelp32.h functions. 1150 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( 1151 DWORD dwFlags, 1152 DWORD th32ProcessID); 1153 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, 1154 LPMODULEENTRY32W lpme); 1155 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, 1156 LPMODULEENTRY32W lpme); 1157 1158 #undef IN 1159 #undef VOID 1160 1161 // Declare a variable for each dynamically loaded DLL function. 1162 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; 1163 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) 1164 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) 1165 #undef DEF_DLL_FUNCTION 1166 1167 // Load the functions. This function has a lot of "ugly" macros in order to 1168 // keep down code duplication. 1169 1170 static bool LoadDbgHelpAndTlHelp32() { 1171 static bool dbghelp_loaded = false; 1172 1173 if (dbghelp_loaded) return true; 1174 1175 HMODULE module; 1176 1177 // Load functions from the dbghelp.dll module. 1178 module = LoadLibrary(TEXT("dbghelp.dll")); 1179 if (module == NULL) { 1180 return false; 1181 } 1182 1183 #define LOAD_DLL_FUNC(name) \ 1184 DLL_FUNC_VAR(name) = \ 1185 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); 1186 1187 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) 1188 1189 #undef LOAD_DLL_FUNC 1190 1191 // Load functions from the kernel32.dll module (the TlHelp32.h function used 1192 // to be in tlhelp32.dll but are now moved to kernel32.dll). 1193 module = LoadLibrary(TEXT("kernel32.dll")); 1194 if (module == NULL) { 1195 return false; 1196 } 1197 1198 #define LOAD_DLL_FUNC(name) \ 1199 DLL_FUNC_VAR(name) = \ 1200 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); 1201 1202 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) 1203 1204 #undef LOAD_DLL_FUNC 1205 1206 // Check that all functions where loaded. 1207 bool result = 1208 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && 1209 1210 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) 1211 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) 1212 1213 #undef DLL_FUNC_LOADED 1214 true; 1215 1216 dbghelp_loaded = result; 1217 return result; 1218 // NOTE: The modules are never unloaded and will stay around until the 1219 // application is closed. 1220 } 1221 1222 1223 // Load the symbols for generating stack traces. 1224 static bool LoadSymbols(HANDLE process_handle) { 1225 static bool symbols_loaded = false; 1226 1227 if (symbols_loaded) return true; 1228 1229 BOOL ok; 1230 1231 // Initialize the symbol engine. 1232 ok = _SymInitialize(process_handle, // hProcess 1233 NULL, // UserSearchPath 1234 false); // fInvadeProcess 1235 if (!ok) return false; 1236 1237 DWORD options = _SymGetOptions(); 1238 options |= SYMOPT_LOAD_LINES; 1239 options |= SYMOPT_FAIL_CRITICAL_ERRORS; 1240 options = _SymSetOptions(options); 1241 1242 char buf[OS::kStackWalkMaxNameLen] = {0}; 1243 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); 1244 if (!ok) { 1245 int err = GetLastError(); 1246 PrintF("%d\n", err); 1247 return false; 1248 } 1249 1250 HANDLE snapshot = _CreateToolhelp32Snapshot( 1251 TH32CS_SNAPMODULE, // dwFlags 1252 GetCurrentProcessId()); // th32ProcessId 1253 if (snapshot == INVALID_HANDLE_VALUE) return false; 1254 MODULEENTRY32W module_entry; 1255 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. 1256 BOOL cont = _Module32FirstW(snapshot, &module_entry); 1257 while (cont) { 1258 DWORD64 base; 1259 // NOTE the SymLoadModule64 function has the peculiarity of accepting a 1260 // both unicode and ASCII strings even though the parameter is PSTR. 1261 base = _SymLoadModule64( 1262 process_handle, // hProcess 1263 0, // hFile 1264 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName 1265 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName 1266 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll 1267 module_entry.modBaseSize); // SizeOfDll 1268 if (base == 0) { 1269 int err = GetLastError(); 1270 if (err != ERROR_MOD_NOT_FOUND && 1271 err != ERROR_INVALID_HANDLE) return false; 1272 } 1273 LOG(i::Isolate::Current(), 1274 SharedLibraryEvent( 1275 module_entry.szExePath, 1276 reinterpret_cast<unsigned int>(module_entry.modBaseAddr), 1277 reinterpret_cast<unsigned int>(module_entry.modBaseAddr + 1278 module_entry.modBaseSize))); 1279 cont = _Module32NextW(snapshot, &module_entry); 1280 } 1281 CloseHandle(snapshot); 1282 1283 symbols_loaded = true; 1284 return true; 1285 } 1286 1287 1288 void OS::LogSharedLibraryAddresses() { 1289 // SharedLibraryEvents are logged when loading symbol information. 1290 // Only the shared libraries loaded at the time of the call to 1291 // LogSharedLibraryAddresses are logged. DLLs loaded after 1292 // initialization are not accounted for. 1293 if (!LoadDbgHelpAndTlHelp32()) return; 1294 HANDLE process_handle = GetCurrentProcess(); 1295 LoadSymbols(process_handle); 1296 } 1297 1298 1299 void OS::SignalCodeMovingGC() { 1300 } 1301 1302 1303 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll 1304 1305 // Switch off warning 4748 (/GS can not protect parameters and local variables 1306 // from local buffer overrun because optimizations are disabled in function) as 1307 // it is triggered by the use of inline assembler. 1308 #pragma warning(push) 1309 #pragma warning(disable : 4748) 1310 int OS::StackWalk(Vector<OS::StackFrame> frames) { 1311 BOOL ok; 1312 1313 // Load the required functions from DLL's. 1314 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError; 1315 1316 // Get the process and thread handles. 1317 HANDLE process_handle = GetCurrentProcess(); 1318 HANDLE thread_handle = GetCurrentThread(); 1319 1320 // Read the symbols. 1321 if (!LoadSymbols(process_handle)) return kStackWalkError; 1322 1323 // Capture current context. 1324 CONTEXT context; 1325 RtlCaptureContext(&context); 1326 1327 // Initialize the stack walking 1328 STACKFRAME64 stack_frame; 1329 memset(&stack_frame, 0, sizeof(stack_frame)); 1330 #ifdef _WIN64 1331 stack_frame.AddrPC.Offset = context.Rip; 1332 stack_frame.AddrFrame.Offset = context.Rbp; 1333 stack_frame.AddrStack.Offset = context.Rsp; 1334 #else 1335 stack_frame.AddrPC.Offset = context.Eip; 1336 stack_frame.AddrFrame.Offset = context.Ebp; 1337 stack_frame.AddrStack.Offset = context.Esp; 1338 #endif 1339 stack_frame.AddrPC.Mode = AddrModeFlat; 1340 stack_frame.AddrFrame.Mode = AddrModeFlat; 1341 stack_frame.AddrStack.Mode = AddrModeFlat; 1342 int frames_count = 0; 1343 1344 // Collect stack frames. 1345 int frames_size = frames.length(); 1346 while (frames_count < frames_size) { 1347 ok = _StackWalk64( 1348 IMAGE_FILE_MACHINE_I386, // MachineType 1349 process_handle, // hProcess 1350 thread_handle, // hThread 1351 &stack_frame, // StackFrame 1352 &context, // ContextRecord 1353 NULL, // ReadMemoryRoutine 1354 _SymFunctionTableAccess64, // FunctionTableAccessRoutine 1355 _SymGetModuleBase64, // GetModuleBaseRoutine 1356 NULL); // TranslateAddress 1357 if (!ok) break; 1358 1359 // Store the address. 1360 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address. 1361 frames[frames_count].address = 1362 reinterpret_cast<void*>(stack_frame.AddrPC.Offset); 1363 1364 // Try to locate a symbol for this frame. 1365 DWORD64 symbol_displacement; 1366 SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol( 1367 NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen)); 1368 if (symbol.is_empty()) return kStackWalkError; // Out of memory. 1369 memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen); 1370 (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64); 1371 (*symbol)->MaxNameLength = kStackWalkMaxNameLen; 1372 ok = _SymGetSymFromAddr64(process_handle, // hProcess 1373 stack_frame.AddrPC.Offset, // Address 1374 &symbol_displacement, // Displacement 1375 *symbol); // Symbol 1376 if (ok) { 1377 // Try to locate more source information for the symbol. 1378 IMAGEHLP_LINE64 Line; 1379 memset(&Line, 0, sizeof(Line)); 1380 Line.SizeOfStruct = sizeof(Line); 1381 DWORD line_displacement; 1382 ok = _SymGetLineFromAddr64( 1383 process_handle, // hProcess 1384 stack_frame.AddrPC.Offset, // dwAddr 1385 &line_displacement, // pdwDisplacement 1386 &Line); // Line 1387 // Format a text representation of the frame based on the information 1388 // available. 1389 if (ok) { 1390 SNPrintF(MutableCStrVector(frames[frames_count].text, 1391 kStackWalkMaxTextLen), 1392 "%s %s:%d:%d", 1393 (*symbol)->Name, Line.FileName, Line.LineNumber, 1394 line_displacement); 1395 } else { 1396 SNPrintF(MutableCStrVector(frames[frames_count].text, 1397 kStackWalkMaxTextLen), 1398 "%s", 1399 (*symbol)->Name); 1400 } 1401 // Make sure line termination is in place. 1402 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0'; 1403 } else { 1404 // No text representation of this frame 1405 frames[frames_count].text[0] = '\0'; 1406 1407 // Continue if we are just missing a module (for non C/C++ frames a 1408 // module will never be found). 1409 int err = GetLastError(); 1410 if (err != ERROR_MOD_NOT_FOUND) { 1411 break; 1412 } 1413 } 1414 1415 frames_count++; 1416 } 1417 1418 // Return the number of frames filled in. 1419 return frames_count; 1420 } 1421 1422 // Restore warnings to previous settings. 1423 #pragma warning(pop) 1424 1425 #else // __MINGW32__ 1426 void OS::LogSharedLibraryAddresses() { } 1427 void OS::SignalCodeMovingGC() { } 1428 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; } 1429 #endif // __MINGW32__ 1430 1431 1432 uint64_t OS::CpuFeaturesImpliedByPlatform() { 1433 return 0; // Windows runs on anything. 1434 } 1435 1436 1437 double OS::nan_value() { 1438 #ifdef _MSC_VER 1439 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits 1440 // in mask set, so value equals mask. 1441 static const __int64 nanval = kQuietNaNMask; 1442 return *reinterpret_cast<const double*>(&nanval); 1443 #else // _MSC_VER 1444 return NAN; 1445 #endif // _MSC_VER 1446 } 1447 1448 1449 int OS::ActivationFrameAlignment() { 1450 #ifdef _WIN64 1451 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. 1452 #else 1453 return 8; // Floating-point math runs faster with 8-byte alignment. 1454 #endif 1455 } 1456 1457 1458 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { 1459 MemoryBarrier(); 1460 *ptr = value; 1461 } 1462 1463 1464 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } 1465 1466 1467 VirtualMemory::VirtualMemory(size_t size) 1468 : address_(ReserveRegion(size)), size_(size) { } 1469 1470 1471 VirtualMemory::VirtualMemory(size_t size, size_t alignment) 1472 : address_(NULL), size_(0) { 1473 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); 1474 size_t request_size = RoundUp(size + alignment, 1475 static_cast<intptr_t>(OS::AllocateAlignment())); 1476 void* address = ReserveRegion(request_size); 1477 if (address == NULL) return; 1478 Address base = RoundUp(static_cast<Address>(address), alignment); 1479 // Try reducing the size by freeing and then reallocating a specific area. 1480 bool result = ReleaseRegion(address, request_size); 1481 USE(result); 1482 ASSERT(result); 1483 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS); 1484 if (address != NULL) { 1485 request_size = size; 1486 ASSERT(base == static_cast<Address>(address)); 1487 } else { 1488 // Resizing failed, just go with a bigger area. 1489 address = ReserveRegion(request_size); 1490 if (address == NULL) return; 1491 } 1492 address_ = address; 1493 size_ = request_size; 1494 } 1495 1496 1497 VirtualMemory::~VirtualMemory() { 1498 if (IsReserved()) { 1499 bool result = ReleaseRegion(address_, size_); 1500 ASSERT(result); 1501 USE(result); 1502 } 1503 } 1504 1505 1506 bool VirtualMemory::IsReserved() { 1507 return address_ != NULL; 1508 } 1509 1510 1511 void VirtualMemory::Reset() { 1512 address_ = NULL; 1513 size_ = 0; 1514 } 1515 1516 1517 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { 1518 if (CommitRegion(address, size, is_executable)) { 1519 UpdateAllocatedSpaceLimits(address, static_cast<int>(size)); 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 1526 bool VirtualMemory::Uncommit(void* address, size_t size) { 1527 ASSERT(IsReserved()); 1528 return UncommitRegion(address, size); 1529 } 1530 1531 1532 void* VirtualMemory::ReserveRegion(size_t size) { 1533 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS); 1534 } 1535 1536 1537 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { 1538 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; 1539 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) { 1540 return false; 1541 } 1542 1543 UpdateAllocatedSpaceLimits(base, static_cast<int>(size)); 1544 return true; 1545 } 1546 1547 1548 bool VirtualMemory::Guard(void* address) { 1549 if (NULL == VirtualAlloc(address, 1550 OS::CommitPageSize(), 1551 MEM_COMMIT, 1552 PAGE_READONLY | PAGE_GUARD)) { 1553 return false; 1554 } 1555 return true; 1556 } 1557 1558 1559 bool VirtualMemory::UncommitRegion(void* base, size_t size) { 1560 return VirtualFree(base, size, MEM_DECOMMIT) != 0; 1561 } 1562 1563 1564 bool VirtualMemory::ReleaseRegion(void* base, size_t size) { 1565 return VirtualFree(base, 0, MEM_RELEASE) != 0; 1566 } 1567 1568 1569 // ---------------------------------------------------------------------------- 1570 // Win32 thread support. 1571 1572 // Definition of invalid thread handle and id. 1573 static const HANDLE kNoThread = INVALID_HANDLE_VALUE; 1574 1575 // Entry point for threads. The supplied argument is a pointer to the thread 1576 // object. The entry function dispatches to the run method in the thread 1577 // object. It is important that this function has __stdcall calling 1578 // convention. 1579 static unsigned int __stdcall ThreadEntry(void* arg) { 1580 Thread* thread = reinterpret_cast<Thread*>(arg); 1581 thread->Run(); 1582 return 0; 1583 } 1584 1585 1586 class Thread::PlatformData : public Malloced { 1587 public: 1588 explicit PlatformData(HANDLE thread) : thread_(thread) {} 1589 HANDLE thread_; 1590 unsigned thread_id_; 1591 }; 1592 1593 1594 // Initialize a Win32 thread object. The thread has an invalid thread 1595 // handle until it is started. 1596 1597 Thread::Thread(const Options& options) 1598 : stack_size_(options.stack_size()) { 1599 data_ = new PlatformData(kNoThread); 1600 set_name(options.name()); 1601 } 1602 1603 1604 void Thread::set_name(const char* name) { 1605 OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name)); 1606 name_[sizeof(name_) - 1] = '\0'; 1607 } 1608 1609 1610 // Close our own handle for the thread. 1611 Thread::~Thread() { 1612 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); 1613 delete data_; 1614 } 1615 1616 1617 // Create a new thread. It is important to use _beginthreadex() instead of 1618 // the Win32 function CreateThread(), because the CreateThread() does not 1619 // initialize thread specific structures in the C runtime library. 1620 void Thread::Start() { 1621 data_->thread_ = reinterpret_cast<HANDLE>( 1622 _beginthreadex(NULL, 1623 static_cast<unsigned>(stack_size_), 1624 ThreadEntry, 1625 this, 1626 0, 1627 &data_->thread_id_)); 1628 } 1629 1630 1631 // Wait for thread to terminate. 1632 void Thread::Join() { 1633 if (data_->thread_id_ != GetCurrentThreadId()) { 1634 WaitForSingleObject(data_->thread_, INFINITE); 1635 } 1636 } 1637 1638 1639 Thread::LocalStorageKey Thread::CreateThreadLocalKey() { 1640 DWORD result = TlsAlloc(); 1641 ASSERT(result != TLS_OUT_OF_INDEXES); 1642 return static_cast<LocalStorageKey>(result); 1643 } 1644 1645 1646 void Thread::DeleteThreadLocalKey(LocalStorageKey key) { 1647 BOOL result = TlsFree(static_cast<DWORD>(key)); 1648 USE(result); 1649 ASSERT(result); 1650 } 1651 1652 1653 void* Thread::GetThreadLocal(LocalStorageKey key) { 1654 return TlsGetValue(static_cast<DWORD>(key)); 1655 } 1656 1657 1658 void Thread::SetThreadLocal(LocalStorageKey key, void* value) { 1659 BOOL result = TlsSetValue(static_cast<DWORD>(key), value); 1660 USE(result); 1661 ASSERT(result); 1662 } 1663 1664 1665 1666 void Thread::YieldCPU() { 1667 Sleep(0); 1668 } 1669 1670 1671 // ---------------------------------------------------------------------------- 1672 // Win32 mutex support. 1673 // 1674 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are 1675 // faster than Win32 Mutex objects because they are implemented using user mode 1676 // atomic instructions. Therefore we only do ring transitions if there is lock 1677 // contention. 1678 1679 class Win32Mutex : public Mutex { 1680 public: 1681 Win32Mutex() { InitializeCriticalSection(&cs_); } 1682 1683 virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); } 1684 1685 virtual int Lock() { 1686 EnterCriticalSection(&cs_); 1687 return 0; 1688 } 1689 1690 virtual int Unlock() { 1691 LeaveCriticalSection(&cs_); 1692 return 0; 1693 } 1694 1695 1696 virtual bool TryLock() { 1697 // Returns non-zero if critical section is entered successfully entered. 1698 return TryEnterCriticalSection(&cs_); 1699 } 1700 1701 private: 1702 CRITICAL_SECTION cs_; // Critical section used for mutex 1703 }; 1704 1705 1706 Mutex* OS::CreateMutex() { 1707 return new Win32Mutex(); 1708 } 1709 1710 1711 // ---------------------------------------------------------------------------- 1712 // Win32 semaphore support. 1713 // 1714 // On Win32 semaphores are implemented using Win32 Semaphore objects. The 1715 // semaphores are anonymous. Also, the semaphores are initialized to have 1716 // no upper limit on count. 1717 1718 1719 class Win32Semaphore : public Semaphore { 1720 public: 1721 explicit Win32Semaphore(int count) { 1722 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL); 1723 } 1724 1725 ~Win32Semaphore() { 1726 CloseHandle(sem); 1727 } 1728 1729 void Wait() { 1730 WaitForSingleObject(sem, INFINITE); 1731 } 1732 1733 bool Wait(int timeout) { 1734 // Timeout in Windows API is in milliseconds. 1735 DWORD millis_timeout = timeout / 1000; 1736 return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT; 1737 } 1738 1739 void Signal() { 1740 LONG dummy; 1741 ReleaseSemaphore(sem, 1, &dummy); 1742 } 1743 1744 private: 1745 HANDLE sem; 1746 }; 1747 1748 1749 Semaphore* OS::CreateSemaphore(int count) { 1750 return new Win32Semaphore(count); 1751 } 1752 1753 1754 // ---------------------------------------------------------------------------- 1755 // Win32 socket support. 1756 // 1757 1758 class Win32Socket : public Socket { 1759 public: 1760 explicit Win32Socket() { 1761 // Create the socket. 1762 socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 1763 } 1764 explicit Win32Socket(SOCKET socket): socket_(socket) { } 1765 virtual ~Win32Socket() { Shutdown(); } 1766 1767 // Server initialization. 1768 bool Bind(const int port); 1769 bool Listen(int backlog) const; 1770 Socket* Accept() const; 1771 1772 // Client initialization. 1773 bool Connect(const char* host, const char* port); 1774 1775 // Shutdown socket for both read and write. 1776 bool Shutdown(); 1777 1778 // Data Transimission 1779 int Send(const char* data, int len) const; 1780 int Receive(char* data, int len) const; 1781 1782 bool SetReuseAddress(bool reuse_address); 1783 1784 bool IsValid() const { return socket_ != INVALID_SOCKET; } 1785 1786 private: 1787 SOCKET socket_; 1788 }; 1789 1790 1791 bool Win32Socket::Bind(const int port) { 1792 if (!IsValid()) { 1793 return false; 1794 } 1795 1796 sockaddr_in addr; 1797 memset(&addr, 0, sizeof(addr)); 1798 addr.sin_family = AF_INET; 1799 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 1800 addr.sin_port = htons(port); 1801 int status = bind(socket_, 1802 reinterpret_cast<struct sockaddr *>(&addr), 1803 sizeof(addr)); 1804 return status == 0; 1805 } 1806 1807 1808 bool Win32Socket::Listen(int backlog) const { 1809 if (!IsValid()) { 1810 return false; 1811 } 1812 1813 int status = listen(socket_, backlog); 1814 return status == 0; 1815 } 1816 1817 1818 Socket* Win32Socket::Accept() const { 1819 if (!IsValid()) { 1820 return NULL; 1821 } 1822 1823 SOCKET socket = accept(socket_, NULL, NULL); 1824 if (socket == INVALID_SOCKET) { 1825 return NULL; 1826 } else { 1827 return new Win32Socket(socket); 1828 } 1829 } 1830 1831 1832 bool Win32Socket::Connect(const char* host, const char* port) { 1833 if (!IsValid()) { 1834 return false; 1835 } 1836 1837 // Lookup host and port. 1838 struct addrinfo *result = NULL; 1839 struct addrinfo hints; 1840 memset(&hints, 0, sizeof(addrinfo)); 1841 hints.ai_family = AF_INET; 1842 hints.ai_socktype = SOCK_STREAM; 1843 hints.ai_protocol = IPPROTO_TCP; 1844 int status = getaddrinfo(host, port, &hints, &result); 1845 if (status != 0) { 1846 return false; 1847 } 1848 1849 // Connect. 1850 status = connect(socket_, 1851 result->ai_addr, 1852 static_cast<int>(result->ai_addrlen)); 1853 freeaddrinfo(result); 1854 return status == 0; 1855 } 1856 1857 1858 bool Win32Socket::Shutdown() { 1859 if (IsValid()) { 1860 // Shutdown socket for both read and write. 1861 int status = shutdown(socket_, SD_BOTH); 1862 closesocket(socket_); 1863 socket_ = INVALID_SOCKET; 1864 return status == SOCKET_ERROR; 1865 } 1866 return true; 1867 } 1868 1869 1870 int Win32Socket::Send(const char* data, int len) const { 1871 int status = send(socket_, data, len, 0); 1872 return status; 1873 } 1874 1875 1876 int Win32Socket::Receive(char* data, int len) const { 1877 int status = recv(socket_, data, len, 0); 1878 return status; 1879 } 1880 1881 1882 bool Win32Socket::SetReuseAddress(bool reuse_address) { 1883 BOOL on = reuse_address ? true : false; 1884 int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, 1885 reinterpret_cast<char*>(&on), sizeof(on)); 1886 return status == SOCKET_ERROR; 1887 } 1888 1889 1890 bool Socket::SetUp() { 1891 // Initialize Winsock32 1892 int err; 1893 WSADATA winsock_data; 1894 WORD version_requested = MAKEWORD(1, 0); 1895 err = WSAStartup(version_requested, &winsock_data); 1896 if (err != 0) { 1897 PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError()); 1898 } 1899 1900 return err == 0; 1901 } 1902 1903 1904 int Socket::LastError() { 1905 return WSAGetLastError(); 1906 } 1907 1908 1909 uint16_t Socket::HToN(uint16_t value) { 1910 return htons(value); 1911 } 1912 1913 1914 uint16_t Socket::NToH(uint16_t value) { 1915 return ntohs(value); 1916 } 1917 1918 1919 uint32_t Socket::HToN(uint32_t value) { 1920 return htonl(value); 1921 } 1922 1923 1924 uint32_t Socket::NToH(uint32_t value) { 1925 return ntohl(value); 1926 } 1927 1928 1929 Socket* OS::CreateSocket() { 1930 return new Win32Socket(); 1931 } 1932 1933 1934 // ---------------------------------------------------------------------------- 1935 // Win32 profiler support. 1936 1937 class Sampler::PlatformData : public Malloced { 1938 public: 1939 // Get a handle to the calling thread. This is the thread that we are 1940 // going to profile. We need to make a copy of the handle because we are 1941 // going to use it in the sampler thread. Using GetThreadHandle() will 1942 // not work in this case. We're using OpenThread because DuplicateHandle 1943 // for some reason doesn't work in Chrome's sandbox. 1944 PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT | 1945 THREAD_SUSPEND_RESUME | 1946 THREAD_QUERY_INFORMATION, 1947 false, 1948 GetCurrentThreadId())) {} 1949 1950 ~PlatformData() { 1951 if (profiled_thread_ != NULL) { 1952 CloseHandle(profiled_thread_); 1953 profiled_thread_ = NULL; 1954 } 1955 } 1956 1957 HANDLE profiled_thread() { return profiled_thread_; } 1958 1959 private: 1960 HANDLE profiled_thread_; 1961 }; 1962 1963 1964 class SamplerThread : public Thread { 1965 public: 1966 static const int kSamplerThreadStackSize = 64 * KB; 1967 1968 explicit SamplerThread(int interval) 1969 : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)), 1970 interval_(interval) {} 1971 1972 static void AddActiveSampler(Sampler* sampler) { 1973 ScopedLock lock(mutex_.Pointer()); 1974 SamplerRegistry::AddActiveSampler(sampler); 1975 if (instance_ == NULL) { 1976 instance_ = new SamplerThread(sampler->interval()); 1977 instance_->Start(); 1978 } else { 1979 ASSERT(instance_->interval_ == sampler->interval()); 1980 } 1981 } 1982 1983 static void RemoveActiveSampler(Sampler* sampler) { 1984 ScopedLock lock(mutex_.Pointer()); 1985 SamplerRegistry::RemoveActiveSampler(sampler); 1986 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { 1987 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); 1988 delete instance_; 1989 instance_ = NULL; 1990 } 1991 } 1992 1993 // Implement Thread::Run(). 1994 virtual void Run() { 1995 SamplerRegistry::State state; 1996 while ((state = SamplerRegistry::GetState()) != 1997 SamplerRegistry::HAS_NO_SAMPLERS) { 1998 bool cpu_profiling_enabled = 1999 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); 2000 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); 2001 // When CPU profiling is enabled both JavaScript and C++ code is 2002 // profiled. We must not suspend. 2003 if (!cpu_profiling_enabled) { 2004 if (rate_limiter_.SuspendIfNecessary()) continue; 2005 } 2006 if (cpu_profiling_enabled) { 2007 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { 2008 return; 2009 } 2010 } 2011 if (runtime_profiler_enabled) { 2012 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { 2013 return; 2014 } 2015 } 2016 OS::Sleep(interval_); 2017 } 2018 } 2019 2020 static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) { 2021 if (!sampler->isolate()->IsInitialized()) return; 2022 if (!sampler->IsProfiling()) return; 2023 SamplerThread* sampler_thread = 2024 reinterpret_cast<SamplerThread*>(raw_sampler_thread); 2025 sampler_thread->SampleContext(sampler); 2026 } 2027 2028 static void DoRuntimeProfile(Sampler* sampler, void* ignored) { 2029 if (!sampler->isolate()->IsInitialized()) return; 2030 sampler->isolate()->runtime_profiler()->NotifyTick(); 2031 } 2032 2033 void SampleContext(Sampler* sampler) { 2034 HANDLE profiled_thread = sampler->platform_data()->profiled_thread(); 2035 if (profiled_thread == NULL) return; 2036 2037 // Context used for sampling the register state of the profiled thread. 2038 CONTEXT context; 2039 memset(&context, 0, sizeof(context)); 2040 2041 TickSample sample_obj; 2042 TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate()); 2043 if (sample == NULL) sample = &sample_obj; 2044 2045 static const DWORD kSuspendFailed = static_cast<DWORD>(-1); 2046 if (SuspendThread(profiled_thread) == kSuspendFailed) return; 2047 sample->state = sampler->isolate()->current_vm_state(); 2048 2049 context.ContextFlags = CONTEXT_FULL; 2050 if (GetThreadContext(profiled_thread, &context) != 0) { 2051 #if V8_HOST_ARCH_X64 2052 sample->pc = reinterpret_cast<Address>(context.Rip); 2053 sample->sp = reinterpret_cast<Address>(context.Rsp); 2054 sample->fp = reinterpret_cast<Address>(context.Rbp); 2055 #else 2056 sample->pc = reinterpret_cast<Address>(context.Eip); 2057 sample->sp = reinterpret_cast<Address>(context.Esp); 2058 sample->fp = reinterpret_cast<Address>(context.Ebp); 2059 #endif 2060 sampler->SampleStack(sample); 2061 sampler->Tick(sample); 2062 } 2063 ResumeThread(profiled_thread); 2064 } 2065 2066 const int interval_; 2067 RuntimeProfilerRateLimiter rate_limiter_; 2068 2069 // Protects the process wide state below. 2070 static LazyMutex mutex_; 2071 static SamplerThread* instance_; 2072 2073 private: 2074 DISALLOW_COPY_AND_ASSIGN(SamplerThread); 2075 }; 2076 2077 2078 LazyMutex SamplerThread::mutex_ = LAZY_MUTEX_INITIALIZER; 2079 SamplerThread* SamplerThread::instance_ = NULL; 2080 2081 2082 Sampler::Sampler(Isolate* isolate, int interval) 2083 : isolate_(isolate), 2084 interval_(interval), 2085 profiling_(false), 2086 active_(false), 2087 samples_taken_(0) { 2088 data_ = new PlatformData; 2089 } 2090 2091 2092 Sampler::~Sampler() { 2093 ASSERT(!IsActive()); 2094 delete data_; 2095 } 2096 2097 2098 void Sampler::Start() { 2099 ASSERT(!IsActive()); 2100 SetActive(true); 2101 SamplerThread::AddActiveSampler(this); 2102 } 2103 2104 2105 void Sampler::Stop() { 2106 ASSERT(IsActive()); 2107 SamplerThread::RemoveActiveSampler(this); 2108 SetActive(false); 2109 } 2110 2111 2112 } } // namespace v8::internal 2113