1 // Copyright 2006-2008 the V8 project authors. All rights reserved. 2 3 #include <stdlib.h> 4 5 #include "v8.h" 6 7 #include "platform.h" 8 #include "cctest.h" 9 #include "diy-fp.h" 10 #include "double.h" 11 12 13 using namespace v8::internal; 14 15 16 TEST(Uint64Conversions) { 17 // Start by checking the byte-order. 18 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); 19 CHECK_EQ(3512700564088504e-318, Double(ordered).value()); 20 21 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 22 CHECK_EQ(5e-324, Double(min_double64).value()); 23 24 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); 25 CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); 26 } 27 28 TEST(AsDiyFp) { 29 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); 30 DiyFp diy_fp = Double(ordered).AsDiyFp(); 31 CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); 32 // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. 33 CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT 34 35 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 36 diy_fp = Double(min_double64).AsDiyFp(); 37 CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); 38 // This is a denormal; so no hidden bit. 39 CHECK(1 == diy_fp.f()); // NOLINT 40 41 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); 42 diy_fp = Double(max_double64).AsDiyFp(); 43 CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); 44 CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT 45 } 46 47 48 TEST(AsNormalizedDiyFp) { 49 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); 50 DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); 51 CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); 52 CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == 53 diy_fp.f()); // NOLINT 54 55 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 56 diy_fp = Double(min_double64).AsNormalizedDiyFp(); 57 CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); 58 // This is a denormal; so no hidden bit. 59 CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT 60 61 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); 62 diy_fp = Double(max_double64).AsNormalizedDiyFp(); 63 CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); 64 CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == 65 diy_fp.f()); // NOLINT 66 } 67 68 69 TEST(IsDenormal) { 70 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 71 CHECK(Double(min_double64).IsDenormal()); 72 uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); 73 CHECK(Double(bits).IsDenormal()); 74 bits = V8_2PART_UINT64_C(0x00100000, 00000000); 75 CHECK(!Double(bits).IsDenormal()); 76 } 77 78 79 TEST(IsSpecial) { 80 CHECK(Double(V8_INFINITY).IsSpecial()); 81 CHECK(Double(-V8_INFINITY).IsSpecial()); 82 CHECK(Double(OS::nan_value()).IsSpecial()); 83 uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000); 84 CHECK(Double(bits).IsSpecial()); 85 // Denormals are not special: 86 CHECK(!Double(5e-324).IsSpecial()); 87 CHECK(!Double(-5e-324).IsSpecial()); 88 // And some random numbers: 89 CHECK(!Double(0.0).IsSpecial()); 90 CHECK(!Double(-0.0).IsSpecial()); 91 CHECK(!Double(1.0).IsSpecial()); 92 CHECK(!Double(-1.0).IsSpecial()); 93 CHECK(!Double(1000000.0).IsSpecial()); 94 CHECK(!Double(-1000000.0).IsSpecial()); 95 CHECK(!Double(1e23).IsSpecial()); 96 CHECK(!Double(-1e23).IsSpecial()); 97 CHECK(!Double(1.7976931348623157e308).IsSpecial()); 98 CHECK(!Double(-1.7976931348623157e308).IsSpecial()); 99 } 100 101 102 TEST(IsInfinite) { 103 CHECK(Double(V8_INFINITY).IsInfinite()); 104 CHECK(Double(-V8_INFINITY).IsInfinite()); 105 CHECK(!Double(OS::nan_value()).IsInfinite()); 106 CHECK(!Double(0.0).IsInfinite()); 107 CHECK(!Double(-0.0).IsInfinite()); 108 CHECK(!Double(1.0).IsInfinite()); 109 CHECK(!Double(-1.0).IsInfinite()); 110 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 111 CHECK(!Double(min_double64).IsInfinite()); 112 } 113 114 115 TEST(IsNan) { 116 CHECK(Double(OS::nan_value()).IsNan()); 117 uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001); 118 CHECK(Double(other_nan).IsNan()); 119 CHECK(!Double(V8_INFINITY).IsNan()); 120 CHECK(!Double(-V8_INFINITY).IsNan()); 121 CHECK(!Double(0.0).IsNan()); 122 CHECK(!Double(-0.0).IsNan()); 123 CHECK(!Double(1.0).IsNan()); 124 CHECK(!Double(-1.0).IsNan()); 125 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 126 CHECK(!Double(min_double64).IsNan()); 127 } 128 129 130 TEST(Sign) { 131 CHECK_EQ(1, Double(1.0).Sign()); 132 CHECK_EQ(1, Double(V8_INFINITY).Sign()); 133 CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); 134 CHECK_EQ(1, Double(0.0).Sign()); 135 CHECK_EQ(-1, Double(-0.0).Sign()); 136 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 137 CHECK_EQ(1, Double(min_double64).Sign()); 138 } 139 140 141 TEST(NormalizedBoundaries) { 142 DiyFp boundary_plus; 143 DiyFp boundary_minus; 144 DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); 145 Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); 146 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 147 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 148 // 1.5 does not have a significand of the form 2^p (for some p). 149 // Therefore its boundaries are at the same distance. 150 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); 151 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT 152 153 diy_fp = Double(1.0).AsNormalizedDiyFp(); 154 Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); 155 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 156 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 157 // 1.0 does have a significand of the form 2^p (for some p). 158 // Therefore its lower boundary is twice as close as the upper boundary. 159 CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); 160 CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT 161 CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT 162 163 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); 164 diy_fp = Double(min_double64).AsNormalizedDiyFp(); 165 Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); 166 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 167 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 168 // min-value does not have a significand of the form 2^p (for some p). 169 // Therefore its boundaries are at the same distance. 170 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); 171 // Denormals have their boundaries much closer. 172 CHECK((static_cast<uint64_t>(1) << 62) == 173 diy_fp.f() - boundary_minus.f()); // NOLINT 174 175 uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000); 176 diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); 177 Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, 178 &boundary_plus); 179 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 180 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 181 // Even though the significand is of the form 2^p (for some p), its boundaries 182 // are at the same distance. (This is the only exception). 183 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); 184 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT 185 186 uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); 187 diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); 188 Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, 189 &boundary_plus); 190 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 191 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 192 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); 193 CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT 194 195 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); 196 diy_fp = Double(max_double64).AsNormalizedDiyFp(); 197 Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); 198 CHECK_EQ(diy_fp.e(), boundary_minus.e()); 199 CHECK_EQ(diy_fp.e(), boundary_plus.e()); 200 // max-value does not have a significand of the form 2^p (for some p). 201 // Therefore its boundaries are at the same distance. 202 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); 203 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT 204 } 205 206 207 TEST(NextDouble) { 208 CHECK_EQ(4e-324, Double(0.0).NextDouble()); 209 CHECK_EQ(0.0, Double(-0.0).NextDouble()); 210 CHECK_EQ(-0.0, Double(-4e-324).NextDouble()); 211 Double d0(-4e-324); 212 Double d1(d0.NextDouble()); 213 Double d2(d1.NextDouble()); 214 CHECK_EQ(-0.0, d1.value()); 215 CHECK_EQ(0.0, d2.value()); 216 CHECK_EQ(4e-324, d2.NextDouble()); 217 CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble()); 218 CHECK_EQ(V8_INFINITY, 219 Double(V8_2PART_UINT64_C(0x7fefffff, ffffffff)).NextDouble()); 220 } 221