Home | History | Annotate | Download | only in dec
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // main entry for the decoder
     11 //
     12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com)
     13 //          Jyrki Alakuijala (jyrki (at) google.com)
     14 
     15 #include <stdio.h>
     16 #include <stdlib.h>
     17 #include "./vp8li.h"
     18 #include "../dsp/lossless.h"
     19 #include "../dsp/yuv.h"
     20 #include "../utils/huffman.h"
     21 #include "../utils/utils.h"
     22 
     23 #if defined(__cplusplus) || defined(c_plusplus)
     24 extern "C" {
     25 #endif
     26 
     27 #define NUM_ARGB_CACHE_ROWS          16
     28 
     29 static const int kCodeLengthLiterals = 16;
     30 static const int kCodeLengthRepeatCode = 16;
     31 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
     32 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
     33 
     34 // -----------------------------------------------------------------------------
     35 //  Five Huffman codes are used at each meta code:
     36 //  1. green + length prefix codes + color cache codes,
     37 //  2. alpha,
     38 //  3. red,
     39 //  4. blue, and,
     40 //  5. distance prefix codes.
     41 typedef enum {
     42   GREEN = 0,
     43   RED   = 1,
     44   BLUE  = 2,
     45   ALPHA = 3,
     46   DIST  = 4
     47 } HuffIndex;
     48 
     49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
     50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
     51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
     52   NUM_DISTANCE_CODES
     53 };
     54 
     55 
     56 #define NUM_CODE_LENGTH_CODES       19
     57 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
     58   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
     59 };
     60 
     61 #define CODE_TO_PLANE_CODES        120
     62 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
     63   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
     64   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
     65   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
     66   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
     67   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
     68   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
     69   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
     70   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
     71   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
     72   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
     73   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
     74   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
     75 };
     76 
     77 static int DecodeImageStream(int xsize, int ysize,
     78                              int is_level0,
     79                              VP8LDecoder* const dec,
     80                              uint32_t** const decoded_data);
     81 
     82 //------------------------------------------------------------------------------
     83 
     84 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
     85   return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
     86 }
     87 
     88 static int ReadImageInfo(VP8LBitReader* const br,
     89                          int* const width, int* const height,
     90                          int* const has_alpha) {
     91   const uint8_t signature = VP8LReadBits(br, 8);
     92   if (!VP8LCheckSignature(&signature, 1)) {
     93     return 0;
     94   }
     95   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
     96   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
     97   *has_alpha = VP8LReadBits(br, 1);
     98   VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
     99   return 1;
    100 }
    101 
    102 int VP8LGetInfo(const uint8_t* data, size_t data_size,
    103                 int* const width, int* const height, int* const has_alpha) {
    104   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    105     return 0;         // not enough data
    106   } else {
    107     int w, h, a;
    108     VP8LBitReader br;
    109     VP8LInitBitReader(&br, data, data_size);
    110     if (!ReadImageInfo(&br, &w, &h, &a)) {
    111       return 0;
    112     }
    113     if (width != NULL) *width = w;
    114     if (height != NULL) *height = h;
    115     if (has_alpha != NULL) *has_alpha = a;
    116     return 1;
    117   }
    118 }
    119 
    120 //------------------------------------------------------------------------------
    121 
    122 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
    123                                        VP8LBitReader* const br) {
    124   int extra_bits, offset;
    125   if (distance_symbol < 4) {
    126     return distance_symbol + 1;
    127   }
    128   extra_bits = (distance_symbol - 2) >> 1;
    129   offset = (2 + (distance_symbol & 1)) << extra_bits;
    130   return offset + VP8LReadBits(br, extra_bits) + 1;
    131 }
    132 
    133 static WEBP_INLINE int GetCopyLength(int length_symbol,
    134                                      VP8LBitReader* const br) {
    135   // Length and distance prefixes are encoded the same way.
    136   return GetCopyDistance(length_symbol, br);
    137 }
    138 
    139 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
    140   if (plane_code > CODE_TO_PLANE_CODES) {
    141     return plane_code - CODE_TO_PLANE_CODES;
    142   } else {
    143     const int dist_code = code_to_plane_lut[plane_code - 1];
    144     const int yoffset = dist_code >> 4;
    145     const int xoffset = 8 - (dist_code & 0xf);
    146     const int dist = yoffset * xsize + xoffset;
    147     return (dist >= 1) ? dist : 1;
    148   }
    149 }
    150 
    151 //------------------------------------------------------------------------------
    152 // Decodes the next Huffman code from bit-stream.
    153 // FillBitWindow(br) needs to be called at minimum every second call
    154 // to ReadSymbol, in order to pre-fetch enough bits.
    155 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
    156                                   VP8LBitReader* const br) {
    157   const HuffmanTreeNode* node = tree->root_;
    158   int num_bits = 0;
    159   uint32_t bits = VP8LPrefetchBits(br);
    160   assert(node != NULL);
    161   while (!HuffmanTreeNodeIsLeaf(node)) {
    162     node = HuffmanTreeNextNode(node, bits & 1);
    163     bits >>= 1;
    164     ++num_bits;
    165   }
    166   VP8LDiscardBits(br, num_bits);
    167   return node->symbol_;
    168 }
    169 
    170 static int ReadHuffmanCodeLengths(
    171     VP8LDecoder* const dec, const int* const code_length_code_lengths,
    172     int num_symbols, int* const code_lengths) {
    173   int ok = 0;
    174   VP8LBitReader* const br = &dec->br_;
    175   int symbol;
    176   int max_symbol;
    177   int prev_code_len = DEFAULT_CODE_LENGTH;
    178   HuffmanTree tree;
    179 
    180   if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
    181                                 NUM_CODE_LENGTH_CODES)) {
    182     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    183     return 0;
    184   }
    185 
    186   if (VP8LReadBits(br, 1)) {    // use length
    187     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    188     max_symbol = 2 + VP8LReadBits(br, length_nbits);
    189     if (max_symbol > num_symbols) {
    190       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    191       goto End;
    192     }
    193   } else {
    194     max_symbol = num_symbols;
    195   }
    196 
    197   symbol = 0;
    198   while (symbol < num_symbols) {
    199     int code_len;
    200     if (max_symbol-- == 0) break;
    201     VP8LFillBitWindow(br);
    202     code_len = ReadSymbol(&tree, br);
    203     if (code_len < kCodeLengthLiterals) {
    204       code_lengths[symbol++] = code_len;
    205       if (code_len != 0) prev_code_len = code_len;
    206     } else {
    207       const int use_prev = (code_len == kCodeLengthRepeatCode);
    208       const int slot = code_len - kCodeLengthLiterals;
    209       const int extra_bits = kCodeLengthExtraBits[slot];
    210       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
    211       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
    212       if (symbol + repeat > num_symbols) {
    213         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    214         goto End;
    215       } else {
    216         const int length = use_prev ? prev_code_len : 0;
    217         while (repeat-- > 0) code_lengths[symbol++] = length;
    218       }
    219     }
    220   }
    221   ok = 1;
    222 
    223  End:
    224   HuffmanTreeRelease(&tree);
    225   return ok;
    226 }
    227 
    228 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
    229                            HuffmanTree* const tree) {
    230   int ok = 0;
    231   VP8LBitReader* const br = &dec->br_;
    232   const int simple_code = VP8LReadBits(br, 1);
    233 
    234   if (simple_code) {  // Read symbols, codes & code lengths directly.
    235     int symbols[2];
    236     int codes[2];
    237     int code_lengths[2];
    238     const int num_symbols = VP8LReadBits(br, 1) + 1;
    239     const int first_symbol_len_code = VP8LReadBits(br, 1);
    240     // The first code is either 1 bit or 8 bit code.
    241     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    242     codes[0] = 0;
    243     code_lengths[0] = num_symbols - 1;
    244     // The second code (if present), is always 8 bit long.
    245     if (num_symbols == 2) {
    246       symbols[1] = VP8LReadBits(br, 8);
    247       codes[1] = 1;
    248       code_lengths[1] = num_symbols - 1;
    249     }
    250     ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
    251                                   alphabet_size, num_symbols);
    252   } else {  // Decode Huffman-coded code lengths.
    253     int* code_lengths = NULL;
    254     int i;
    255     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    256     const int num_codes = VP8LReadBits(br, 4) + 4;
    257     if (num_codes > NUM_CODE_LENGTH_CODES) {
    258       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    259       return 0;
    260     }
    261 
    262     code_lengths =
    263         (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
    264     if (code_lengths == NULL) {
    265       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    266       return 0;
    267     }
    268 
    269     for (i = 0; i < num_codes; ++i) {
    270       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    271     }
    272     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
    273                                 code_lengths);
    274     if (ok) {
    275       ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
    276     }
    277     free(code_lengths);
    278   }
    279   ok = ok && !br->error_;
    280   if (!ok) {
    281     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    282     return 0;
    283   }
    284   return 1;
    285 }
    286 
    287 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
    288   if (htree_groups != NULL) {
    289     int i, j;
    290     for (i = 0; i < num_htree_groups; ++i) {
    291       HuffmanTree* const htrees = htree_groups[i].htrees_;
    292       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    293         HuffmanTreeRelease(&htrees[j]);
    294       }
    295     }
    296     free(htree_groups);
    297   }
    298 }
    299 
    300 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
    301                             int color_cache_bits, int allow_recursion) {
    302   int i, j;
    303   VP8LBitReader* const br = &dec->br_;
    304   VP8LMetadata* const hdr = &dec->hdr_;
    305   uint32_t* huffman_image = NULL;
    306   HTreeGroup* htree_groups = NULL;
    307   int num_htree_groups = 1;
    308 
    309   if (allow_recursion && VP8LReadBits(br, 1)) {
    310     // use meta Huffman codes.
    311     const int huffman_precision = VP8LReadBits(br, 3) + 2;
    312     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    313     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    314     const int huffman_pixs = huffman_xsize * huffman_ysize;
    315     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
    316                            &huffman_image)) {
    317       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    318       goto Error;
    319     }
    320     hdr->huffman_subsample_bits_ = huffman_precision;
    321     for (i = 0; i < huffman_pixs; ++i) {
    322       // The huffman data is stored in red and green bytes.
    323       const int group = (huffman_image[i] >> 8) & 0xffff;
    324       huffman_image[i] = group;
    325       if (group >= num_htree_groups) {
    326         num_htree_groups = group + 1;
    327       }
    328     }
    329   }
    330 
    331   if (br->error_) goto Error;
    332 
    333   assert(num_htree_groups <= 0x10000);
    334   htree_groups =
    335       (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
    336                                   sizeof(*htree_groups));
    337   if (htree_groups == NULL) {
    338     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    339     goto Error;
    340   }
    341 
    342   for (i = 0; i < num_htree_groups; ++i) {
    343     HuffmanTree* const htrees = htree_groups[i].htrees_;
    344     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    345       int alphabet_size = kAlphabetSize[j];
    346       if (j == 0 && color_cache_bits > 0) {
    347         alphabet_size += 1 << color_cache_bits;
    348       }
    349       if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
    350     }
    351   }
    352 
    353   // All OK. Finalize pointers and return.
    354   hdr->huffman_image_ = huffman_image;
    355   hdr->num_htree_groups_ = num_htree_groups;
    356   hdr->htree_groups_ = htree_groups;
    357   return 1;
    358 
    359  Error:
    360   free(huffman_image);
    361   DeleteHtreeGroups(htree_groups, num_htree_groups);
    362   return 0;
    363 }
    364 
    365 //------------------------------------------------------------------------------
    366 // Scaling.
    367 
    368 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
    369   const int num_channels = 4;
    370   const int in_width = io->mb_w;
    371   const int out_width = io->scaled_width;
    372   const int in_height = io->mb_h;
    373   const int out_height = io->scaled_height;
    374   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
    375   int32_t* work;        // Rescaler work area.
    376   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
    377   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
    378   const uint64_t memory_size = sizeof(*dec->rescaler) +
    379                                work_size * sizeof(*work) +
    380                                scaled_data_size * sizeof(*scaled_data);
    381   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
    382   if (memory == NULL) {
    383     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    384     return 0;
    385   }
    386   assert(dec->rescaler_memory == NULL);
    387   dec->rescaler_memory = memory;
    388 
    389   dec->rescaler = (WebPRescaler*)memory;
    390   memory += sizeof(*dec->rescaler);
    391   work = (int32_t*)memory;
    392   memory += work_size * sizeof(*work);
    393   scaled_data = (uint32_t*)memory;
    394 
    395   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
    396                    out_width, out_height, 0, num_channels,
    397                    in_width, out_width, in_height, out_height, work);
    398   return 1;
    399 }
    400 
    401 //------------------------------------------------------------------------------
    402 // Export to ARGB
    403 
    404 // We have special "export" function since we need to convert from BGRA
    405 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
    406                   int rgba_stride, uint8_t* const rgba) {
    407   const uint32_t* const src = (const uint32_t*)rescaler->dst;
    408   const int dst_width = rescaler->dst_width;
    409   int num_lines_out = 0;
    410   while (WebPRescalerHasPendingOutput(rescaler)) {
    411     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    412     WebPRescalerExportRow(rescaler);
    413     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    414     ++num_lines_out;
    415   }
    416   return num_lines_out;
    417 }
    418 
    419 // Emit scaled rows.
    420 static int EmitRescaledRows(const VP8LDecoder* const dec,
    421                             const uint32_t* const data, int in_stride, int mb_h,
    422                             uint8_t* const out, int out_stride) {
    423   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
    424   const uint8_t* const in = (const uint8_t*)data;
    425   int num_lines_in = 0;
    426   int num_lines_out = 0;
    427   while (num_lines_in < mb_h) {
    428     const uint8_t* const row_in = in + num_lines_in * in_stride;
    429     uint8_t* const row_out = out + num_lines_out * out_stride;
    430     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
    431                                        row_in, in_stride);
    432     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
    433   }
    434   return num_lines_out;
    435 }
    436 
    437 // Emit rows without any scaling.
    438 static int EmitRows(WEBP_CSP_MODE colorspace,
    439                     const uint32_t* const data, int in_stride,
    440                     int mb_w, int mb_h,
    441                     uint8_t* const out, int out_stride) {
    442   int lines = mb_h;
    443   const uint8_t* row_in = (const uint8_t*)data;
    444   uint8_t* row_out = out;
    445   while (lines-- > 0) {
    446     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    447     row_in += in_stride;
    448     row_out += out_stride;
    449   }
    450   return mb_h;  // Num rows out == num rows in.
    451 }
    452 
    453 //------------------------------------------------------------------------------
    454 // Export to YUVA
    455 
    456 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
    457                           const WebPDecBuffer* const output) {
    458   const WebPYUVABuffer* const buf = &output->u.YUVA;
    459   // first, the luma plane
    460   {
    461     int i;
    462     uint8_t* const y = buf->y + y_pos * buf->y_stride;
    463     for (i = 0; i < width; ++i) {
    464       const uint32_t p = src[i];
    465       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
    466     }
    467   }
    468 
    469   // then U/V planes
    470   {
    471     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    472     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    473     const int uv_width = width >> 1;
    474     int i;
    475     for (i = 0; i < uv_width; ++i) {
    476       const uint32_t v0 = src[2 * i + 0];
    477       const uint32_t v1 = src[2 * i + 1];
    478       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
    479       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
    480       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
    481       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
    482       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
    483       if (!(y_pos & 1)) {  // even lines: store values
    484         u[i] = VP8RGBToU(r, g, b);
    485         v[i] = VP8RGBToV(r, g, b);
    486       } else {             // odd lines: average with previous values
    487         const int tmp_u = VP8RGBToU(r, g, b);
    488         const int tmp_v = VP8RGBToV(r, g, b);
    489         // Approximated average-of-four. But it's an acceptable diff.
    490         u[i] = (u[i] + tmp_u + 1) >> 1;
    491         v[i] = (v[i] + tmp_v + 1) >> 1;
    492       }
    493     }
    494     if (width & 1) {       // last pixel
    495       const uint32_t v0 = src[2 * i + 0];
    496       const int r = (v0 >> 14) & 0x3fc;
    497       const int g = (v0 >>  6) & 0x3fc;
    498       const int b = (v0 <<  2) & 0x3fc;
    499       if (!(y_pos & 1)) {  // even lines
    500         u[i] = VP8RGBToU(r, g, b);
    501         v[i] = VP8RGBToV(r, g, b);
    502       } else {             // odd lines (note: we could just skip this)
    503         const int tmp_u = VP8RGBToU(r, g, b);
    504         const int tmp_v = VP8RGBToV(r, g, b);
    505         u[i] = (u[i] + tmp_u + 1) >> 1;
    506         v[i] = (v[i] + tmp_v + 1) >> 1;
    507       }
    508     }
    509   }
    510   // Lastly, store alpha if needed.
    511   if (buf->a != NULL) {
    512     int i;
    513     uint8_t* const a = buf->a + y_pos * buf->a_stride;
    514     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
    515   }
    516 }
    517 
    518 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
    519   WebPRescaler* const rescaler = dec->rescaler;
    520   const uint32_t* const src = (const uint32_t*)rescaler->dst;
    521   const int dst_width = rescaler->dst_width;
    522   int num_lines_out = 0;
    523   while (WebPRescalerHasPendingOutput(rescaler)) {
    524     WebPRescalerExportRow(rescaler);
    525     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    526     ++y_pos;
    527     ++num_lines_out;
    528   }
    529   return num_lines_out;
    530 }
    531 
    532 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
    533                                 const uint32_t* const data,
    534                                 int in_stride, int mb_h) {
    535   const uint8_t* const in = (const uint8_t*)data;
    536   int num_lines_in = 0;
    537   int y_pos = dec->last_out_row_;
    538   while (num_lines_in < mb_h) {
    539     const uint8_t* const row_in = in + num_lines_in * in_stride;
    540     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
    541                                        row_in, in_stride);
    542     y_pos += ExportYUVA(dec, y_pos);
    543   }
    544   return y_pos;
    545 }
    546 
    547 static int EmitRowsYUVA(const VP8LDecoder* const dec,
    548                         const uint32_t* const data, int in_stride,
    549                         int mb_w, int num_rows) {
    550   int y_pos = dec->last_out_row_;
    551   const uint8_t* row_in = (const uint8_t*)data;
    552   while (num_rows-- > 0) {
    553     ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
    554     row_in += in_stride;
    555     ++y_pos;
    556   }
    557   return y_pos;
    558 }
    559 
    560 //------------------------------------------------------------------------------
    561 // Cropping.
    562 
    563 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
    564 // crop options. Also updates the input data pointer, so that it points to the
    565 // start of the cropped window.
    566 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
    567 // Returns true if the crop window is not empty.
    568 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
    569                          const uint32_t** const in_data, int pixel_stride) {
    570   assert(y_start < y_end);
    571   assert(io->crop_left < io->crop_right);
    572   if (y_end > io->crop_bottom) {
    573     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
    574   }
    575   if (y_start < io->crop_top) {
    576     const int delta = io->crop_top - y_start;
    577     y_start = io->crop_top;
    578     *in_data += pixel_stride * delta;
    579   }
    580   if (y_start >= y_end) return 0;  // Crop window is empty.
    581 
    582   *in_data += io->crop_left;
    583 
    584   io->mb_y = y_start - io->crop_top;
    585   io->mb_w = io->crop_right - io->crop_left;
    586   io->mb_h = y_end - y_start;
    587   return 1;  // Non-empty crop window.
    588 }
    589 
    590 //------------------------------------------------------------------------------
    591 
    592 static WEBP_INLINE int GetMetaIndex(
    593     const uint32_t* const image, int xsize, int bits, int x, int y) {
    594   if (bits == 0) return 0;
    595   return image[xsize * (y >> bits) + (x >> bits)];
    596 }
    597 
    598 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
    599                                                    int x, int y) {
    600   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
    601                                       hdr->huffman_subsample_bits_, x, y);
    602   assert(meta_index < hdr->num_htree_groups_);
    603   return hdr->htree_groups_ + meta_index;
    604 }
    605 
    606 //------------------------------------------------------------------------------
    607 // Main loop, with custom row-processing function
    608 
    609 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
    610 
    611 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
    612                                    const uint32_t* const rows) {
    613   int n = dec->next_transform_;
    614   const int cache_pixs = dec->width_ * num_rows;
    615   const int start_row = dec->last_row_;
    616   const int end_row = start_row + num_rows;
    617   const uint32_t* rows_in = rows;
    618   uint32_t* const rows_out = dec->argb_cache_;
    619 
    620   // Inverse transforms.
    621   // TODO: most transforms only need to operate on the cropped region only.
    622   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
    623   while (n-- > 0) {
    624     VP8LTransform* const transform = &dec->transforms_[n];
    625     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    626     rows_in = rows_out;
    627   }
    628 }
    629 
    630 // Special method for paletted alpha data.
    631 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
    632                                         const uint8_t* const rows) {
    633   const int start_row = dec->last_row_;
    634   const int end_row = start_row + num_rows;
    635   const uint8_t* rows_in = rows;
    636   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
    637   VP8LTransform* const transform = &dec->transforms_[0];
    638   assert(dec->next_transform_ == 1);
    639   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
    640   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
    641                                       rows_out);
    642 }
    643 
    644 // Processes (transforms, scales & color-converts) the rows decoded after the
    645 // last call.
    646 static void ProcessRows(VP8LDecoder* const dec, int row) {
    647   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
    648   const int num_rows = row - dec->last_row_;
    649 
    650   if (num_rows <= 0) return;  // Nothing to be done.
    651   ApplyInverseTransforms(dec, num_rows, rows);
    652 
    653   // Emit output.
    654   {
    655     VP8Io* const io = dec->io_;
    656     const uint32_t* rows_data = dec->argb_cache_;
    657     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
    658       // Nothing to output (this time).
    659     } else {
    660       const WebPDecBuffer* const output = dec->output_;
    661       const int in_stride = io->width * sizeof(*rows_data);
    662       if (output->colorspace < MODE_YUV) {  // convert to RGBA
    663         const WebPRGBABuffer* const buf = &output->u.RGBA;
    664         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
    665         const int num_rows_out = io->use_scaling ?
    666             EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
    667                              rgba, buf->stride) :
    668             EmitRows(output->colorspace, rows_data, in_stride,
    669                      io->mb_w, io->mb_h, rgba, buf->stride);
    670         // Update 'last_out_row_'.
    671         dec->last_out_row_ += num_rows_out;
    672       } else {                              // convert to YUVA
    673         dec->last_out_row_ = io->use_scaling ?
    674             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
    675             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
    676       }
    677       assert(dec->last_out_row_ <= output->height);
    678     }
    679   }
    680 
    681   // Update 'last_row_'.
    682   dec->last_row_ = row;
    683   assert(dec->last_row_ <= dec->height_);
    684 }
    685 
    686 #define DECODE_DATA_FUNC(FUNC_NAME, TYPE, STORE_PIXEL)                         \
    687 static int FUNC_NAME(VP8LDecoder* const dec, TYPE* const data, int width,      \
    688                      int height, ProcessRowsFunc process_func) {               \
    689   int ok = 1;                                                                  \
    690   int col = 0, row = 0;                                                        \
    691   VP8LBitReader* const br = &dec->br_;                                         \
    692   VP8LMetadata* const hdr = &dec->hdr_;                                        \
    693   HTreeGroup* htree_group = hdr->htree_groups_;                                \
    694   TYPE* src = data;                                                            \
    695   TYPE* last_cached = data;                                                    \
    696   TYPE* const src_end = data + width * height;                                 \
    697   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;             \
    698   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;       \
    699   VP8LColorCache* const color_cache =                                          \
    700       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;                \
    701   const int mask = hdr->huffman_mask_;                                         \
    702   assert(htree_group != NULL);                                                 \
    703   while (!br->eos_ && src < src_end) {                                         \
    704     int code;                                                                  \
    705     /* Only update when changing tile. Note we could use this test:        */  \
    706     /* if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed */  \
    707     /* but that's actually slower and needs storing the previous col/row.  */  \
    708     if ((col & mask) == 0) {                                                   \
    709       htree_group = GetHtreeGroupForPos(hdr, col, row);                        \
    710     }                                                                          \
    711     VP8LFillBitWindow(br);                                                     \
    712     code = ReadSymbol(&htree_group->htrees_[GREEN], br);                       \
    713     if (code < NUM_LITERAL_CODES) {  /* Literal*/                              \
    714       int red, green, blue, alpha;                                             \
    715       red = ReadSymbol(&htree_group->htrees_[RED], br);                        \
    716       green = code;                                                            \
    717       VP8LFillBitWindow(br);                                                   \
    718       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);                      \
    719       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);                    \
    720       *src = STORE_PIXEL(alpha, red, green, blue);                             \
    721     AdvanceByOne:                                                              \
    722       ++src;                                                                   \
    723       ++col;                                                                   \
    724       if (col >= width) {                                                      \
    725         col = 0;                                                               \
    726         ++row;                                                                 \
    727         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
    728           process_func(dec, row);                                              \
    729         }                                                                      \
    730         if (color_cache != NULL) {                                             \
    731           while (last_cached < src) {                                          \
    732             VP8LColorCacheInsert(color_cache, *last_cached++);                 \
    733           }                                                                    \
    734         }                                                                      \
    735       }                                                                        \
    736     } else if (code < len_code_limit) {  /* Backward reference */              \
    737       int dist_code, dist;                                                     \
    738       const int length_sym = code - NUM_LITERAL_CODES;                         \
    739       const int length = GetCopyLength(length_sym, br);                        \
    740       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);     \
    741       VP8LFillBitWindow(br);                                                   \
    742       dist_code = GetCopyDistance(dist_symbol, br);                            \
    743       dist = PlaneCodeToDistance(width, dist_code);                            \
    744       if (src - data < dist || src_end - src < length) {                       \
    745         ok = 0;                                                                \
    746         goto End;                                                              \
    747       }                                                                        \
    748       {                                                                        \
    749         int i;                                                                 \
    750         for (i = 0; i < length; ++i) src[i] = src[i - dist];                   \
    751         src += length;                                                         \
    752       }                                                                        \
    753       col += length;                                                           \
    754       while (col >= width) {                                                   \
    755         col -= width;                                                          \
    756         ++row;                                                                 \
    757         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
    758           process_func(dec, row);                                              \
    759         }                                                                      \
    760       }                                                                        \
    761       if (src < src_end) {                                                     \
    762         htree_group = GetHtreeGroupForPos(hdr, col, row);                      \
    763         if (color_cache != NULL) {                                             \
    764           while (last_cached < src) {                                          \
    765             VP8LColorCacheInsert(color_cache, *last_cached++);                 \
    766           }                                                                    \
    767         }                                                                      \
    768       }                                                                        \
    769     } else if (code < color_cache_limit) {  /* Color cache */                  \
    770       const int key = code - len_code_limit;                                   \
    771       assert(color_cache != NULL);                                             \
    772       while (last_cached < src) {                                              \
    773         VP8LColorCacheInsert(color_cache, *last_cached++);                     \
    774       }                                                                        \
    775       *src = VP8LColorCacheLookup(color_cache, key);                           \
    776       goto AdvanceByOne;                                                       \
    777     } else {  /* Not reached */                                                \
    778       ok = 0;                                                                  \
    779       goto End;                                                                \
    780     }                                                                          \
    781     ok = !br->error_;                                                          \
    782     if (!ok) goto End;                                                         \
    783   }                                                                            \
    784   /* Process the remaining rows corresponding to last row-block. */            \
    785   if (process_func != NULL) process_func(dec, row);                            \
    786 End:                                                                           \
    787   if (br->error_ || !ok || (br->eos_ && src < src_end)) {                      \
    788     ok = 0;                                                                    \
    789     dec->status_ =                                                             \
    790         (!br->eos_) ? VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;       \
    791   } else if (src == src_end) {                                                 \
    792     dec->state_ = READ_DATA;                                                   \
    793   }                                                                            \
    794   return ok;                                                                   \
    795 }
    796 
    797 static WEBP_INLINE uint32_t GetARGBPixel(int alpha, int red, int green,
    798                                          int blue) {
    799   return (alpha << 24) | (red << 16) | (green << 8) | blue;
    800 }
    801 
    802 static WEBP_INLINE uint8_t GetAlphaPixel(int alpha, int red, int green,
    803                                          int blue) {
    804   (void)alpha;
    805   (void)red;
    806   (void)blue;
    807   return green;  // Alpha value is stored in green channel.
    808 }
    809 
    810 DECODE_DATA_FUNC(DecodeImageData, uint32_t, GetARGBPixel)
    811 DECODE_DATA_FUNC(DecodeAlphaData, uint8_t, GetAlphaPixel)
    812 
    813 #undef DECODE_DATA_FUNC
    814 
    815 // -----------------------------------------------------------------------------
    816 // VP8LTransform
    817 
    818 static void ClearTransform(VP8LTransform* const transform) {
    819   free(transform->data_);
    820   transform->data_ = NULL;
    821 }
    822 
    823 // For security reason, we need to remap the color map to span
    824 // the total possible bundled values, and not just the num_colors.
    825 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
    826   int i;
    827   const int final_num_colors = 1 << (8 >> transform->bits_);
    828   uint32_t* const new_color_map =
    829       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
    830                                 sizeof(*new_color_map));
    831   if (new_color_map == NULL) {
    832     return 0;
    833   } else {
    834     uint8_t* const data = (uint8_t*)transform->data_;
    835     uint8_t* const new_data = (uint8_t*)new_color_map;
    836     new_color_map[0] = transform->data_[0];
    837     for (i = 4; i < 4 * num_colors; ++i) {
    838       // Equivalent to AddPixelEq(), on a byte-basis.
    839       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
    840     }
    841     for (; i < 4 * final_num_colors; ++i)
    842       new_data[i] = 0;  // black tail.
    843     free(transform->data_);
    844     transform->data_ = new_color_map;
    845   }
    846   return 1;
    847 }
    848 
    849 static int ReadTransform(int* const xsize, int const* ysize,
    850                          VP8LDecoder* const dec) {
    851   int ok = 1;
    852   VP8LBitReader* const br = &dec->br_;
    853   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
    854   const VP8LImageTransformType type =
    855       (VP8LImageTransformType)VP8LReadBits(br, 2);
    856 
    857   // Each transform type can only be present once in the stream.
    858   if (dec->transforms_seen_ & (1U << type)) {
    859     return 0;  // Already there, let's not accept the second same transform.
    860   }
    861   dec->transforms_seen_ |= (1U << type);
    862 
    863   transform->type_ = type;
    864   transform->xsize_ = *xsize;
    865   transform->ysize_ = *ysize;
    866   transform->data_ = NULL;
    867   ++dec->next_transform_;
    868   assert(dec->next_transform_ <= NUM_TRANSFORMS);
    869 
    870   switch (type) {
    871     case PREDICTOR_TRANSFORM:
    872     case CROSS_COLOR_TRANSFORM:
    873       transform->bits_ = VP8LReadBits(br, 3) + 2;
    874       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
    875                                                transform->bits_),
    876                              VP8LSubSampleSize(transform->ysize_,
    877                                                transform->bits_),
    878                              0, dec, &transform->data_);
    879       break;
    880     case COLOR_INDEXING_TRANSFORM: {
    881        const int num_colors = VP8LReadBits(br, 8) + 1;
    882        const int bits = (num_colors > 16) ? 0
    883                       : (num_colors > 4) ? 1
    884                       : (num_colors > 2) ? 2
    885                       : 3;
    886        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
    887        transform->bits_ = bits;
    888        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
    889        ok = ok && ExpandColorMap(num_colors, transform);
    890       break;
    891     }
    892     case SUBTRACT_GREEN:
    893       break;
    894     default:
    895       assert(0);    // can't happen
    896       break;
    897   }
    898 
    899   return ok;
    900 }
    901 
    902 // -----------------------------------------------------------------------------
    903 // VP8LMetadata
    904 
    905 static void InitMetadata(VP8LMetadata* const hdr) {
    906   assert(hdr);
    907   memset(hdr, 0, sizeof(*hdr));
    908 }
    909 
    910 static void ClearMetadata(VP8LMetadata* const hdr) {
    911   assert(hdr);
    912 
    913   free(hdr->huffman_image_);
    914   DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
    915   VP8LColorCacheClear(&hdr->color_cache_);
    916   InitMetadata(hdr);
    917 }
    918 
    919 // -----------------------------------------------------------------------------
    920 // VP8LDecoder
    921 
    922 VP8LDecoder* VP8LNew(void) {
    923   VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
    924   if (dec == NULL) return NULL;
    925   dec->status_ = VP8_STATUS_OK;
    926   dec->action_ = READ_DIM;
    927   dec->state_ = READ_DIM;
    928   return dec;
    929 }
    930 
    931 void VP8LClear(VP8LDecoder* const dec) {
    932   int i;
    933   if (dec == NULL) return;
    934   ClearMetadata(&dec->hdr_);
    935 
    936   free(dec->pixels_);
    937   dec->pixels_ = NULL;
    938   for (i = 0; i < dec->next_transform_; ++i) {
    939     ClearTransform(&dec->transforms_[i]);
    940   }
    941   dec->next_transform_ = 0;
    942   dec->transforms_seen_ = 0;
    943 
    944   free(dec->rescaler_memory);
    945   dec->rescaler_memory = NULL;
    946 
    947   dec->output_ = NULL;   // leave no trace behind
    948 }
    949 
    950 void VP8LDelete(VP8LDecoder* const dec) {
    951   if (dec != NULL) {
    952     VP8LClear(dec);
    953     free(dec);
    954   }
    955 }
    956 
    957 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
    958   VP8LMetadata* const hdr = &dec->hdr_;
    959   const int num_bits = hdr->huffman_subsample_bits_;
    960   dec->width_ = width;
    961   dec->height_ = height;
    962 
    963   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
    964   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
    965 }
    966 
    967 static int DecodeImageStream(int xsize, int ysize,
    968                              int is_level0,
    969                              VP8LDecoder* const dec,
    970                              uint32_t** const decoded_data) {
    971   int ok = 1;
    972   int transform_xsize = xsize;
    973   int transform_ysize = ysize;
    974   VP8LBitReader* const br = &dec->br_;
    975   VP8LMetadata* const hdr = &dec->hdr_;
    976   uint32_t* data = NULL;
    977   int color_cache_bits = 0;
    978 
    979   // Read the transforms (may recurse).
    980   if (is_level0) {
    981     while (ok && VP8LReadBits(br, 1)) {
    982       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
    983     }
    984   }
    985 
    986   // Color cache
    987   if (ok && VP8LReadBits(br, 1)) {
    988     color_cache_bits = VP8LReadBits(br, 4);
    989     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
    990     if (!ok) {
    991       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    992       goto End;
    993     }
    994   }
    995 
    996   // Read the Huffman codes (may recurse).
    997   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
    998                               color_cache_bits, is_level0);
    999   if (!ok) {
   1000     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1001     goto End;
   1002   }
   1003 
   1004   // Finish setting up the color-cache
   1005   if (color_cache_bits > 0) {
   1006     hdr->color_cache_size_ = 1 << color_cache_bits;
   1007     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
   1008       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1009       ok = 0;
   1010       goto End;
   1011     }
   1012   } else {
   1013     hdr->color_cache_size_ = 0;
   1014   }
   1015   UpdateDecoder(dec, transform_xsize, transform_ysize);
   1016 
   1017   if (is_level0) {   // level 0 complete
   1018     dec->state_ = READ_HDR;
   1019     goto End;
   1020   }
   1021 
   1022   {
   1023     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
   1024     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
   1025     if (data == NULL) {
   1026       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1027       ok = 0;
   1028       goto End;
   1029     }
   1030   }
   1031 
   1032   // Use the Huffman trees to decode the LZ77 encoded data.
   1033   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
   1034   ok = ok && !br->error_;
   1035 
   1036  End:
   1037 
   1038   if (!ok) {
   1039     free(data);
   1040     ClearMetadata(hdr);
   1041     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
   1042     // status appropriately.
   1043     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
   1044       dec->status_ = VP8_STATUS_SUSPENDED;
   1045     }
   1046   } else {
   1047     if (decoded_data != NULL) {
   1048       *decoded_data = data;
   1049     } else {
   1050       // We allocate image data in this function only for transforms. At level 0
   1051       // (that is: not the transforms), we shouldn't have allocated anything.
   1052       assert(data == NULL);
   1053       assert(is_level0);
   1054     }
   1055     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
   1056   }
   1057   return ok;
   1058 }
   1059 
   1060 //------------------------------------------------------------------------------
   1061 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
   1062 static int AllocateInternalBuffers(VP8LDecoder* const dec, int final_width,
   1063                                    size_t bytes_per_pixel) {
   1064   const int argb_cache_needed = (bytes_per_pixel == sizeof(uint32_t));
   1065   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
   1066   // Scratch buffer corresponding to top-prediction row for transforming the
   1067   // first row in the row-blocks. Not needed for paletted alpha.
   1068   const uint64_t cache_top_pixels =
   1069       argb_cache_needed ? (uint16_t)final_width : 0ULL;
   1070   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
   1071   const uint64_t cache_pixels =
   1072       argb_cache_needed ? (uint64_t)final_width * NUM_ARGB_CACHE_ROWS : 0ULL;
   1073   const uint64_t total_num_pixels =
   1074       num_pixels + cache_top_pixels + cache_pixels;
   1075 
   1076   assert(dec->width_ <= final_width);
   1077   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, bytes_per_pixel);
   1078   if (dec->pixels_ == NULL) {
   1079     dec->argb_cache_ = NULL;    // for sanity check
   1080     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1081     return 0;
   1082   }
   1083   dec->argb_cache_ =
   1084       argb_cache_needed ? dec->pixels_ + num_pixels + cache_top_pixels : NULL;
   1085   return 1;
   1086 }
   1087 
   1088 //------------------------------------------------------------------------------
   1089 
   1090 // Special row-processing that only stores the alpha data.
   1091 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
   1092   const int num_rows = row - dec->last_row_;
   1093   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
   1094 
   1095   if (num_rows <= 0) return;  // Nothing to be done.
   1096   ApplyInverseTransforms(dec, num_rows, in);
   1097 
   1098   // Extract alpha (which is stored in the green plane).
   1099   {
   1100     const int width = dec->io_->width;      // the final width (!= dec->width_)
   1101     const int cache_pixs = width * num_rows;
   1102     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
   1103     const uint32_t* const src = dec->argb_cache_;
   1104     int i;
   1105     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
   1106   }
   1107   dec->last_row_ = dec->last_out_row_ = row;
   1108 }
   1109 
   1110 // Row-processing for the special case when alpha data contains only one
   1111 // transform: color indexing.
   1112 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
   1113   const int num_rows = row - dec->last_row_;
   1114   const uint8_t* const in =
   1115       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
   1116   if (num_rows <= 0) return;  // Nothing to be done.
   1117   ApplyInverseTransformsAlpha(dec, num_rows, in);
   1118   dec->last_row_ = dec->last_out_row_ = row;
   1119 }
   1120 
   1121 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
   1122                                size_t data_size, uint8_t* const output) {
   1123   VP8Io io;
   1124   int ok = 0;
   1125   VP8LDecoder* const dec = VP8LNew();
   1126   size_t bytes_per_pixel = sizeof(uint32_t);  // Default: BGRA mode.
   1127   if (dec == NULL) return 0;
   1128 
   1129   dec->width_ = width;
   1130   dec->height_ = height;
   1131   dec->io_ = &io;
   1132 
   1133   VP8InitIo(&io);
   1134   WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
   1135   io.opaque = output;
   1136   io.width = width;
   1137   io.height = height;
   1138 
   1139   dec->status_ = VP8_STATUS_OK;
   1140   VP8LInitBitReader(&dec->br_, data, data_size);
   1141 
   1142   dec->action_ = READ_HDR;
   1143   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
   1144 
   1145   // Special case: if alpha data uses only the color indexing transform and
   1146   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
   1147   // method that only needs allocation of 1 byte per pixel (alpha channel).
   1148   if (dec->next_transform_ == 1 &&
   1149       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
   1150       dec->hdr_.color_cache_size_ == 0) {
   1151     bytes_per_pixel = sizeof(uint8_t);
   1152   }
   1153 
   1154   // Allocate internal buffers (note that dec->width_ may have changed here).
   1155   if (!AllocateInternalBuffers(dec, width, bytes_per_pixel)) goto Err;
   1156 
   1157   // Decode (with special row processing).
   1158   dec->action_ = READ_DATA;
   1159   ok = (bytes_per_pixel == sizeof(uint8_t)) ?
   1160       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
   1161                       ExtractPalettedAlphaRows) :
   1162       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1163                       ExtractAlphaRows);
   1164 
   1165  Err:
   1166   VP8LDelete(dec);
   1167   return ok;
   1168 }
   1169 
   1170 //------------------------------------------------------------------------------
   1171 
   1172 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
   1173   int width, height, has_alpha;
   1174 
   1175   if (dec == NULL) return 0;
   1176   if (io == NULL) {
   1177     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1178     return 0;
   1179   }
   1180 
   1181   dec->io_ = io;
   1182   dec->status_ = VP8_STATUS_OK;
   1183   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
   1184   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
   1185     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1186     goto Error;
   1187   }
   1188   dec->state_ = READ_DIM;
   1189   io->width = width;
   1190   io->height = height;
   1191 
   1192   dec->action_ = READ_HDR;
   1193   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
   1194   return 1;
   1195 
   1196  Error:
   1197   VP8LClear(dec);
   1198   assert(dec->status_ != VP8_STATUS_OK);
   1199   return 0;
   1200 }
   1201 
   1202 int VP8LDecodeImage(VP8LDecoder* const dec) {
   1203   const size_t bytes_per_pixel = sizeof(uint32_t);
   1204   VP8Io* io = NULL;
   1205   WebPDecParams* params = NULL;
   1206 
   1207   // Sanity checks.
   1208   if (dec == NULL) return 0;
   1209 
   1210   io = dec->io_;
   1211   assert(io != NULL);
   1212   params = (WebPDecParams*)io->opaque;
   1213   assert(params != NULL);
   1214   dec->output_ = params->output;
   1215   assert(dec->output_ != NULL);
   1216 
   1217   // Initialization.
   1218   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
   1219     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1220     goto Err;
   1221   }
   1222 
   1223   if (!AllocateInternalBuffers(dec, io->width, bytes_per_pixel)) goto Err;
   1224 
   1225   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
   1226 
   1227   // Decode.
   1228   dec->action_ = READ_DATA;
   1229   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1230                        ProcessRows)) {
   1231     goto Err;
   1232   }
   1233 
   1234   // Cleanup.
   1235   params->last_y = dec->last_out_row_;
   1236   VP8LClear(dec);
   1237   return 1;
   1238 
   1239  Err:
   1240   VP8LClear(dec);
   1241   assert(dec->status_ != VP8_STATUS_OK);
   1242   return 0;
   1243 }
   1244 
   1245 //------------------------------------------------------------------------------
   1246 
   1247 #if defined(__cplusplus) || defined(c_plusplus)
   1248 }    // extern "C"
   1249 #endif
   1250