Home | History | Annotate | Download | only in signal_processing
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 
     12 /*
     13  * This file contains the function WebRtcSpl_LevinsonDurbin().
     14  * The description header can be found in signal_processing_library.h
     15  *
     16  */
     17 
     18 #include "signal_processing_library.h"
     19 
     20 #define SPL_LEVINSON_MAXORDER 20
     21 
     22 WebRtc_Word16 WebRtcSpl_LevinsonDurbin(WebRtc_Word32 *R, WebRtc_Word16 *A, WebRtc_Word16 *K,
     23                                        WebRtc_Word16 order)
     24 {
     25     WebRtc_Word16 i, j;
     26     // Auto-correlation coefficients in high precision
     27     WebRtc_Word16 R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
     28     // LPC coefficients in high precision
     29     WebRtc_Word16 A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
     30     // LPC coefficients for next iteration
     31     WebRtc_Word16 A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
     32     // Reflection coefficient in high precision
     33     WebRtc_Word16 K_hi, K_low;
     34     // Prediction gain Alpha in high precision and with scale factor
     35     WebRtc_Word16 Alpha_hi, Alpha_low, Alpha_exp;
     36     WebRtc_Word16 tmp_hi, tmp_low;
     37     WebRtc_Word32 temp1W32, temp2W32, temp3W32;
     38     WebRtc_Word16 norm;
     39 
     40     // Normalize the autocorrelation R[0]...R[order+1]
     41 
     42     norm = WebRtcSpl_NormW32(R[0]);
     43 
     44     for (i = order; i >= 0; i--)
     45     {
     46         temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
     47         // Put R in hi and low format
     48         R_hi[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
     49         R_low[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
     50                 - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[i], 16)), 1);
     51     }
     52 
     53     // K = A[1] = -R[1] / R[0]
     54 
     55     temp2W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[1],16)
     56             + WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_low[1],1); // R[1] in Q31
     57     temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
     58     temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
     59     // Put back the sign on R[1]
     60     if (temp2W32 > 0)
     61     {
     62         temp1W32 = -temp1W32;
     63     }
     64 
     65     // Put K in hi and low format
     66     K_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
     67     K_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
     68             - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)K_hi, 16)), 1);
     69 
     70     // Store first reflection coefficient
     71     K[0] = K_hi;
     72 
     73     temp1W32 = WEBRTC_SPL_RSHIFT_W32(temp1W32, 4); // A[1] in Q27
     74 
     75     // Put A[1] in hi and low format
     76     A_hi[1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
     77     A_low[1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
     78             - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[1], 16)), 1);
     79 
     80     // Alpha = R[0] * (1-K^2)
     81 
     82     temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14) + WEBRTC_SPL_MUL_16_16(K_hi, K_hi))
     83             << 1); // temp1W32 = k^2 in Q31
     84 
     85     temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
     86     temp1W32 = (WebRtc_Word32)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
     87 
     88     // Store temp1W32 = 1 - K[0]*K[0] on hi and low format
     89     tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
     90     tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
     91             - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
     92 
     93     // Calculate Alpha in Q31
     94     temp1W32 = ((WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_hi)
     95             + (WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_low) >> 15)
     96             + (WEBRTC_SPL_MUL_16_16(R_low[0], tmp_hi) >> 15)) << 1);
     97 
     98     // Normalize Alpha and put it in hi and low format
     99 
    100     Alpha_exp = WebRtcSpl_NormW32(temp1W32);
    101     temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
    102     Alpha_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
    103     Alpha_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
    104             - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)Alpha_hi, 16)), 1);
    105 
    106     // Perform the iterative calculations in the Levinson-Durbin algorithm
    107 
    108     for (i = 2; i <= order; i++)
    109     {
    110         /*                    ----
    111          temp1W32 =  R[i] + > R[j]*A[i-j]
    112          /
    113          ----
    114          j=1..i-1
    115          */
    116 
    117         temp1W32 = 0;
    118 
    119         for (j = 1; j < i; j++)
    120         {
    121             // temp1W32 is in Q31
    122             temp1W32 += ((WEBRTC_SPL_MUL_16_16(R_hi[j], A_hi[i-j]) << 1)
    123                     + (((WEBRTC_SPL_MUL_16_16(R_hi[j], A_low[i-j]) >> 15)
    124                             + (WEBRTC_SPL_MUL_16_16(R_low[j], A_hi[i-j]) >> 15)) << 1));
    125         }
    126 
    127         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
    128         temp1W32 += (WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[i], 16)
    129                 + WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_low[i], 1));
    130 
    131         // K = -temp1W32 / Alpha
    132         temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
    133         temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
    134 
    135         // Put the sign of temp1W32 back again
    136         if (temp1W32 > 0)
    137         {
    138             temp3W32 = -temp3W32;
    139         }
    140 
    141         // Use the Alpha shifts from earlier to de-normalize
    142         norm = WebRtcSpl_NormW32(temp3W32);
    143         if ((Alpha_exp <= norm) || (temp3W32 == 0))
    144         {
    145             temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
    146         } else
    147         {
    148             if (temp3W32 > 0)
    149             {
    150                 temp3W32 = (WebRtc_Word32)0x7fffffffL;
    151             } else
    152             {
    153                 temp3W32 = (WebRtc_Word32)0x80000000L;
    154             }
    155         }
    156 
    157         // Put K on hi and low format
    158         K_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
    159         K_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp3W32
    160                 - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)K_hi, 16)), 1);
    161 
    162         // Store Reflection coefficient in Q15
    163         K[i - 1] = K_hi;
    164 
    165         // Test for unstable filter.
    166         // If unstable return 0 and let the user decide what to do in that case
    167 
    168         if ((WebRtc_Word32)WEBRTC_SPL_ABS_W16(K_hi) > (WebRtc_Word32)32750)
    169         {
    170             return 0; // Unstable filter
    171         }
    172 
    173         /*
    174          Compute updated LPC coefficient: Anew[i]
    175          Anew[j]= A[j] + K*A[i-j]   for j=1..i-1
    176          Anew[i]= K
    177          */
    178 
    179         for (j = 1; j < i; j++)
    180         {
    181             // temp1W32 = A[j] in Q27
    182             temp1W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[j],16)
    183                     + WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_low[j],1);
    184 
    185             // temp1W32 += K*A[i-j] in Q27
    186             temp1W32 += ((WEBRTC_SPL_MUL_16_16(K_hi, A_hi[i-j])
    187                     + (WEBRTC_SPL_MUL_16_16(K_hi, A_low[i-j]) >> 15)
    188                     + (WEBRTC_SPL_MUL_16_16(K_low, A_hi[i-j]) >> 15)) << 1);
    189 
    190             // Put Anew in hi and low format
    191             A_upd_hi[j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
    192             A_upd_low[j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
    193                     - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_upd_hi[j], 16)), 1);
    194         }
    195 
    196         // temp3W32 = K in Q27 (Convert from Q31 to Q27)
    197         temp3W32 = WEBRTC_SPL_RSHIFT_W32(temp3W32, 4);
    198 
    199         // Store Anew in hi and low format
    200         A_upd_hi[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
    201         A_upd_low[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp3W32
    202                 - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_upd_hi[i], 16)), 1);
    203 
    204         // Alpha = Alpha * (1-K^2)
    205 
    206         temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14)
    207                 + WEBRTC_SPL_MUL_16_16(K_hi, K_hi)) << 1); // K*K in Q31
    208 
    209         temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
    210         temp1W32 = (WebRtc_Word32)0x7fffffffL - temp1W32; // 1 - K*K  in Q31
    211 
    212         // Convert 1- K^2 in hi and low format
    213         tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
    214         tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
    215                 - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
    216 
    217         // Calculate Alpha = Alpha * (1-K^2) in Q31
    218         temp1W32 = ((WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_hi)
    219                 + (WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_low) >> 15)
    220                 + (WEBRTC_SPL_MUL_16_16(Alpha_low, tmp_hi) >> 15)) << 1);
    221 
    222         // Normalize Alpha and store it on hi and low format
    223 
    224         norm = WebRtcSpl_NormW32(temp1W32);
    225         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
    226 
    227         Alpha_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
    228         Alpha_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
    229                 - WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)Alpha_hi, 16)), 1);
    230 
    231         // Update the total normalization of Alpha
    232         Alpha_exp = Alpha_exp + norm;
    233 
    234         // Update A[]
    235 
    236         for (j = 1; j <= i; j++)
    237         {
    238             A_hi[j] = A_upd_hi[j];
    239             A_low[j] = A_upd_low[j];
    240         }
    241     }
    242 
    243     /*
    244      Set A[0] to 1.0 and store the A[i] i=1...order in Q12
    245      (Convert from Q27 and use rounding)
    246      */
    247 
    248     A[0] = 4096;
    249 
    250     for (i = 1; i <= order; i++)
    251     {
    252         // temp1W32 in Q27
    253         temp1W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[i], 16)
    254                 + WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_low[i], 1);
    255         // Round and store upper word
    256         A[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32<<1)+(WebRtc_Word32)32768, 16);
    257     }
    258     return 1; // Stable filters
    259 }
    260