1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ReaderWriter_2_9.h" 15 #include "legacy_bitcode.h" 16 #include "ValueEnumerator.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 // Redefine older bitcode opcodes for use here. Note that these come from 36 // LLVM 2.7 (which is what HC shipped with). 37 #define METADATA_NODE_2_7 2 38 #define METADATA_FN_NODE_2_7 3 39 #define METADATA_NAMED_NODE_2_7 5 40 #define METADATA_ATTACHMENT_2_7 7 41 #define FUNC_CODE_INST_CALL_2_7 22 42 #define FUNC_CODE_DEBUG_LOC_2_7 32 43 44 // Redefine older bitcode opcodes for use here. Note that these come from 45 // LLVM 2.7 - 3.0. 46 #define TYPE_BLOCK_ID_OLD_3_0 10 47 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13 48 #define TYPE_CODE_STRUCT_OLD_3_0 10 49 50 /// These are manifest constants used by the bitcode writer. They do not need to 51 /// be kept in sync with the reader, but need to be consistent within this file. 52 enum { 53 CurVersion = 0, 54 55 // VALUE_SYMTAB_BLOCK abbrev id's. 56 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 VST_ENTRY_7_ABBREV, 58 VST_ENTRY_6_ABBREV, 59 VST_BBENTRY_6_ABBREV, 60 61 // CONSTANTS_BLOCK abbrev id's. 62 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 CONSTANTS_INTEGER_ABBREV, 64 CONSTANTS_CE_CAST_Abbrev, 65 CONSTANTS_NULL_Abbrev, 66 67 // FUNCTION_BLOCK abbrev id's. 68 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 69 FUNCTION_INST_BINOP_ABBREV, 70 FUNCTION_INST_BINOP_FLAGS_ABBREV, 71 FUNCTION_INST_CAST_ABBREV, 72 FUNCTION_INST_RET_VOID_ABBREV, 73 FUNCTION_INST_RET_VAL_ABBREV, 74 FUNCTION_INST_UNREACHABLE_ABBREV 75 }; 76 77 78 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown cast instruction!"); 81 case Instruction::Trunc : return bitc::CAST_TRUNC; 82 case Instruction::ZExt : return bitc::CAST_ZEXT; 83 case Instruction::SExt : return bitc::CAST_SEXT; 84 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 85 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 86 case Instruction::UIToFP : return bitc::CAST_UITOFP; 87 case Instruction::SIToFP : return bitc::CAST_SITOFP; 88 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 89 case Instruction::FPExt : return bitc::CAST_FPEXT; 90 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 91 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 92 case Instruction::BitCast : return bitc::CAST_BITCAST; 93 } 94 } 95 96 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 97 switch (Opcode) { 98 default: llvm_unreachable("Unknown binary instruction!"); 99 case Instruction::Add: 100 case Instruction::FAdd: return bitc::BINOP_ADD; 101 case Instruction::Sub: 102 case Instruction::FSub: return bitc::BINOP_SUB; 103 case Instruction::Mul: 104 case Instruction::FMul: return bitc::BINOP_MUL; 105 case Instruction::UDiv: return bitc::BINOP_UDIV; 106 case Instruction::FDiv: 107 case Instruction::SDiv: return bitc::BINOP_SDIV; 108 case Instruction::URem: return bitc::BINOP_UREM; 109 case Instruction::FRem: 110 case Instruction::SRem: return bitc::BINOP_SREM; 111 case Instruction::Shl: return bitc::BINOP_SHL; 112 case Instruction::LShr: return bitc::BINOP_LSHR; 113 case Instruction::AShr: return bitc::BINOP_ASHR; 114 case Instruction::And: return bitc::BINOP_AND; 115 case Instruction::Or: return bitc::BINOP_OR; 116 case Instruction::Xor: return bitc::BINOP_XOR; 117 } 118 } 119 120 static void WriteStringRecord(unsigned Code, StringRef Str, 121 unsigned AbbrevToUse, BitstreamWriter &Stream) { 122 SmallVector<unsigned, 64> Vals; 123 124 // Code: [strchar x N] 125 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 126 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 127 AbbrevToUse = 0; 128 Vals.push_back(Str[i]); 129 } 130 131 // Emit the finished record. 132 Stream.EmitRecord(Code, Vals, AbbrevToUse); 133 } 134 135 // Emit information about parameter attributes. 136 static void WriteAttributeTable(const llvm_2_9::ValueEnumerator &VE, 137 BitstreamWriter &Stream) { 138 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 139 if (Attrs.empty()) return; 140 141 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 142 143 SmallVector<uint64_t, 64> Record; 144 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 145 const AttributeSet &A = Attrs[i]; 146 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 147 Record.push_back(A.getSlotIndex(i)); 148 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i))); 149 } 150 151 // This needs to use the 3.2 entry type 152 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); 153 Record.clear(); 154 } 155 156 Stream.ExitBlock(); 157 } 158 159 static void WriteTypeSymbolTable(const llvm_2_9::ValueEnumerator &VE, 160 BitstreamWriter &Stream) { 161 const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes(); 162 Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3); 163 164 // 7-bit fixed width VST_CODE_ENTRY strings. 165 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 166 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 168 Log2_32_Ceil(VE.getTypes().size()+1))); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 171 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 172 173 SmallVector<unsigned, 64> NameVals; 174 175 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 176 Type *T = TypeList[i]; 177 178 switch (T->getTypeID()) { 179 case Type::StructTyID: { 180 StructType *ST = cast<StructType>(T); 181 if (ST->isLiteral()) { 182 // Skip anonymous struct definitions in type symbol table 183 // FIXME(srhines) 184 break; 185 } 186 187 // TST_ENTRY: [typeid, namechar x N] 188 NameVals.push_back(i); 189 190 const std::string &Str = ST->getName(); 191 bool is7Bit = true; 192 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 193 NameVals.push_back((unsigned char)Str[i]); 194 if (Str[i] & 128) 195 is7Bit = false; 196 } 197 198 // Emit the finished record. 199 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 200 NameVals.clear(); 201 202 break; 203 } 204 default: break; 205 } 206 } 207 208 #if 0 209 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 210 TI != TE; ++TI) { 211 // TST_ENTRY: [typeid, namechar x N] 212 NameVals.push_back(VE.getTypeID(TI->second)); 213 214 const std::string &Str = TI->first; 215 bool is7Bit = true; 216 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 217 NameVals.push_back((unsigned char)Str[i]); 218 if (Str[i] & 128) 219 is7Bit = false; 220 } 221 222 // Emit the finished record. 223 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 224 NameVals.clear(); 225 } 226 #endif 227 228 Stream.ExitBlock(); 229 } 230 231 /// WriteTypeTable - Write out the type table for a module. 232 static void WriteTypeTable(const llvm_2_9::ValueEnumerator &VE, 233 BitstreamWriter &Stream) { 234 const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes(); 235 236 Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */); 237 SmallVector<uint64_t, 64> TypeVals; 238 239 // Abbrev for TYPE_CODE_POINTER. 240 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 241 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 243 Log2_32_Ceil(VE.getTypes().size()+1))); 244 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 245 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 246 247 // Abbrev for TYPE_CODE_FUNCTION. 248 Abbv = new BitCodeAbbrev(); 249 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD)); 250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 251 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 254 Log2_32_Ceil(VE.getTypes().size()+1))); 255 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 256 257 #if 0 258 // Abbrev for TYPE_CODE_STRUCT_ANON. 259 Abbv = new BitCodeAbbrev(); 260 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 264 Log2_32_Ceil(VE.getTypes().size()+1))); 265 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 266 267 // Abbrev for TYPE_CODE_STRUCT_NAME. 268 Abbv = new BitCodeAbbrev(); 269 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 272 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 273 274 // Abbrev for TYPE_CODE_STRUCT_NAMED. 275 Abbv = new BitCodeAbbrev(); 276 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 280 Log2_32_Ceil(VE.getTypes().size()+1))); 281 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 282 #endif 283 284 // Abbrev for TYPE_CODE_STRUCT. 285 Abbv = new BitCodeAbbrev(); 286 Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0)); 287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 290 Log2_32_Ceil(VE.getTypes().size()+1))); 291 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 292 293 // Abbrev for TYPE_CODE_ARRAY. 294 Abbv = new BitCodeAbbrev(); 295 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 298 Log2_32_Ceil(VE.getTypes().size()+1))); 299 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 300 301 // Emit an entry count so the reader can reserve space. 302 TypeVals.push_back(TypeList.size()); 303 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 304 TypeVals.clear(); 305 306 // Loop over all of the types, emitting each in turn. 307 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 308 Type *T = TypeList[i]; 309 int AbbrevToUse = 0; 310 unsigned Code = 0; 311 312 switch (T->getTypeID()) { 313 default: llvm_unreachable("Unknown type!"); 314 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 315 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 316 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 317 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 318 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 319 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 320 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 321 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 322 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 323 case Type::IntegerTyID: 324 // INTEGER: [width] 325 Code = bitc::TYPE_CODE_INTEGER; 326 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 327 break; 328 case Type::PointerTyID: { 329 PointerType *PTy = cast<PointerType>(T); 330 // POINTER: [pointee type, address space] 331 Code = bitc::TYPE_CODE_POINTER; 332 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 333 unsigned AddressSpace = PTy->getAddressSpace(); 334 TypeVals.push_back(AddressSpace); 335 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 336 break; 337 } 338 case Type::FunctionTyID: { 339 FunctionType *FT = cast<FunctionType>(T); 340 // FUNCTION: [isvararg, attrid, retty, paramty x N] 341 Code = bitc::TYPE_CODE_FUNCTION_OLD; 342 TypeVals.push_back(FT->isVarArg()); 343 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 344 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 345 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 346 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 347 AbbrevToUse = FunctionAbbrev; 348 break; 349 } 350 case Type::StructTyID: { 351 StructType *ST = cast<StructType>(T); 352 // STRUCT: [ispacked, eltty x N] 353 TypeVals.push_back(ST->isPacked()); 354 // Output all of the element types. 355 for (StructType::element_iterator I = ST->element_begin(), 356 E = ST->element_end(); I != E; ++I) 357 TypeVals.push_back(VE.getTypeID(*I)); 358 AbbrevToUse = StructAbbrev; 359 break; 360 } 361 case Type::ArrayTyID: { 362 ArrayType *AT = cast<ArrayType>(T); 363 // ARRAY: [numelts, eltty] 364 Code = bitc::TYPE_CODE_ARRAY; 365 TypeVals.push_back(AT->getNumElements()); 366 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 367 AbbrevToUse = ArrayAbbrev; 368 break; 369 } 370 case Type::VectorTyID: { 371 VectorType *VT = cast<VectorType>(T); 372 // VECTOR [numelts, eltty] 373 Code = bitc::TYPE_CODE_VECTOR; 374 TypeVals.push_back(VT->getNumElements()); 375 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 376 break; 377 } 378 } 379 380 // Emit the finished record. 381 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 382 TypeVals.clear(); 383 } 384 385 Stream.ExitBlock(); 386 387 WriteTypeSymbolTable(VE, Stream); 388 } 389 390 static unsigned getEncodedLinkage(const GlobalValue *GV) { 391 switch (GV->getLinkage()) { 392 case GlobalValue::ExternalLinkage: return 0; 393 case GlobalValue::WeakAnyLinkage: return 1; 394 case GlobalValue::AppendingLinkage: return 2; 395 case GlobalValue::InternalLinkage: return 3; 396 case GlobalValue::LinkOnceAnyLinkage: return 4; 397 case GlobalValue::DLLImportLinkage: return 5; 398 case GlobalValue::DLLExportLinkage: return 6; 399 case GlobalValue::ExternalWeakLinkage: return 7; 400 case GlobalValue::CommonLinkage: return 8; 401 case GlobalValue::PrivateLinkage: return 9; 402 case GlobalValue::WeakODRLinkage: return 10; 403 case GlobalValue::LinkOnceODRLinkage: return 11; 404 case GlobalValue::AvailableExternallyLinkage: return 12; 405 case GlobalValue::LinkerPrivateLinkage: return 13; 406 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 407 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 408 } 409 llvm_unreachable("Invalid linkage"); 410 } 411 412 static unsigned getEncodedVisibility(const GlobalValue *GV) { 413 switch (GV->getVisibility()) { 414 default: llvm_unreachable("Invalid visibility!"); 415 case GlobalValue::DefaultVisibility: return 0; 416 case GlobalValue::HiddenVisibility: return 1; 417 case GlobalValue::ProtectedVisibility: return 2; 418 } 419 } 420 421 // Emit top-level description of module, including target triple, inline asm, 422 // descriptors for global variables, and function prototype info. 423 static void WriteModuleInfo(const Module *M, 424 const llvm_2_9::ValueEnumerator &VE, 425 BitstreamWriter &Stream) { 426 // Emit various pieces of data attached to a module. 427 if (!M->getTargetTriple().empty()) 428 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 429 0/*TODO*/, Stream); 430 if (!M->getDataLayout().empty()) 431 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 432 0/*TODO*/, Stream); 433 if (!M->getModuleInlineAsm().empty()) 434 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 435 0/*TODO*/, Stream); 436 437 // Emit information about sections and GC, computing how many there are. Also 438 // compute the maximum alignment value. 439 std::map<std::string, unsigned> SectionMap; 440 std::map<std::string, unsigned> GCMap; 441 unsigned MaxAlignment = 0; 442 unsigned MaxGlobalType = 0; 443 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 444 GV != E; ++GV) { 445 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 446 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 447 448 if (!GV->hasSection()) continue; 449 // Give section names unique ID's. 450 unsigned &Entry = SectionMap[GV->getSection()]; 451 if (Entry != 0) continue; 452 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 453 0/*TODO*/, Stream); 454 Entry = SectionMap.size(); 455 } 456 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 457 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 458 if (F->hasSection()) { 459 // Give section names unique ID's. 460 unsigned &Entry = SectionMap[F->getSection()]; 461 if (!Entry) { 462 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 463 0/*TODO*/, Stream); 464 Entry = SectionMap.size(); 465 } 466 } 467 if (F->hasGC()) { 468 // Same for GC names. 469 unsigned &Entry = GCMap[F->getGC()]; 470 if (!Entry) { 471 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 472 0/*TODO*/, Stream); 473 Entry = GCMap.size(); 474 } 475 } 476 } 477 478 // Emit abbrev for globals, now that we know # sections and max alignment. 479 unsigned SimpleGVarAbbrev = 0; 480 if (!M->global_empty()) { 481 // Add an abbrev for common globals with no visibility or thread localness. 482 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 483 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 485 Log2_32_Ceil(MaxGlobalType+1))); 486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 489 if (MaxAlignment == 0) // Alignment. 490 Abbv->Add(BitCodeAbbrevOp(0)); 491 else { 492 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 494 Log2_32_Ceil(MaxEncAlignment+1))); 495 } 496 if (SectionMap.empty()) // Section. 497 Abbv->Add(BitCodeAbbrevOp(0)); 498 else 499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 500 Log2_32_Ceil(SectionMap.size()+1))); 501 // Don't bother emitting vis + thread local. 502 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 503 } 504 505 // Emit the global variable information. 506 SmallVector<unsigned, 64> Vals; 507 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 508 GV != E; ++GV) { 509 unsigned AbbrevToUse = 0; 510 511 // GLOBALVAR: [type, isconst, initid, 512 // linkage, alignment, section, visibility, threadlocal, 513 // unnamed_addr] 514 Vals.push_back(VE.getTypeID(GV->getType())); 515 Vals.push_back(GV->isConstant()); 516 Vals.push_back(GV->isDeclaration() ? 0 : 517 (VE.getValueID(GV->getInitializer()) + 1)); 518 Vals.push_back(getEncodedLinkage(GV)); 519 Vals.push_back(Log2_32(GV->getAlignment())+1); 520 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 521 if (GV->isThreadLocal() || 522 GV->getVisibility() != GlobalValue::DefaultVisibility || 523 GV->hasUnnamedAddr()) { 524 Vals.push_back(getEncodedVisibility(GV)); 525 Vals.push_back(GV->isThreadLocal()); 526 Vals.push_back(GV->hasUnnamedAddr()); 527 } else { 528 AbbrevToUse = SimpleGVarAbbrev; 529 } 530 531 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 532 Vals.clear(); 533 } 534 535 // Emit the function proto information. 536 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 537 // FUNCTION: [type, callingconv, isproto, paramattr, 538 // linkage, alignment, section, visibility, gc, unnamed_addr] 539 Vals.push_back(VE.getTypeID(F->getType())); 540 Vals.push_back(F->getCallingConv()); 541 Vals.push_back(F->isDeclaration()); 542 Vals.push_back(getEncodedLinkage(F)); 543 Vals.push_back(VE.getAttributeID(F->getAttributes())); 544 Vals.push_back(Log2_32(F->getAlignment())+1); 545 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 546 Vals.push_back(getEncodedVisibility(F)); 547 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 548 Vals.push_back(F->hasUnnamedAddr()); 549 550 unsigned AbbrevToUse = 0; 551 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 552 Vals.clear(); 553 } 554 555 // Emit the alias information. 556 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 557 AI != E; ++AI) { 558 Vals.push_back(VE.getTypeID(AI->getType())); 559 Vals.push_back(VE.getValueID(AI->getAliasee())); 560 Vals.push_back(getEncodedLinkage(AI)); 561 Vals.push_back(getEncodedVisibility(AI)); 562 unsigned AbbrevToUse = 0; 563 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 564 Vals.clear(); 565 } 566 } 567 568 static uint64_t GetOptimizationFlags(const Value *V) { 569 uint64_t Flags = 0; 570 571 if (const OverflowingBinaryOperator *OBO = 572 dyn_cast<OverflowingBinaryOperator>(V)) { 573 if (OBO->hasNoSignedWrap()) 574 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 575 if (OBO->hasNoUnsignedWrap()) 576 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 577 } else if (const PossiblyExactOperator *PEO = 578 dyn_cast<PossiblyExactOperator>(V)) { 579 if (PEO->isExact()) 580 Flags |= 1 << bitc::PEO_EXACT; 581 } 582 583 return Flags; 584 } 585 586 static void WriteMDNode(const MDNode *N, 587 const llvm_2_9::ValueEnumerator &VE, 588 BitstreamWriter &Stream, 589 SmallVector<uint64_t, 64> &Record) { 590 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 591 if (N->getOperand(i)) { 592 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 593 Record.push_back(VE.getValueID(N->getOperand(i))); 594 } else { 595 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 596 Record.push_back(0); 597 } 598 } 599 unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 : 600 METADATA_NODE_2_7; 601 Stream.EmitRecord(MDCode, Record, 0); 602 Record.clear(); 603 } 604 605 static void WriteModuleMetadata(const Module *M, 606 const llvm_2_9::ValueEnumerator &VE, 607 BitstreamWriter &Stream) { 608 const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getMDValues(); 609 bool StartedMetadataBlock = false; 610 unsigned MDSAbbrev = 0; 611 SmallVector<uint64_t, 64> Record; 612 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 613 614 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 615 if (!N->isFunctionLocal() || !N->getFunction()) { 616 if (!StartedMetadataBlock) { 617 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 618 StartedMetadataBlock = true; 619 } 620 WriteMDNode(N, VE, Stream, Record); 621 } 622 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 623 if (!StartedMetadataBlock) { 624 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 625 626 // Abbrev for METADATA_STRING. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 631 MDSAbbrev = Stream.EmitAbbrev(Abbv); 632 StartedMetadataBlock = true; 633 } 634 635 // Code: [strchar x N] 636 Record.append(MDS->begin(), MDS->end()); 637 638 // Emit the finished record. 639 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 640 Record.clear(); 641 } 642 } 643 644 // Write named metadata. 645 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 646 E = M->named_metadata_end(); I != E; ++I) { 647 const NamedMDNode *NMD = I; 648 if (!StartedMetadataBlock) { 649 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 650 StartedMetadataBlock = true; 651 } 652 653 // Write name. 654 StringRef Str = NMD->getName(); 655 for (unsigned i = 0, e = Str.size(); i != e; ++i) 656 Record.push_back(Str[i]); 657 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 658 Record.clear(); 659 660 // Write named metadata operands. 661 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 662 Record.push_back(VE.getValueID(NMD->getOperand(i))); 663 Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0); 664 Record.clear(); 665 } 666 667 if (StartedMetadataBlock) 668 Stream.ExitBlock(); 669 } 670 671 static void WriteFunctionLocalMetadata(const Function &F, 672 const llvm_2_9::ValueEnumerator &VE, 673 BitstreamWriter &Stream) { 674 bool StartedMetadataBlock = false; 675 SmallVector<uint64_t, 64> Record; 676 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 677 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 678 if (const MDNode *N = Vals[i]) 679 if (N->isFunctionLocal() && N->getFunction() == &F) { 680 if (!StartedMetadataBlock) { 681 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 682 StartedMetadataBlock = true; 683 } 684 WriteMDNode(N, VE, Stream, Record); 685 } 686 687 if (StartedMetadataBlock) 688 Stream.ExitBlock(); 689 } 690 691 static void WriteMetadataAttachment(const Function &F, 692 const llvm_2_9::ValueEnumerator &VE, 693 BitstreamWriter &Stream) { 694 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 695 696 SmallVector<uint64_t, 64> Record; 697 698 // Write metadata attachments 699 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 700 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 701 702 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 703 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 704 I != E; ++I) { 705 MDs.clear(); 706 I->getAllMetadataOtherThanDebugLoc(MDs); 707 708 // If no metadata, ignore instruction. 709 if (MDs.empty()) continue; 710 711 Record.push_back(VE.getInstructionID(I)); 712 713 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 714 Record.push_back(MDs[i].first); 715 Record.push_back(VE.getValueID(MDs[i].second)); 716 } 717 Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0); 718 Record.clear(); 719 } 720 721 Stream.ExitBlock(); 722 } 723 724 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 725 SmallVector<uint64_t, 64> Record; 726 727 // Write metadata kinds 728 // METADATA_KIND - [n x [id, name]] 729 SmallVector<StringRef, 4> Names; 730 M->getMDKindNames(Names); 731 732 if (Names.empty()) return; 733 734 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 735 736 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 737 Record.push_back(MDKindID); 738 StringRef KName = Names[MDKindID]; 739 Record.append(KName.begin(), KName.end()); 740 741 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 742 Record.clear(); 743 } 744 745 Stream.ExitBlock(); 746 } 747 748 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 749 const llvm_2_9::ValueEnumerator &VE, 750 BitstreamWriter &Stream, bool isGlobal) { 751 if (FirstVal == LastVal) return; 752 753 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 754 755 unsigned AggregateAbbrev = 0; 756 unsigned String8Abbrev = 0; 757 unsigned CString7Abbrev = 0; 758 unsigned CString6Abbrev = 0; 759 // If this is a constant pool for the module, emit module-specific abbrevs. 760 if (isGlobal) { 761 // Abbrev for CST_CODE_AGGREGATE. 762 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 763 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 766 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 767 768 // Abbrev for CST_CODE_STRING. 769 Abbv = new BitCodeAbbrev(); 770 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 773 String8Abbrev = Stream.EmitAbbrev(Abbv); 774 // Abbrev for CST_CODE_CSTRING. 775 Abbv = new BitCodeAbbrev(); 776 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 779 CString7Abbrev = Stream.EmitAbbrev(Abbv); 780 // Abbrev for CST_CODE_CSTRING. 781 Abbv = new BitCodeAbbrev(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 785 CString6Abbrev = Stream.EmitAbbrev(Abbv); 786 } 787 788 SmallVector<uint64_t, 64> Record; 789 790 const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues(); 791 Type *LastTy = 0; 792 for (unsigned i = FirstVal; i != LastVal; ++i) { 793 const Value *V = Vals[i].first; 794 // If we need to switch types, do so now. 795 if (V->getType() != LastTy) { 796 LastTy = V->getType(); 797 Record.push_back(VE.getTypeID(LastTy)); 798 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 799 CONSTANTS_SETTYPE_ABBREV); 800 Record.clear(); 801 } 802 803 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 804 Record.push_back(unsigned(IA->hasSideEffects()) | 805 unsigned(IA->isAlignStack()) << 1); 806 807 // Add the asm string. 808 const std::string &AsmStr = IA->getAsmString(); 809 Record.push_back(AsmStr.size()); 810 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 811 Record.push_back(AsmStr[i]); 812 813 // Add the constraint string. 814 const std::string &ConstraintStr = IA->getConstraintString(); 815 Record.push_back(ConstraintStr.size()); 816 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 817 Record.push_back(ConstraintStr[i]); 818 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 819 Record.clear(); 820 continue; 821 } 822 const Constant *C = cast<Constant>(V); 823 unsigned Code = -1U; 824 unsigned AbbrevToUse = 0; 825 if (C->isNullValue()) { 826 Code = bitc::CST_CODE_NULL; 827 } else if (isa<UndefValue>(C)) { 828 Code = bitc::CST_CODE_UNDEF; 829 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 830 if (IV->getBitWidth() <= 64) { 831 uint64_t V = IV->getSExtValue(); 832 if ((int64_t)V >= 0) 833 Record.push_back(V << 1); 834 else 835 Record.push_back((-V << 1) | 1); 836 Code = bitc::CST_CODE_INTEGER; 837 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 838 } else { // Wide integers, > 64 bits in size. 839 // We have an arbitrary precision integer value to write whose 840 // bit width is > 64. However, in canonical unsigned integer 841 // format it is likely that the high bits are going to be zero. 842 // So, we only write the number of active words. 843 unsigned NWords = IV->getValue().getActiveWords(); 844 const uint64_t *RawWords = IV->getValue().getRawData(); 845 for (unsigned i = 0; i != NWords; ++i) { 846 int64_t V = RawWords[i]; 847 if (V >= 0) 848 Record.push_back(V << 1); 849 else 850 Record.push_back((-V << 1) | 1); 851 } 852 Code = bitc::CST_CODE_WIDE_INTEGER; 853 } 854 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 855 Code = bitc::CST_CODE_FLOAT; 856 Type *Ty = CFP->getType(); 857 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 858 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 859 } else if (Ty->isX86_FP80Ty()) { 860 // api needed to prevent premature destruction 861 // bits are not in the same order as a normal i80 APInt, compensate. 862 APInt api = CFP->getValueAPF().bitcastToAPInt(); 863 const uint64_t *p = api.getRawData(); 864 Record.push_back((p[1] << 48) | (p[0] >> 16)); 865 Record.push_back(p[0] & 0xffffLL); 866 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 867 APInt api = CFP->getValueAPF().bitcastToAPInt(); 868 const uint64_t *p = api.getRawData(); 869 Record.push_back(p[0]); 870 Record.push_back(p[1]); 871 } else { 872 assert (0 && "Unknown FP type!"); 873 } 874 } else if (isa<ConstantDataSequential>(C) && 875 cast<ConstantDataSequential>(C)->isString()) { 876 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 877 // Emit constant strings specially. 878 unsigned NumElts = Str->getNumElements(); 879 // If this is a null-terminated string, use the denser CSTRING encoding. 880 if (Str->isCString()) { 881 Code = bitc::CST_CODE_CSTRING; 882 --NumElts; // Don't encode the null, which isn't allowed by char6. 883 } else { 884 Code = bitc::CST_CODE_STRING; 885 AbbrevToUse = String8Abbrev; 886 } 887 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 888 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 889 for (unsigned i = 0; i != NumElts; ++i) { 890 unsigned char V = Str->getElementAsInteger(i); 891 Record.push_back(V); 892 isCStr7 &= (V & 128) == 0; 893 if (isCStrChar6) 894 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 895 } 896 897 if (isCStrChar6) 898 AbbrevToUse = CString6Abbrev; 899 else if (isCStr7) 900 AbbrevToUse = CString7Abbrev; 901 } else if (const ConstantDataSequential *CDS = 902 dyn_cast<ConstantDataSequential>(C)) { 903 // We must replace ConstantDataSequential's representation with the 904 // legacy ConstantArray/ConstantVector/ConstantStruct version. 905 // ValueEnumerator is similarly modified to mark the appropriate 906 // Constants as used (so they are emitted). 907 Code = bitc::CST_CODE_AGGREGATE; 908 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 909 Record.push_back(VE.getValueID(CDS->getElementAsConstant(i))); 910 AbbrevToUse = AggregateAbbrev; 911 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 912 isa<ConstantVector>(C)) { 913 Code = bitc::CST_CODE_AGGREGATE; 914 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 915 Record.push_back(VE.getValueID(C->getOperand(i))); 916 AbbrevToUse = AggregateAbbrev; 917 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 918 switch (CE->getOpcode()) { 919 default: 920 if (Instruction::isCast(CE->getOpcode())) { 921 Code = bitc::CST_CODE_CE_CAST; 922 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 923 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 924 Record.push_back(VE.getValueID(C->getOperand(0))); 925 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 926 } else { 927 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 928 Code = bitc::CST_CODE_CE_BINOP; 929 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 930 Record.push_back(VE.getValueID(C->getOperand(0))); 931 Record.push_back(VE.getValueID(C->getOperand(1))); 932 uint64_t Flags = GetOptimizationFlags(CE); 933 if (Flags != 0) 934 Record.push_back(Flags); 935 } 936 break; 937 case Instruction::GetElementPtr: 938 Code = bitc::CST_CODE_CE_GEP; 939 if (cast<GEPOperator>(C)->isInBounds()) 940 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 941 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 942 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 943 Record.push_back(VE.getValueID(C->getOperand(i))); 944 } 945 break; 946 case Instruction::Select: 947 Code = bitc::CST_CODE_CE_SELECT; 948 Record.push_back(VE.getValueID(C->getOperand(0))); 949 Record.push_back(VE.getValueID(C->getOperand(1))); 950 Record.push_back(VE.getValueID(C->getOperand(2))); 951 break; 952 case Instruction::ExtractElement: 953 Code = bitc::CST_CODE_CE_EXTRACTELT; 954 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 955 Record.push_back(VE.getValueID(C->getOperand(0))); 956 Record.push_back(VE.getValueID(C->getOperand(1))); 957 break; 958 case Instruction::InsertElement: 959 Code = bitc::CST_CODE_CE_INSERTELT; 960 Record.push_back(VE.getValueID(C->getOperand(0))); 961 Record.push_back(VE.getValueID(C->getOperand(1))); 962 Record.push_back(VE.getValueID(C->getOperand(2))); 963 break; 964 case Instruction::ShuffleVector: 965 // If the return type and argument types are the same, this is a 966 // standard shufflevector instruction. If the types are different, 967 // then the shuffle is widening or truncating the input vectors, and 968 // the argument type must also be encoded. 969 if (C->getType() == C->getOperand(0)->getType()) { 970 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 971 } else { 972 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 973 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 974 } 975 Record.push_back(VE.getValueID(C->getOperand(0))); 976 Record.push_back(VE.getValueID(C->getOperand(1))); 977 Record.push_back(VE.getValueID(C->getOperand(2))); 978 break; 979 case Instruction::ICmp: 980 case Instruction::FCmp: 981 Code = bitc::CST_CODE_CE_CMP; 982 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 983 Record.push_back(VE.getValueID(C->getOperand(0))); 984 Record.push_back(VE.getValueID(C->getOperand(1))); 985 Record.push_back(CE->getPredicate()); 986 break; 987 } 988 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 989 Code = bitc::CST_CODE_BLOCKADDRESS; 990 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 991 Record.push_back(VE.getValueID(BA->getFunction())); 992 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 993 } else { 994 #ifndef NDEBUG 995 C->dump(); 996 #endif 997 llvm_unreachable("Unknown constant!"); 998 } 999 Stream.EmitRecord(Code, Record, AbbrevToUse); 1000 Record.clear(); 1001 } 1002 1003 Stream.ExitBlock(); 1004 } 1005 1006 static void WriteModuleConstants(const llvm_2_9::ValueEnumerator &VE, 1007 BitstreamWriter &Stream) { 1008 const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues(); 1009 1010 // Find the first constant to emit, which is the first non-globalvalue value. 1011 // We know globalvalues have been emitted by WriteModuleInfo. 1012 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1013 if (!isa<GlobalValue>(Vals[i].first)) { 1014 WriteConstants(i, Vals.size(), VE, Stream, true); 1015 return; 1016 } 1017 } 1018 } 1019 1020 /// PushValueAndType - The file has to encode both the value and type id for 1021 /// many values, because we need to know what type to create for forward 1022 /// references. However, most operands are not forward references, so this type 1023 /// field is not needed. 1024 /// 1025 /// This function adds V's value ID to Vals. If the value ID is higher than the 1026 /// instruction ID, then it is a forward reference, and it also includes the 1027 /// type ID. 1028 static bool PushValueAndType(const Value *V, unsigned InstID, 1029 SmallVector<unsigned, 64> &Vals, 1030 llvm_2_9::ValueEnumerator &VE) { 1031 unsigned ValID = VE.getValueID(V); 1032 Vals.push_back(ValID); 1033 if (ValID >= InstID) { 1034 Vals.push_back(VE.getTypeID(V->getType())); 1035 return true; 1036 } 1037 return false; 1038 } 1039 1040 /// WriteInstruction - Emit an instruction to the specified stream. 1041 static void WriteInstruction(const Instruction &I, unsigned InstID, 1042 llvm_2_9::ValueEnumerator &VE, 1043 BitstreamWriter &Stream, 1044 SmallVector<unsigned, 64> &Vals) { 1045 unsigned Code = 0; 1046 unsigned AbbrevToUse = 0; 1047 VE.setInstructionID(&I); 1048 switch (I.getOpcode()) { 1049 default: 1050 if (Instruction::isCast(I.getOpcode())) { 1051 Code = bitc::FUNC_CODE_INST_CAST; 1052 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1053 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1054 Vals.push_back(VE.getTypeID(I.getType())); 1055 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1056 } else { 1057 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1058 Code = bitc::FUNC_CODE_INST_BINOP; 1059 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1060 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1061 Vals.push_back(VE.getValueID(I.getOperand(1))); 1062 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1063 uint64_t Flags = GetOptimizationFlags(&I); 1064 if (Flags != 0) { 1065 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1066 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1067 Vals.push_back(Flags); 1068 } 1069 } 1070 break; 1071 1072 case Instruction::GetElementPtr: 1073 Code = bitc::FUNC_CODE_INST_GEP; 1074 if (cast<GEPOperator>(&I)->isInBounds()) 1075 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1076 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1077 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1078 break; 1079 case Instruction::ExtractValue: { 1080 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1081 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1082 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1083 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1084 Vals.push_back(*i); 1085 break; 1086 } 1087 case Instruction::InsertValue: { 1088 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1089 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1090 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1091 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1092 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1093 Vals.push_back(*i); 1094 break; 1095 } 1096 case Instruction::Select: 1097 Code = bitc::FUNC_CODE_INST_VSELECT; 1098 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1099 Vals.push_back(VE.getValueID(I.getOperand(2))); 1100 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1101 break; 1102 case Instruction::ExtractElement: 1103 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1104 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1105 Vals.push_back(VE.getValueID(I.getOperand(1))); 1106 break; 1107 case Instruction::InsertElement: 1108 Code = bitc::FUNC_CODE_INST_INSERTELT; 1109 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1110 Vals.push_back(VE.getValueID(I.getOperand(1))); 1111 Vals.push_back(VE.getValueID(I.getOperand(2))); 1112 break; 1113 case Instruction::ShuffleVector: 1114 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1115 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1116 Vals.push_back(VE.getValueID(I.getOperand(1))); 1117 Vals.push_back(VE.getValueID(I.getOperand(2))); 1118 break; 1119 case Instruction::ICmp: 1120 case Instruction::FCmp: 1121 // compare returning Int1Ty or vector of Int1Ty 1122 Code = bitc::FUNC_CODE_INST_CMP2; 1123 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1124 Vals.push_back(VE.getValueID(I.getOperand(1))); 1125 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1126 break; 1127 1128 case Instruction::Ret: 1129 { 1130 Code = bitc::FUNC_CODE_INST_RET; 1131 unsigned NumOperands = I.getNumOperands(); 1132 if (NumOperands == 0) 1133 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1134 else if (NumOperands == 1) { 1135 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1136 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1137 } else { 1138 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1139 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1140 } 1141 } 1142 break; 1143 case Instruction::Br: 1144 { 1145 Code = bitc::FUNC_CODE_INST_BR; 1146 const BranchInst &II = cast<BranchInst>(I); 1147 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1148 if (II.isConditional()) { 1149 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1150 Vals.push_back(VE.getValueID(II.getCondition())); 1151 } 1152 } 1153 break; 1154 case Instruction::Switch: 1155 { 1156 Code = bitc::FUNC_CODE_INST_SWITCH; 1157 const SwitchInst &SI = cast<SwitchInst>(I); 1158 1159 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1160 Vals.push_back(VE.getValueID(SI.getCondition())); 1161 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1162 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1163 i != e; ++i) { 1164 const IntegersSubset& CaseRanges = i.getCaseValueEx(); 1165 1166 if (CaseRanges.isSingleNumber()) { 1167 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt())); 1168 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1169 } else if (CaseRanges.isSingleNumbersOnly()) { 1170 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1171 ri != rn; ++ri) { 1172 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt())); 1173 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1174 } 1175 } else { 1176 llvm_unreachable("Not single number?"); 1177 } 1178 } 1179 } 1180 break; 1181 case Instruction::IndirectBr: 1182 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1183 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1184 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1185 Vals.push_back(VE.getValueID(I.getOperand(i))); 1186 break; 1187 1188 case Instruction::Invoke: { 1189 const InvokeInst *II = cast<InvokeInst>(&I); 1190 const Value *Callee(II->getCalledValue()); 1191 PointerType *PTy = cast<PointerType>(Callee->getType()); 1192 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1193 Code = bitc::FUNC_CODE_INST_INVOKE; 1194 1195 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1196 Vals.push_back(II->getCallingConv()); 1197 Vals.push_back(VE.getValueID(II->getNormalDest())); 1198 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1199 PushValueAndType(Callee, InstID, Vals, VE); 1200 1201 // Emit value #'s for the fixed parameters. 1202 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1203 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1204 1205 // Emit type/value pairs for varargs params. 1206 if (FTy->isVarArg()) { 1207 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1208 i != e; ++i) 1209 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1210 } 1211 break; 1212 } 1213 case Instruction::Unreachable: 1214 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1215 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1216 break; 1217 1218 case Instruction::PHI: { 1219 const PHINode &PN = cast<PHINode>(I); 1220 Code = bitc::FUNC_CODE_INST_PHI; 1221 Vals.push_back(VE.getTypeID(PN.getType())); 1222 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1223 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1224 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1225 } 1226 break; 1227 } 1228 1229 case Instruction::Alloca: 1230 Code = bitc::FUNC_CODE_INST_ALLOCA; 1231 Vals.push_back(VE.getTypeID(I.getType())); 1232 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1233 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1234 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1235 break; 1236 1237 case Instruction::Load: 1238 Code = bitc::FUNC_CODE_INST_LOAD; 1239 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1240 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1241 1242 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1243 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1244 break; 1245 case Instruction::Store: 1246 Code = bitc::FUNC_CODE_INST_STORE; 1247 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1248 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1249 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1250 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1251 break; 1252 case Instruction::Call: { 1253 const CallInst &CI = cast<CallInst>(I); 1254 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1255 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1256 1257 Code = FUNC_CODE_INST_CALL_2_7; 1258 1259 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1260 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1261 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1262 1263 // Emit value #'s for the fixed parameters. 1264 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1265 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1266 1267 // Emit type/value pairs for varargs params. 1268 if (FTy->isVarArg()) { 1269 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1270 i != e; ++i) 1271 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1272 } 1273 break; 1274 } 1275 case Instruction::VAArg: 1276 Code = bitc::FUNC_CODE_INST_VAARG; 1277 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1278 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1279 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1280 break; 1281 } 1282 1283 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1284 Vals.clear(); 1285 } 1286 1287 // Emit names for globals/functions etc. 1288 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1289 const llvm_2_9::ValueEnumerator &VE, 1290 BitstreamWriter &Stream) { 1291 if (VST.empty()) return; 1292 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1293 1294 // FIXME: Set up the abbrev, we know how many values there are! 1295 // FIXME: We know if the type names can use 7-bit ascii. 1296 SmallVector<unsigned, 64> NameVals; 1297 1298 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1299 SI != SE; ++SI) { 1300 1301 const ValueName &Name = *SI; 1302 1303 // Figure out the encoding to use for the name. 1304 bool is7Bit = true; 1305 bool isChar6 = true; 1306 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1307 C != E; ++C) { 1308 if (isChar6) 1309 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1310 if ((unsigned char)*C & 128) { 1311 is7Bit = false; 1312 break; // don't bother scanning the rest. 1313 } 1314 } 1315 1316 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1317 1318 // VST_ENTRY: [valueid, namechar x N] 1319 // VST_BBENTRY: [bbid, namechar x N] 1320 unsigned Code; 1321 if (isa<BasicBlock>(SI->getValue())) { 1322 Code = bitc::VST_CODE_BBENTRY; 1323 if (isChar6) 1324 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1325 } else { 1326 Code = bitc::VST_CODE_ENTRY; 1327 if (isChar6) 1328 AbbrevToUse = VST_ENTRY_6_ABBREV; 1329 else if (is7Bit) 1330 AbbrevToUse = VST_ENTRY_7_ABBREV; 1331 } 1332 1333 NameVals.push_back(VE.getValueID(SI->getValue())); 1334 for (const char *P = Name.getKeyData(), 1335 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1336 NameVals.push_back((unsigned char)*P); 1337 1338 // Emit the finished record. 1339 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1340 NameVals.clear(); 1341 } 1342 Stream.ExitBlock(); 1343 } 1344 1345 /// WriteFunction - Emit a function body to the module stream. 1346 static void WriteFunction(const Function &F, llvm_2_9::ValueEnumerator &VE, 1347 BitstreamWriter &Stream) { 1348 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1349 VE.incorporateFunction(F); 1350 1351 SmallVector<unsigned, 64> Vals; 1352 1353 // Emit the number of basic blocks, so the reader can create them ahead of 1354 // time. 1355 Vals.push_back(VE.getBasicBlocks().size()); 1356 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1357 Vals.clear(); 1358 1359 // If there are function-local constants, emit them now. 1360 unsigned CstStart, CstEnd; 1361 VE.getFunctionConstantRange(CstStart, CstEnd); 1362 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1363 1364 // If there is function-local metadata, emit it now. 1365 WriteFunctionLocalMetadata(F, VE, Stream); 1366 1367 // Keep a running idea of what the instruction ID is. 1368 unsigned InstID = CstEnd; 1369 1370 bool NeedsMetadataAttachment = false; 1371 1372 DebugLoc LastDL; 1373 1374 // Finally, emit all the instructions, in order. 1375 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1376 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1377 I != E; ++I) { 1378 WriteInstruction(*I, InstID, VE, Stream, Vals); 1379 1380 if (!I->getType()->isVoidTy()) 1381 ++InstID; 1382 1383 // If the instruction has metadata, write a metadata attachment later. 1384 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1385 1386 // If the instruction has a debug location, emit it. 1387 DebugLoc DL = I->getDebugLoc(); 1388 if (DL.isUnknown()) { 1389 // nothing todo. 1390 } else if (DL == LastDL) { 1391 // Just repeat the same debug loc as last time. 1392 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1393 } else { 1394 MDNode *Scope, *IA; 1395 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1396 1397 Vals.push_back(DL.getLine()); 1398 Vals.push_back(DL.getCol()); 1399 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1400 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1401 Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals); 1402 Vals.clear(); 1403 1404 LastDL = DL; 1405 } 1406 } 1407 1408 // Emit names for all the instructions etc. 1409 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1410 1411 if (NeedsMetadataAttachment) 1412 WriteMetadataAttachment(F, VE, Stream); 1413 VE.purgeFunction(); 1414 Stream.ExitBlock(); 1415 } 1416 1417 // Emit blockinfo, which defines the standard abbreviations etc. 1418 static void WriteBlockInfo(const llvm_2_9::ValueEnumerator &VE, 1419 BitstreamWriter &Stream) { 1420 // We only want to emit block info records for blocks that have multiple 1421 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1422 // blocks can defined their abbrevs inline. 1423 Stream.EnterBlockInfoBlock(2); 1424 1425 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1426 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1431 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1432 Abbv) != VST_ENTRY_8_ABBREV) 1433 llvm_unreachable("Unexpected abbrev ordering!"); 1434 } 1435 1436 { // 7-bit fixed width VST_ENTRY strings. 1437 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1438 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1442 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1443 Abbv) != VST_ENTRY_7_ABBREV) 1444 llvm_unreachable("Unexpected abbrev ordering!"); 1445 } 1446 { // 6-bit char6 VST_ENTRY strings. 1447 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1448 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1452 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1453 Abbv) != VST_ENTRY_6_ABBREV) 1454 llvm_unreachable("Unexpected abbrev ordering!"); 1455 } 1456 { // 6-bit char6 VST_BBENTRY strings. 1457 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1458 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1462 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1463 Abbv) != VST_BBENTRY_6_ABBREV) 1464 llvm_unreachable("Unexpected abbrev ordering!"); 1465 } 1466 1467 1468 1469 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1470 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1471 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1473 Log2_32_Ceil(VE.getTypes().size()+1))); 1474 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1475 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1476 llvm_unreachable("Unexpected abbrev ordering!"); 1477 } 1478 1479 { // INTEGER abbrev for CONSTANTS_BLOCK. 1480 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1483 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1484 Abbv) != CONSTANTS_INTEGER_ABBREV) 1485 llvm_unreachable("Unexpected abbrev ordering!"); 1486 } 1487 1488 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1489 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1490 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1493 Log2_32_Ceil(VE.getTypes().size()+1))); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1495 1496 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1497 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1498 llvm_unreachable("Unexpected abbrev ordering!"); 1499 } 1500 { // NULL abbrev for CONSTANTS_BLOCK. 1501 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1503 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1504 Abbv) != CONSTANTS_NULL_Abbrev) 1505 llvm_unreachable("Unexpected abbrev ordering!"); 1506 } 1507 1508 // FIXME: This should only use space for first class types! 1509 1510 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1511 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1512 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1516 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1517 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1518 llvm_unreachable("Unexpected abbrev ordering!"); 1519 } 1520 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1521 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1522 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1526 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1527 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1528 llvm_unreachable("Unexpected abbrev ordering!"); 1529 } 1530 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1531 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1532 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1537 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1538 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1539 llvm_unreachable("Unexpected abbrev ordering!"); 1540 } 1541 { // INST_CAST abbrev for FUNCTION_BLOCK. 1542 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1546 Log2_32_Ceil(VE.getTypes().size()+1))); 1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1548 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1549 Abbv) != FUNCTION_INST_CAST_ABBREV) 1550 llvm_unreachable("Unexpected abbrev ordering!"); 1551 } 1552 1553 { // INST_RET abbrev for FUNCTION_BLOCK. 1554 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1555 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1557 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1558 llvm_unreachable("Unexpected abbrev ordering!"); 1559 } 1560 { // INST_RET abbrev for FUNCTION_BLOCK. 1561 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1564 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1565 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1566 llvm_unreachable("Unexpected abbrev ordering!"); 1567 } 1568 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1569 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1570 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1572 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1573 llvm_unreachable("Unexpected abbrev ordering!"); 1574 } 1575 1576 Stream.ExitBlock(); 1577 } 1578 1579 1580 /// WriteModule - Emit the specified module to the bitstream. 1581 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1582 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1583 1584 // Emit the version number if it is non-zero. 1585 if (CurVersion) { 1586 SmallVector<unsigned, 1> Vals; 1587 Vals.push_back(CurVersion); 1588 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1589 } 1590 1591 // Analyze the module, enumerating globals, functions, etc. 1592 llvm_2_9::ValueEnumerator VE(M); 1593 1594 // Emit blockinfo, which defines the standard abbreviations etc. 1595 WriteBlockInfo(VE, Stream); 1596 1597 // Emit information about parameter attributes. 1598 WriteAttributeTable(VE, Stream); 1599 1600 // Emit information describing all of the types in the module. 1601 WriteTypeTable(VE, Stream); 1602 1603 // Emit top-level description of module, including target triple, inline asm, 1604 // descriptors for global variables, and function prototype info. 1605 WriteModuleInfo(M, VE, Stream); 1606 1607 // Emit constants. 1608 WriteModuleConstants(VE, Stream); 1609 1610 // Emit metadata. 1611 WriteModuleMetadata(M, VE, Stream); 1612 1613 // Emit function bodies. 1614 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1615 if (!F->isDeclaration()) 1616 WriteFunction(*F, VE, Stream); 1617 1618 // Emit metadata. 1619 WriteModuleMetadataStore(M, Stream); 1620 1621 // Emit names for globals/functions etc. 1622 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1623 1624 Stream.ExitBlock(); 1625 } 1626 1627 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1628 /// header and trailer to make it compatible with the system archiver. To do 1629 /// this we emit the following header, and then emit a trailer that pads the 1630 /// file out to be a multiple of 16 bytes. 1631 /// 1632 /// struct bc_header { 1633 /// uint32_t Magic; // 0x0B17C0DE 1634 /// uint32_t Version; // Version, currently always 0. 1635 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1636 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1637 /// uint32_t CPUType; // CPU specifier. 1638 /// ... potentially more later ... 1639 /// }; 1640 enum { 1641 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1642 DarwinBCHeaderSize = 5*4 1643 }; 1644 1645 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1646 uint32_t &Position) { 1647 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1648 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1649 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1650 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1651 Position += 4; 1652 } 1653 1654 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1655 const Triple &TT) { 1656 unsigned CPUType = ~0U; 1657 1658 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1659 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1660 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1661 // specific constants here because they are implicitly part of the Darwin ABI. 1662 enum { 1663 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1664 DARWIN_CPU_TYPE_X86 = 7, 1665 DARWIN_CPU_TYPE_ARM = 12, 1666 DARWIN_CPU_TYPE_POWERPC = 18 1667 }; 1668 1669 Triple::ArchType Arch = TT.getArch(); 1670 if (Arch == Triple::x86_64) 1671 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1672 else if (Arch == Triple::x86) 1673 CPUType = DARWIN_CPU_TYPE_X86; 1674 else if (Arch == Triple::ppc) 1675 CPUType = DARWIN_CPU_TYPE_POWERPC; 1676 else if (Arch == Triple::ppc64) 1677 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1678 else if (Arch == Triple::arm || Arch == Triple::thumb) 1679 CPUType = DARWIN_CPU_TYPE_ARM; 1680 1681 // Traditional Bitcode starts after header. 1682 assert(Buffer.size() >= DarwinBCHeaderSize && 1683 "Expected header size to be reserved"); 1684 unsigned BCOffset = DarwinBCHeaderSize; 1685 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1686 1687 // Write the magic and version. 1688 unsigned Position = 0; 1689 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1690 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1691 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1692 WriteInt32ToBuffer(BCSize , Buffer, Position); 1693 WriteInt32ToBuffer(CPUType , Buffer, Position); 1694 1695 // If the file is not a multiple of 16 bytes, insert dummy padding. 1696 while (Buffer.size() & 15) 1697 Buffer.push_back(0); 1698 } 1699 1700 /// WriteBitcodeToFile - Write the specified module to the specified output 1701 /// stream. 1702 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1703 SmallVector<char, 1024> Buffer; 1704 Buffer.reserve(256*1024); 1705 1706 // If this is darwin or another generic macho target, reserve space for the 1707 // header. 1708 Triple TT(M->getTargetTriple()); 1709 if (TT.isOSDarwin()) 1710 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1711 1712 // Emit the module into the buffer. 1713 { 1714 BitstreamWriter Stream(Buffer); 1715 1716 // Emit the file header. 1717 Stream.Emit((unsigned)'B', 8); 1718 Stream.Emit((unsigned)'C', 8); 1719 Stream.Emit(0x0, 4); 1720 Stream.Emit(0xC, 4); 1721 Stream.Emit(0xE, 4); 1722 Stream.Emit(0xD, 4); 1723 1724 // Emit the module. 1725 WriteModule(M, Stream); 1726 } 1727 1728 if (TT.isOSDarwin()) 1729 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1730 1731 // Write the generated bitstream to "Out". 1732 Out.write((char*)&Buffer.front(), Buffer.size()); 1733 } 1734