Home | History | Annotate | Download | only in BitWriter_2_9
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9.h"
     15 #include "legacy_bitcode.h"
     16 #include "ValueEnumerator.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/Bitcode/BitstreamWriter.h"
     19 #include "llvm/Bitcode/LLVMBitCodes.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/IR/Operator.h"
     26 #include "llvm/IR/ValueSymbolTable.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/MathExtras.h"
     29 #include "llvm/Support/Program.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <cctype>
     32 #include <map>
     33 using namespace llvm;
     34 
     35 // Redefine older bitcode opcodes for use here. Note that these come from
     36 // LLVM 2.7 (which is what HC shipped with).
     37 #define METADATA_NODE_2_7             2
     38 #define METADATA_FN_NODE_2_7          3
     39 #define METADATA_NAMED_NODE_2_7       5
     40 #define METADATA_ATTACHMENT_2_7       7
     41 #define FUNC_CODE_INST_CALL_2_7       22
     42 #define FUNC_CODE_DEBUG_LOC_2_7       32
     43 
     44 // Redefine older bitcode opcodes for use here. Note that these come from
     45 // LLVM 2.7 - 3.0.
     46 #define TYPE_BLOCK_ID_OLD_3_0 10
     47 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
     48 #define TYPE_CODE_STRUCT_OLD_3_0 10
     49 
     50 /// These are manifest constants used by the bitcode writer. They do not need to
     51 /// be kept in sync with the reader, but need to be consistent within this file.
     52 enum {
     53   CurVersion = 0,
     54 
     55   // VALUE_SYMTAB_BLOCK abbrev id's.
     56   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     57   VST_ENTRY_7_ABBREV,
     58   VST_ENTRY_6_ABBREV,
     59   VST_BBENTRY_6_ABBREV,
     60 
     61   // CONSTANTS_BLOCK abbrev id's.
     62   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     63   CONSTANTS_INTEGER_ABBREV,
     64   CONSTANTS_CE_CAST_Abbrev,
     65   CONSTANTS_NULL_Abbrev,
     66 
     67   // FUNCTION_BLOCK abbrev id's.
     68   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     69   FUNCTION_INST_BINOP_ABBREV,
     70   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     71   FUNCTION_INST_CAST_ABBREV,
     72   FUNCTION_INST_RET_VOID_ABBREV,
     73   FUNCTION_INST_RET_VAL_ABBREV,
     74   FUNCTION_INST_UNREACHABLE_ABBREV
     75 };
     76 
     77 
     78 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     79   switch (Opcode) {
     80   default: llvm_unreachable("Unknown cast instruction!");
     81   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     82   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     83   case Instruction::SExt    : return bitc::CAST_SEXT;
     84   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     85   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     86   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     87   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     88   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     89   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     90   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     91   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     92   case Instruction::BitCast : return bitc::CAST_BITCAST;
     93   }
     94 }
     95 
     96 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     97   switch (Opcode) {
     98   default: llvm_unreachable("Unknown binary instruction!");
     99   case Instruction::Add:
    100   case Instruction::FAdd: return bitc::BINOP_ADD;
    101   case Instruction::Sub:
    102   case Instruction::FSub: return bitc::BINOP_SUB;
    103   case Instruction::Mul:
    104   case Instruction::FMul: return bitc::BINOP_MUL;
    105   case Instruction::UDiv: return bitc::BINOP_UDIV;
    106   case Instruction::FDiv:
    107   case Instruction::SDiv: return bitc::BINOP_SDIV;
    108   case Instruction::URem: return bitc::BINOP_UREM;
    109   case Instruction::FRem:
    110   case Instruction::SRem: return bitc::BINOP_SREM;
    111   case Instruction::Shl:  return bitc::BINOP_SHL;
    112   case Instruction::LShr: return bitc::BINOP_LSHR;
    113   case Instruction::AShr: return bitc::BINOP_ASHR;
    114   case Instruction::And:  return bitc::BINOP_AND;
    115   case Instruction::Or:   return bitc::BINOP_OR;
    116   case Instruction::Xor:  return bitc::BINOP_XOR;
    117   }
    118 }
    119 
    120 static void WriteStringRecord(unsigned Code, StringRef Str,
    121                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    122   SmallVector<unsigned, 64> Vals;
    123 
    124   // Code: [strchar x N]
    125   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    126     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    127       AbbrevToUse = 0;
    128     Vals.push_back(Str[i]);
    129   }
    130 
    131   // Emit the finished record.
    132   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    133 }
    134 
    135 // Emit information about parameter attributes.
    136 static void WriteAttributeTable(const llvm_2_9::ValueEnumerator &VE,
    137                                 BitstreamWriter &Stream) {
    138   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    139   if (Attrs.empty()) return;
    140 
    141   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    142 
    143   SmallVector<uint64_t, 64> Record;
    144   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    145     const AttributeSet &A = Attrs[i];
    146     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
    147       Record.push_back(A.getSlotIndex(i));
    148       Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
    149     }
    150 
    151     // This needs to use the 3.2 entry type
    152     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
    153     Record.clear();
    154   }
    155 
    156   Stream.ExitBlock();
    157 }
    158 
    159 static void WriteTypeSymbolTable(const llvm_2_9::ValueEnumerator &VE,
    160                                  BitstreamWriter &Stream) {
    161   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    162   Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3);
    163 
    164   // 7-bit fixed width VST_CODE_ENTRY strings.
    165   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    166   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    168                             Log2_32_Ceil(VE.getTypes().size()+1)));
    169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    171   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
    172 
    173   SmallVector<unsigned, 64> NameVals;
    174 
    175   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    176     Type *T = TypeList[i];
    177 
    178     switch (T->getTypeID()) {
    179     case Type::StructTyID: {
    180       StructType *ST = cast<StructType>(T);
    181       if (ST->isLiteral()) {
    182         // Skip anonymous struct definitions in type symbol table
    183         // FIXME(srhines)
    184         break;
    185       }
    186 
    187       // TST_ENTRY: [typeid, namechar x N]
    188       NameVals.push_back(i);
    189 
    190       const std::string &Str = ST->getName();
    191       bool is7Bit = true;
    192       for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    193         NameVals.push_back((unsigned char)Str[i]);
    194         if (Str[i] & 128)
    195           is7Bit = false;
    196       }
    197 
    198       // Emit the finished record.
    199       Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    200       NameVals.clear();
    201 
    202       break;
    203     }
    204     default: break;
    205     }
    206   }
    207 
    208 #if 0
    209   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
    210        TI != TE; ++TI) {
    211     // TST_ENTRY: [typeid, namechar x N]
    212     NameVals.push_back(VE.getTypeID(TI->second));
    213 
    214     const std::string &Str = TI->first;
    215     bool is7Bit = true;
    216     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    217       NameVals.push_back((unsigned char)Str[i]);
    218       if (Str[i] & 128)
    219         is7Bit = false;
    220     }
    221 
    222     // Emit the finished record.
    223     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    224     NameVals.clear();
    225   }
    226 #endif
    227 
    228   Stream.ExitBlock();
    229 }
    230 
    231 /// WriteTypeTable - Write out the type table for a module.
    232 static void WriteTypeTable(const llvm_2_9::ValueEnumerator &VE,
    233                            BitstreamWriter &Stream) {
    234   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    235 
    236   Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */);
    237   SmallVector<uint64_t, 64> TypeVals;
    238 
    239   // Abbrev for TYPE_CODE_POINTER.
    240   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    241   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    243                             Log2_32_Ceil(VE.getTypes().size()+1)));
    244   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    245   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    246 
    247   // Abbrev for TYPE_CODE_FUNCTION.
    248   Abbv = new BitCodeAbbrev();
    249   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
    250   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    251   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    253   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    254                             Log2_32_Ceil(VE.getTypes().size()+1)));
    255   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    256 
    257 #if 0
    258   // Abbrev for TYPE_CODE_STRUCT_ANON.
    259   Abbv = new BitCodeAbbrev();
    260   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    262   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    264                             Log2_32_Ceil(VE.getTypes().size()+1)));
    265   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    266 
    267   // Abbrev for TYPE_CODE_STRUCT_NAME.
    268   Abbv = new BitCodeAbbrev();
    269   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    270   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    271   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    272   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    273 
    274   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    275   Abbv = new BitCodeAbbrev();
    276   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    277   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    278   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    280                             Log2_32_Ceil(VE.getTypes().size()+1)));
    281   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    282 #endif
    283 
    284   // Abbrev for TYPE_CODE_STRUCT.
    285   Abbv = new BitCodeAbbrev();
    286   Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0));
    287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    290                             Log2_32_Ceil(VE.getTypes().size()+1)));
    291   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
    292 
    293   // Abbrev for TYPE_CODE_ARRAY.
    294   Abbv = new BitCodeAbbrev();
    295   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    296   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    298                             Log2_32_Ceil(VE.getTypes().size()+1)));
    299   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    300 
    301   // Emit an entry count so the reader can reserve space.
    302   TypeVals.push_back(TypeList.size());
    303   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    304   TypeVals.clear();
    305 
    306   // Loop over all of the types, emitting each in turn.
    307   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    308     Type *T = TypeList[i];
    309     int AbbrevToUse = 0;
    310     unsigned Code = 0;
    311 
    312     switch (T->getTypeID()) {
    313     default: llvm_unreachable("Unknown type!");
    314     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    315     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    316     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    317     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    318     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    319     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    320     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    321     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    322     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    323     case Type::IntegerTyID:
    324       // INTEGER: [width]
    325       Code = bitc::TYPE_CODE_INTEGER;
    326       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    327       break;
    328     case Type::PointerTyID: {
    329       PointerType *PTy = cast<PointerType>(T);
    330       // POINTER: [pointee type, address space]
    331       Code = bitc::TYPE_CODE_POINTER;
    332       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    333       unsigned AddressSpace = PTy->getAddressSpace();
    334       TypeVals.push_back(AddressSpace);
    335       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    336       break;
    337     }
    338     case Type::FunctionTyID: {
    339       FunctionType *FT = cast<FunctionType>(T);
    340       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    341       Code = bitc::TYPE_CODE_FUNCTION_OLD;
    342       TypeVals.push_back(FT->isVarArg());
    343       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    344       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    345       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    346         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    347       AbbrevToUse = FunctionAbbrev;
    348       break;
    349     }
    350     case Type::StructTyID: {
    351       StructType *ST = cast<StructType>(T);
    352       // STRUCT: [ispacked, eltty x N]
    353       TypeVals.push_back(ST->isPacked());
    354       // Output all of the element types.
    355       for (StructType::element_iterator I = ST->element_begin(),
    356            E = ST->element_end(); I != E; ++I)
    357         TypeVals.push_back(VE.getTypeID(*I));
    358       AbbrevToUse = StructAbbrev;
    359       break;
    360     }
    361     case Type::ArrayTyID: {
    362       ArrayType *AT = cast<ArrayType>(T);
    363       // ARRAY: [numelts, eltty]
    364       Code = bitc::TYPE_CODE_ARRAY;
    365       TypeVals.push_back(AT->getNumElements());
    366       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    367       AbbrevToUse = ArrayAbbrev;
    368       break;
    369     }
    370     case Type::VectorTyID: {
    371       VectorType *VT = cast<VectorType>(T);
    372       // VECTOR [numelts, eltty]
    373       Code = bitc::TYPE_CODE_VECTOR;
    374       TypeVals.push_back(VT->getNumElements());
    375       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    376       break;
    377     }
    378     }
    379 
    380     // Emit the finished record.
    381     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    382     TypeVals.clear();
    383   }
    384 
    385   Stream.ExitBlock();
    386 
    387   WriteTypeSymbolTable(VE, Stream);
    388 }
    389 
    390 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    391   switch (GV->getLinkage()) {
    392   case GlobalValue::ExternalLinkage:                 return 0;
    393   case GlobalValue::WeakAnyLinkage:                  return 1;
    394   case GlobalValue::AppendingLinkage:                return 2;
    395   case GlobalValue::InternalLinkage:                 return 3;
    396   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    397   case GlobalValue::DLLImportLinkage:                return 5;
    398   case GlobalValue::DLLExportLinkage:                return 6;
    399   case GlobalValue::ExternalWeakLinkage:             return 7;
    400   case GlobalValue::CommonLinkage:                   return 8;
    401   case GlobalValue::PrivateLinkage:                  return 9;
    402   case GlobalValue::WeakODRLinkage:                  return 10;
    403   case GlobalValue::LinkOnceODRLinkage:              return 11;
    404   case GlobalValue::AvailableExternallyLinkage:      return 12;
    405   case GlobalValue::LinkerPrivateLinkage:            return 13;
    406   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    407   case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
    408   }
    409   llvm_unreachable("Invalid linkage");
    410 }
    411 
    412 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    413   switch (GV->getVisibility()) {
    414   default: llvm_unreachable("Invalid visibility!");
    415   case GlobalValue::DefaultVisibility:   return 0;
    416   case GlobalValue::HiddenVisibility:    return 1;
    417   case GlobalValue::ProtectedVisibility: return 2;
    418   }
    419 }
    420 
    421 // Emit top-level description of module, including target triple, inline asm,
    422 // descriptors for global variables, and function prototype info.
    423 static void WriteModuleInfo(const Module *M,
    424                             const llvm_2_9::ValueEnumerator &VE,
    425                             BitstreamWriter &Stream) {
    426   // Emit various pieces of data attached to a module.
    427   if (!M->getTargetTriple().empty())
    428     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    429                       0/*TODO*/, Stream);
    430   if (!M->getDataLayout().empty())
    431     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    432                       0/*TODO*/, Stream);
    433   if (!M->getModuleInlineAsm().empty())
    434     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    435                       0/*TODO*/, Stream);
    436 
    437   // Emit information about sections and GC, computing how many there are. Also
    438   // compute the maximum alignment value.
    439   std::map<std::string, unsigned> SectionMap;
    440   std::map<std::string, unsigned> GCMap;
    441   unsigned MaxAlignment = 0;
    442   unsigned MaxGlobalType = 0;
    443   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    444        GV != E; ++GV) {
    445     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    446     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    447 
    448     if (!GV->hasSection()) continue;
    449     // Give section names unique ID's.
    450     unsigned &Entry = SectionMap[GV->getSection()];
    451     if (Entry != 0) continue;
    452     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    453                       0/*TODO*/, Stream);
    454     Entry = SectionMap.size();
    455   }
    456   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    457     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    458     if (F->hasSection()) {
    459       // Give section names unique ID's.
    460       unsigned &Entry = SectionMap[F->getSection()];
    461       if (!Entry) {
    462         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    463                           0/*TODO*/, Stream);
    464         Entry = SectionMap.size();
    465       }
    466     }
    467     if (F->hasGC()) {
    468       // Same for GC names.
    469       unsigned &Entry = GCMap[F->getGC()];
    470       if (!Entry) {
    471         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    472                           0/*TODO*/, Stream);
    473         Entry = GCMap.size();
    474       }
    475     }
    476   }
    477 
    478   // Emit abbrev for globals, now that we know # sections and max alignment.
    479   unsigned SimpleGVarAbbrev = 0;
    480   if (!M->global_empty()) {
    481     // Add an abbrev for common globals with no visibility or thread localness.
    482     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    483     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    485                               Log2_32_Ceil(MaxGlobalType+1)));
    486     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    489     if (MaxAlignment == 0)                                      // Alignment.
    490       Abbv->Add(BitCodeAbbrevOp(0));
    491     else {
    492       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    493       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    494                                Log2_32_Ceil(MaxEncAlignment+1)));
    495     }
    496     if (SectionMap.empty())                                    // Section.
    497       Abbv->Add(BitCodeAbbrevOp(0));
    498     else
    499       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    500                                Log2_32_Ceil(SectionMap.size()+1)));
    501     // Don't bother emitting vis + thread local.
    502     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    503   }
    504 
    505   // Emit the global variable information.
    506   SmallVector<unsigned, 64> Vals;
    507   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    508        GV != E; ++GV) {
    509     unsigned AbbrevToUse = 0;
    510 
    511     // GLOBALVAR: [type, isconst, initid,
    512     //             linkage, alignment, section, visibility, threadlocal,
    513     //             unnamed_addr]
    514     Vals.push_back(VE.getTypeID(GV->getType()));
    515     Vals.push_back(GV->isConstant());
    516     Vals.push_back(GV->isDeclaration() ? 0 :
    517                    (VE.getValueID(GV->getInitializer()) + 1));
    518     Vals.push_back(getEncodedLinkage(GV));
    519     Vals.push_back(Log2_32(GV->getAlignment())+1);
    520     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    521     if (GV->isThreadLocal() ||
    522         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    523         GV->hasUnnamedAddr()) {
    524       Vals.push_back(getEncodedVisibility(GV));
    525       Vals.push_back(GV->isThreadLocal());
    526       Vals.push_back(GV->hasUnnamedAddr());
    527     } else {
    528       AbbrevToUse = SimpleGVarAbbrev;
    529     }
    530 
    531     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    532     Vals.clear();
    533   }
    534 
    535   // Emit the function proto information.
    536   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    537     // FUNCTION:  [type, callingconv, isproto, paramattr,
    538     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    539     Vals.push_back(VE.getTypeID(F->getType()));
    540     Vals.push_back(F->getCallingConv());
    541     Vals.push_back(F->isDeclaration());
    542     Vals.push_back(getEncodedLinkage(F));
    543     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    544     Vals.push_back(Log2_32(F->getAlignment())+1);
    545     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    546     Vals.push_back(getEncodedVisibility(F));
    547     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    548     Vals.push_back(F->hasUnnamedAddr());
    549 
    550     unsigned AbbrevToUse = 0;
    551     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    552     Vals.clear();
    553   }
    554 
    555   // Emit the alias information.
    556   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    557        AI != E; ++AI) {
    558     Vals.push_back(VE.getTypeID(AI->getType()));
    559     Vals.push_back(VE.getValueID(AI->getAliasee()));
    560     Vals.push_back(getEncodedLinkage(AI));
    561     Vals.push_back(getEncodedVisibility(AI));
    562     unsigned AbbrevToUse = 0;
    563     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    564     Vals.clear();
    565   }
    566 }
    567 
    568 static uint64_t GetOptimizationFlags(const Value *V) {
    569   uint64_t Flags = 0;
    570 
    571   if (const OverflowingBinaryOperator *OBO =
    572         dyn_cast<OverflowingBinaryOperator>(V)) {
    573     if (OBO->hasNoSignedWrap())
    574       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    575     if (OBO->hasNoUnsignedWrap())
    576       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    577   } else if (const PossiblyExactOperator *PEO =
    578                dyn_cast<PossiblyExactOperator>(V)) {
    579     if (PEO->isExact())
    580       Flags |= 1 << bitc::PEO_EXACT;
    581   }
    582 
    583   return Flags;
    584 }
    585 
    586 static void WriteMDNode(const MDNode *N,
    587                         const llvm_2_9::ValueEnumerator &VE,
    588                         BitstreamWriter &Stream,
    589                         SmallVector<uint64_t, 64> &Record) {
    590   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    591     if (N->getOperand(i)) {
    592       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    593       Record.push_back(VE.getValueID(N->getOperand(i)));
    594     } else {
    595       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    596       Record.push_back(0);
    597     }
    598   }
    599   unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 :
    600                                            METADATA_NODE_2_7;
    601   Stream.EmitRecord(MDCode, Record, 0);
    602   Record.clear();
    603 }
    604 
    605 static void WriteModuleMetadata(const Module *M,
    606                                 const llvm_2_9::ValueEnumerator &VE,
    607                                 BitstreamWriter &Stream) {
    608   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getMDValues();
    609   bool StartedMetadataBlock = false;
    610   unsigned MDSAbbrev = 0;
    611   SmallVector<uint64_t, 64> Record;
    612   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    613 
    614     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    615       if (!N->isFunctionLocal() || !N->getFunction()) {
    616         if (!StartedMetadataBlock) {
    617           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    618           StartedMetadataBlock = true;
    619         }
    620         WriteMDNode(N, VE, Stream, Record);
    621       }
    622     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    623       if (!StartedMetadataBlock)  {
    624         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    625 
    626         // Abbrev for METADATA_STRING.
    627         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    628         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    629         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    630         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    631         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    632         StartedMetadataBlock = true;
    633       }
    634 
    635       // Code: [strchar x N]
    636       Record.append(MDS->begin(), MDS->end());
    637 
    638       // Emit the finished record.
    639       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    640       Record.clear();
    641     }
    642   }
    643 
    644   // Write named metadata.
    645   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    646        E = M->named_metadata_end(); I != E; ++I) {
    647     const NamedMDNode *NMD = I;
    648     if (!StartedMetadataBlock)  {
    649       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    650       StartedMetadataBlock = true;
    651     }
    652 
    653     // Write name.
    654     StringRef Str = NMD->getName();
    655     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    656       Record.push_back(Str[i]);
    657     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    658     Record.clear();
    659 
    660     // Write named metadata operands.
    661     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    662       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    663     Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
    664     Record.clear();
    665   }
    666 
    667   if (StartedMetadataBlock)
    668     Stream.ExitBlock();
    669 }
    670 
    671 static void WriteFunctionLocalMetadata(const Function &F,
    672                                        const llvm_2_9::ValueEnumerator &VE,
    673                                        BitstreamWriter &Stream) {
    674   bool StartedMetadataBlock = false;
    675   SmallVector<uint64_t, 64> Record;
    676   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    677   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    678     if (const MDNode *N = Vals[i])
    679       if (N->isFunctionLocal() && N->getFunction() == &F) {
    680         if (!StartedMetadataBlock) {
    681           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    682           StartedMetadataBlock = true;
    683         }
    684         WriteMDNode(N, VE, Stream, Record);
    685       }
    686 
    687   if (StartedMetadataBlock)
    688     Stream.ExitBlock();
    689 }
    690 
    691 static void WriteMetadataAttachment(const Function &F,
    692                                     const llvm_2_9::ValueEnumerator &VE,
    693                                     BitstreamWriter &Stream) {
    694   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    695 
    696   SmallVector<uint64_t, 64> Record;
    697 
    698   // Write metadata attachments
    699   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    700   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    701 
    702   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    703     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    704          I != E; ++I) {
    705       MDs.clear();
    706       I->getAllMetadataOtherThanDebugLoc(MDs);
    707 
    708       // If no metadata, ignore instruction.
    709       if (MDs.empty()) continue;
    710 
    711       Record.push_back(VE.getInstructionID(I));
    712 
    713       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    714         Record.push_back(MDs[i].first);
    715         Record.push_back(VE.getValueID(MDs[i].second));
    716       }
    717       Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
    718       Record.clear();
    719     }
    720 
    721   Stream.ExitBlock();
    722 }
    723 
    724 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    725   SmallVector<uint64_t, 64> Record;
    726 
    727   // Write metadata kinds
    728   // METADATA_KIND - [n x [id, name]]
    729   SmallVector<StringRef, 4> Names;
    730   M->getMDKindNames(Names);
    731 
    732   if (Names.empty()) return;
    733 
    734   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    735 
    736   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    737     Record.push_back(MDKindID);
    738     StringRef KName = Names[MDKindID];
    739     Record.append(KName.begin(), KName.end());
    740 
    741     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    742     Record.clear();
    743   }
    744 
    745   Stream.ExitBlock();
    746 }
    747 
    748 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    749                            const llvm_2_9::ValueEnumerator &VE,
    750                            BitstreamWriter &Stream, bool isGlobal) {
    751   if (FirstVal == LastVal) return;
    752 
    753   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    754 
    755   unsigned AggregateAbbrev = 0;
    756   unsigned String8Abbrev = 0;
    757   unsigned CString7Abbrev = 0;
    758   unsigned CString6Abbrev = 0;
    759   // If this is a constant pool for the module, emit module-specific abbrevs.
    760   if (isGlobal) {
    761     // Abbrev for CST_CODE_AGGREGATE.
    762     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    763     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    764     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    765     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    766     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    767 
    768     // Abbrev for CST_CODE_STRING.
    769     Abbv = new BitCodeAbbrev();
    770     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    771     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    773     String8Abbrev = Stream.EmitAbbrev(Abbv);
    774     // Abbrev for CST_CODE_CSTRING.
    775     Abbv = new BitCodeAbbrev();
    776     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    778     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    779     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    780     // Abbrev for CST_CODE_CSTRING.
    781     Abbv = new BitCodeAbbrev();
    782     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    785     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    786   }
    787 
    788   SmallVector<uint64_t, 64> Record;
    789 
    790   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
    791   Type *LastTy = 0;
    792   for (unsigned i = FirstVal; i != LastVal; ++i) {
    793     const Value *V = Vals[i].first;
    794     // If we need to switch types, do so now.
    795     if (V->getType() != LastTy) {
    796       LastTy = V->getType();
    797       Record.push_back(VE.getTypeID(LastTy));
    798       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    799                         CONSTANTS_SETTYPE_ABBREV);
    800       Record.clear();
    801     }
    802 
    803     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    804       Record.push_back(unsigned(IA->hasSideEffects()) |
    805                        unsigned(IA->isAlignStack()) << 1);
    806 
    807       // Add the asm string.
    808       const std::string &AsmStr = IA->getAsmString();
    809       Record.push_back(AsmStr.size());
    810       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    811         Record.push_back(AsmStr[i]);
    812 
    813       // Add the constraint string.
    814       const std::string &ConstraintStr = IA->getConstraintString();
    815       Record.push_back(ConstraintStr.size());
    816       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    817         Record.push_back(ConstraintStr[i]);
    818       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    819       Record.clear();
    820       continue;
    821     }
    822     const Constant *C = cast<Constant>(V);
    823     unsigned Code = -1U;
    824     unsigned AbbrevToUse = 0;
    825     if (C->isNullValue()) {
    826       Code = bitc::CST_CODE_NULL;
    827     } else if (isa<UndefValue>(C)) {
    828       Code = bitc::CST_CODE_UNDEF;
    829     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    830       if (IV->getBitWidth() <= 64) {
    831         uint64_t V = IV->getSExtValue();
    832         if ((int64_t)V >= 0)
    833           Record.push_back(V << 1);
    834         else
    835           Record.push_back((-V << 1) | 1);
    836         Code = bitc::CST_CODE_INTEGER;
    837         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    838       } else {                             // Wide integers, > 64 bits in size.
    839         // We have an arbitrary precision integer value to write whose
    840         // bit width is > 64. However, in canonical unsigned integer
    841         // format it is likely that the high bits are going to be zero.
    842         // So, we only write the number of active words.
    843         unsigned NWords = IV->getValue().getActiveWords();
    844         const uint64_t *RawWords = IV->getValue().getRawData();
    845         for (unsigned i = 0; i != NWords; ++i) {
    846           int64_t V = RawWords[i];
    847           if (V >= 0)
    848             Record.push_back(V << 1);
    849           else
    850             Record.push_back((-V << 1) | 1);
    851         }
    852         Code = bitc::CST_CODE_WIDE_INTEGER;
    853       }
    854     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    855       Code = bitc::CST_CODE_FLOAT;
    856       Type *Ty = CFP->getType();
    857       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    858         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    859       } else if (Ty->isX86_FP80Ty()) {
    860         // api needed to prevent premature destruction
    861         // bits are not in the same order as a normal i80 APInt, compensate.
    862         APInt api = CFP->getValueAPF().bitcastToAPInt();
    863         const uint64_t *p = api.getRawData();
    864         Record.push_back((p[1] << 48) | (p[0] >> 16));
    865         Record.push_back(p[0] & 0xffffLL);
    866       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    867         APInt api = CFP->getValueAPF().bitcastToAPInt();
    868         const uint64_t *p = api.getRawData();
    869         Record.push_back(p[0]);
    870         Record.push_back(p[1]);
    871       } else {
    872         assert (0 && "Unknown FP type!");
    873       }
    874     } else if (isa<ConstantDataSequential>(C) &&
    875                cast<ConstantDataSequential>(C)->isString()) {
    876       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
    877       // Emit constant strings specially.
    878       unsigned NumElts = Str->getNumElements();
    879       // If this is a null-terminated string, use the denser CSTRING encoding.
    880       if (Str->isCString()) {
    881         Code = bitc::CST_CODE_CSTRING;
    882         --NumElts;  // Don't encode the null, which isn't allowed by char6.
    883       } else {
    884         Code = bitc::CST_CODE_STRING;
    885         AbbrevToUse = String8Abbrev;
    886       }
    887       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    888       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    889       for (unsigned i = 0; i != NumElts; ++i) {
    890         unsigned char V = Str->getElementAsInteger(i);
    891         Record.push_back(V);
    892         isCStr7 &= (V & 128) == 0;
    893         if (isCStrChar6)
    894           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    895       }
    896 
    897       if (isCStrChar6)
    898         AbbrevToUse = CString6Abbrev;
    899       else if (isCStr7)
    900         AbbrevToUse = CString7Abbrev;
    901     } else if (const ConstantDataSequential *CDS =
    902                   dyn_cast<ConstantDataSequential>(C)) {
    903       // We must replace ConstantDataSequential's representation with the
    904       // legacy ConstantArray/ConstantVector/ConstantStruct version.
    905       // ValueEnumerator is similarly modified to mark the appropriate
    906       // Constants as used (so they are emitted).
    907       Code = bitc::CST_CODE_AGGREGATE;
    908       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
    909         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
    910       AbbrevToUse = AggregateAbbrev;
    911     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
    912                isa<ConstantVector>(C)) {
    913       Code = bitc::CST_CODE_AGGREGATE;
    914       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    915         Record.push_back(VE.getValueID(C->getOperand(i)));
    916       AbbrevToUse = AggregateAbbrev;
    917     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    918       switch (CE->getOpcode()) {
    919       default:
    920         if (Instruction::isCast(CE->getOpcode())) {
    921           Code = bitc::CST_CODE_CE_CAST;
    922           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    923           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    924           Record.push_back(VE.getValueID(C->getOperand(0)));
    925           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    926         } else {
    927           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    928           Code = bitc::CST_CODE_CE_BINOP;
    929           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    930           Record.push_back(VE.getValueID(C->getOperand(0)));
    931           Record.push_back(VE.getValueID(C->getOperand(1)));
    932           uint64_t Flags = GetOptimizationFlags(CE);
    933           if (Flags != 0)
    934             Record.push_back(Flags);
    935         }
    936         break;
    937       case Instruction::GetElementPtr:
    938         Code = bitc::CST_CODE_CE_GEP;
    939         if (cast<GEPOperator>(C)->isInBounds())
    940           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    941         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    942           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    943           Record.push_back(VE.getValueID(C->getOperand(i)));
    944         }
    945         break;
    946       case Instruction::Select:
    947         Code = bitc::CST_CODE_CE_SELECT;
    948         Record.push_back(VE.getValueID(C->getOperand(0)));
    949         Record.push_back(VE.getValueID(C->getOperand(1)));
    950         Record.push_back(VE.getValueID(C->getOperand(2)));
    951         break;
    952       case Instruction::ExtractElement:
    953         Code = bitc::CST_CODE_CE_EXTRACTELT;
    954         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    955         Record.push_back(VE.getValueID(C->getOperand(0)));
    956         Record.push_back(VE.getValueID(C->getOperand(1)));
    957         break;
    958       case Instruction::InsertElement:
    959         Code = bitc::CST_CODE_CE_INSERTELT;
    960         Record.push_back(VE.getValueID(C->getOperand(0)));
    961         Record.push_back(VE.getValueID(C->getOperand(1)));
    962         Record.push_back(VE.getValueID(C->getOperand(2)));
    963         break;
    964       case Instruction::ShuffleVector:
    965         // If the return type and argument types are the same, this is a
    966         // standard shufflevector instruction.  If the types are different,
    967         // then the shuffle is widening or truncating the input vectors, and
    968         // the argument type must also be encoded.
    969         if (C->getType() == C->getOperand(0)->getType()) {
    970           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    971         } else {
    972           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    973           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    974         }
    975         Record.push_back(VE.getValueID(C->getOperand(0)));
    976         Record.push_back(VE.getValueID(C->getOperand(1)));
    977         Record.push_back(VE.getValueID(C->getOperand(2)));
    978         break;
    979       case Instruction::ICmp:
    980       case Instruction::FCmp:
    981         Code = bitc::CST_CODE_CE_CMP;
    982         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    983         Record.push_back(VE.getValueID(C->getOperand(0)));
    984         Record.push_back(VE.getValueID(C->getOperand(1)));
    985         Record.push_back(CE->getPredicate());
    986         break;
    987       }
    988     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    989       Code = bitc::CST_CODE_BLOCKADDRESS;
    990       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
    991       Record.push_back(VE.getValueID(BA->getFunction()));
    992       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    993     } else {
    994 #ifndef NDEBUG
    995       C->dump();
    996 #endif
    997       llvm_unreachable("Unknown constant!");
    998     }
    999     Stream.EmitRecord(Code, Record, AbbrevToUse);
   1000     Record.clear();
   1001   }
   1002 
   1003   Stream.ExitBlock();
   1004 }
   1005 
   1006 static void WriteModuleConstants(const llvm_2_9::ValueEnumerator &VE,
   1007                                  BitstreamWriter &Stream) {
   1008   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
   1009 
   1010   // Find the first constant to emit, which is the first non-globalvalue value.
   1011   // We know globalvalues have been emitted by WriteModuleInfo.
   1012   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1013     if (!isa<GlobalValue>(Vals[i].first)) {
   1014       WriteConstants(i, Vals.size(), VE, Stream, true);
   1015       return;
   1016     }
   1017   }
   1018 }
   1019 
   1020 /// PushValueAndType - The file has to encode both the value and type id for
   1021 /// many values, because we need to know what type to create for forward
   1022 /// references.  However, most operands are not forward references, so this type
   1023 /// field is not needed.
   1024 ///
   1025 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1026 /// instruction ID, then it is a forward reference, and it also includes the
   1027 /// type ID.
   1028 static bool PushValueAndType(const Value *V, unsigned InstID,
   1029                              SmallVector<unsigned, 64> &Vals,
   1030                              llvm_2_9::ValueEnumerator &VE) {
   1031   unsigned ValID = VE.getValueID(V);
   1032   Vals.push_back(ValID);
   1033   if (ValID >= InstID) {
   1034     Vals.push_back(VE.getTypeID(V->getType()));
   1035     return true;
   1036   }
   1037   return false;
   1038 }
   1039 
   1040 /// WriteInstruction - Emit an instruction to the specified stream.
   1041 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1042                              llvm_2_9::ValueEnumerator &VE,
   1043                              BitstreamWriter &Stream,
   1044                              SmallVector<unsigned, 64> &Vals) {
   1045   unsigned Code = 0;
   1046   unsigned AbbrevToUse = 0;
   1047   VE.setInstructionID(&I);
   1048   switch (I.getOpcode()) {
   1049   default:
   1050     if (Instruction::isCast(I.getOpcode())) {
   1051       Code = bitc::FUNC_CODE_INST_CAST;
   1052       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1053         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1054       Vals.push_back(VE.getTypeID(I.getType()));
   1055       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1056     } else {
   1057       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1058       Code = bitc::FUNC_CODE_INST_BINOP;
   1059       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1060         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1061       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1062       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1063       uint64_t Flags = GetOptimizationFlags(&I);
   1064       if (Flags != 0) {
   1065         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1066           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1067         Vals.push_back(Flags);
   1068       }
   1069     }
   1070     break;
   1071 
   1072   case Instruction::GetElementPtr:
   1073     Code = bitc::FUNC_CODE_INST_GEP;
   1074     if (cast<GEPOperator>(&I)->isInBounds())
   1075       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1076     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1077       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1078     break;
   1079   case Instruction::ExtractValue: {
   1080     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1081     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1082     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1083     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1084       Vals.push_back(*i);
   1085     break;
   1086   }
   1087   case Instruction::InsertValue: {
   1088     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1089     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1090     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1091     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1092     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1093       Vals.push_back(*i);
   1094     break;
   1095   }
   1096   case Instruction::Select:
   1097     Code = bitc::FUNC_CODE_INST_VSELECT;
   1098     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1099     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1100     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1101     break;
   1102   case Instruction::ExtractElement:
   1103     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1104     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1105     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1106     break;
   1107   case Instruction::InsertElement:
   1108     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1109     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1110     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1111     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1112     break;
   1113   case Instruction::ShuffleVector:
   1114     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1115     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1116     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1117     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1118     break;
   1119   case Instruction::ICmp:
   1120   case Instruction::FCmp:
   1121     // compare returning Int1Ty or vector of Int1Ty
   1122     Code = bitc::FUNC_CODE_INST_CMP2;
   1123     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1124     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1125     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1126     break;
   1127 
   1128   case Instruction::Ret:
   1129     {
   1130       Code = bitc::FUNC_CODE_INST_RET;
   1131       unsigned NumOperands = I.getNumOperands();
   1132       if (NumOperands == 0)
   1133         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1134       else if (NumOperands == 1) {
   1135         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1136           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1137       } else {
   1138         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1139           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1140       }
   1141     }
   1142     break;
   1143   case Instruction::Br:
   1144     {
   1145       Code = bitc::FUNC_CODE_INST_BR;
   1146       const BranchInst &II = cast<BranchInst>(I);
   1147       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1148       if (II.isConditional()) {
   1149         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1150         Vals.push_back(VE.getValueID(II.getCondition()));
   1151       }
   1152     }
   1153     break;
   1154   case Instruction::Switch:
   1155     {
   1156       Code = bitc::FUNC_CODE_INST_SWITCH;
   1157       const SwitchInst &SI = cast<SwitchInst>(I);
   1158 
   1159       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1160       Vals.push_back(VE.getValueID(SI.getCondition()));
   1161       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   1162       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1163            i != e; ++i) {
   1164         const IntegersSubset& CaseRanges = i.getCaseValueEx();
   1165 
   1166         if (CaseRanges.isSingleNumber()) {
   1167           Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
   1168           Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1169         } else if (CaseRanges.isSingleNumbersOnly()) {
   1170           for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1171                ri != rn; ++ri) {
   1172             Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
   1173             Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1174           }
   1175         } else {
   1176           llvm_unreachable("Not single number?");
   1177         }
   1178       }
   1179     }
   1180     break;
   1181   case Instruction::IndirectBr:
   1182     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1183     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1184     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1185       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1186     break;
   1187 
   1188   case Instruction::Invoke: {
   1189     const InvokeInst *II = cast<InvokeInst>(&I);
   1190     const Value *Callee(II->getCalledValue());
   1191     PointerType *PTy = cast<PointerType>(Callee->getType());
   1192     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1193     Code = bitc::FUNC_CODE_INST_INVOKE;
   1194 
   1195     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1196     Vals.push_back(II->getCallingConv());
   1197     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1198     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1199     PushValueAndType(Callee, InstID, Vals, VE);
   1200 
   1201     // Emit value #'s for the fixed parameters.
   1202     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1203       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1204 
   1205     // Emit type/value pairs for varargs params.
   1206     if (FTy->isVarArg()) {
   1207       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1208            i != e; ++i)
   1209         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1210     }
   1211     break;
   1212   }
   1213   case Instruction::Unreachable:
   1214     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1215     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1216     break;
   1217 
   1218   case Instruction::PHI: {
   1219     const PHINode &PN = cast<PHINode>(I);
   1220     Code = bitc::FUNC_CODE_INST_PHI;
   1221     Vals.push_back(VE.getTypeID(PN.getType()));
   1222     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1223       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1224       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1225     }
   1226     break;
   1227   }
   1228 
   1229   case Instruction::Alloca:
   1230     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1231     Vals.push_back(VE.getTypeID(I.getType()));
   1232     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1233     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1234     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1235     break;
   1236 
   1237   case Instruction::Load:
   1238     Code = bitc::FUNC_CODE_INST_LOAD;
   1239     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1240       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1241 
   1242     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1243     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1244     break;
   1245   case Instruction::Store:
   1246     Code = bitc::FUNC_CODE_INST_STORE;
   1247     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1248     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1249     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1250     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1251     break;
   1252   case Instruction::Call: {
   1253     const CallInst &CI = cast<CallInst>(I);
   1254     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1255     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1256 
   1257     Code = FUNC_CODE_INST_CALL_2_7;
   1258 
   1259     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1260     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1261     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1262 
   1263     // Emit value #'s for the fixed parameters.
   1264     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1265       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1266 
   1267     // Emit type/value pairs for varargs params.
   1268     if (FTy->isVarArg()) {
   1269       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1270            i != e; ++i)
   1271         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1272     }
   1273     break;
   1274   }
   1275   case Instruction::VAArg:
   1276     Code = bitc::FUNC_CODE_INST_VAARG;
   1277     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1278     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1279     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1280     break;
   1281   }
   1282 
   1283   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1284   Vals.clear();
   1285 }
   1286 
   1287 // Emit names for globals/functions etc.
   1288 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1289                                   const llvm_2_9::ValueEnumerator &VE,
   1290                                   BitstreamWriter &Stream) {
   1291   if (VST.empty()) return;
   1292   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1293 
   1294   // FIXME: Set up the abbrev, we know how many values there are!
   1295   // FIXME: We know if the type names can use 7-bit ascii.
   1296   SmallVector<unsigned, 64> NameVals;
   1297 
   1298   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1299        SI != SE; ++SI) {
   1300 
   1301     const ValueName &Name = *SI;
   1302 
   1303     // Figure out the encoding to use for the name.
   1304     bool is7Bit = true;
   1305     bool isChar6 = true;
   1306     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1307          C != E; ++C) {
   1308       if (isChar6)
   1309         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1310       if ((unsigned char)*C & 128) {
   1311         is7Bit = false;
   1312         break;  // don't bother scanning the rest.
   1313       }
   1314     }
   1315 
   1316     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1317 
   1318     // VST_ENTRY:   [valueid, namechar x N]
   1319     // VST_BBENTRY: [bbid, namechar x N]
   1320     unsigned Code;
   1321     if (isa<BasicBlock>(SI->getValue())) {
   1322       Code = bitc::VST_CODE_BBENTRY;
   1323       if (isChar6)
   1324         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1325     } else {
   1326       Code = bitc::VST_CODE_ENTRY;
   1327       if (isChar6)
   1328         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1329       else if (is7Bit)
   1330         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1331     }
   1332 
   1333     NameVals.push_back(VE.getValueID(SI->getValue()));
   1334     for (const char *P = Name.getKeyData(),
   1335          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1336       NameVals.push_back((unsigned char)*P);
   1337 
   1338     // Emit the finished record.
   1339     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1340     NameVals.clear();
   1341   }
   1342   Stream.ExitBlock();
   1343 }
   1344 
   1345 /// WriteFunction - Emit a function body to the module stream.
   1346 static void WriteFunction(const Function &F, llvm_2_9::ValueEnumerator &VE,
   1347                           BitstreamWriter &Stream) {
   1348   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1349   VE.incorporateFunction(F);
   1350 
   1351   SmallVector<unsigned, 64> Vals;
   1352 
   1353   // Emit the number of basic blocks, so the reader can create them ahead of
   1354   // time.
   1355   Vals.push_back(VE.getBasicBlocks().size());
   1356   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1357   Vals.clear();
   1358 
   1359   // If there are function-local constants, emit them now.
   1360   unsigned CstStart, CstEnd;
   1361   VE.getFunctionConstantRange(CstStart, CstEnd);
   1362   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1363 
   1364   // If there is function-local metadata, emit it now.
   1365   WriteFunctionLocalMetadata(F, VE, Stream);
   1366 
   1367   // Keep a running idea of what the instruction ID is.
   1368   unsigned InstID = CstEnd;
   1369 
   1370   bool NeedsMetadataAttachment = false;
   1371 
   1372   DebugLoc LastDL;
   1373 
   1374   // Finally, emit all the instructions, in order.
   1375   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1376     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1377          I != E; ++I) {
   1378       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1379 
   1380       if (!I->getType()->isVoidTy())
   1381         ++InstID;
   1382 
   1383       // If the instruction has metadata, write a metadata attachment later.
   1384       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1385 
   1386       // If the instruction has a debug location, emit it.
   1387       DebugLoc DL = I->getDebugLoc();
   1388       if (DL.isUnknown()) {
   1389         // nothing todo.
   1390       } else if (DL == LastDL) {
   1391         // Just repeat the same debug loc as last time.
   1392         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1393       } else {
   1394         MDNode *Scope, *IA;
   1395         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1396 
   1397         Vals.push_back(DL.getLine());
   1398         Vals.push_back(DL.getCol());
   1399         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1400         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1401         Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
   1402         Vals.clear();
   1403 
   1404         LastDL = DL;
   1405       }
   1406     }
   1407 
   1408   // Emit names for all the instructions etc.
   1409   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1410 
   1411   if (NeedsMetadataAttachment)
   1412     WriteMetadataAttachment(F, VE, Stream);
   1413   VE.purgeFunction();
   1414   Stream.ExitBlock();
   1415 }
   1416 
   1417 // Emit blockinfo, which defines the standard abbreviations etc.
   1418 static void WriteBlockInfo(const llvm_2_9::ValueEnumerator &VE,
   1419                            BitstreamWriter &Stream) {
   1420   // We only want to emit block info records for blocks that have multiple
   1421   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1422   // blocks can defined their abbrevs inline.
   1423   Stream.EnterBlockInfoBlock(2);
   1424 
   1425   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1426     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1427     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1428     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1429     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1430     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1431     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1432                                    Abbv) != VST_ENTRY_8_ABBREV)
   1433       llvm_unreachable("Unexpected abbrev ordering!");
   1434   }
   1435 
   1436   { // 7-bit fixed width VST_ENTRY strings.
   1437     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1438     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1439     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1440     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1441     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1442     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1443                                    Abbv) != VST_ENTRY_7_ABBREV)
   1444       llvm_unreachable("Unexpected abbrev ordering!");
   1445   }
   1446   { // 6-bit char6 VST_ENTRY strings.
   1447     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1448     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1452     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1453                                    Abbv) != VST_ENTRY_6_ABBREV)
   1454       llvm_unreachable("Unexpected abbrev ordering!");
   1455   }
   1456   { // 6-bit char6 VST_BBENTRY strings.
   1457     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1458     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1459     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1460     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1461     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1462     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1463                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1464       llvm_unreachable("Unexpected abbrev ordering!");
   1465   }
   1466 
   1467 
   1468 
   1469   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1470     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1471     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1472     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1473                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1474     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1475                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1476       llvm_unreachable("Unexpected abbrev ordering!");
   1477   }
   1478 
   1479   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1480     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1481     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1483     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1484                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1485       llvm_unreachable("Unexpected abbrev ordering!");
   1486   }
   1487 
   1488   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1489     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1490     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1492     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1493                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1494     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1495 
   1496     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1497                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1498       llvm_unreachable("Unexpected abbrev ordering!");
   1499   }
   1500   { // NULL abbrev for CONSTANTS_BLOCK.
   1501     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1502     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1503     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1504                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1505       llvm_unreachable("Unexpected abbrev ordering!");
   1506   }
   1507 
   1508   // FIXME: This should only use space for first class types!
   1509 
   1510   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1511     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1512     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1513     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1514     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1515     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1516     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1517                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1518       llvm_unreachable("Unexpected abbrev ordering!");
   1519   }
   1520   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1521     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1522     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1523     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1524     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1525     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1526     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1527                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1528       llvm_unreachable("Unexpected abbrev ordering!");
   1529   }
   1530   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1531     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1532     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1533     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1534     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1535     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1536     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1537     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1538                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1539       llvm_unreachable("Unexpected abbrev ordering!");
   1540   }
   1541   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1542     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1543     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1544     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1545     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1546                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1547     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1548     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1549                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1550       llvm_unreachable("Unexpected abbrev ordering!");
   1551   }
   1552 
   1553   { // INST_RET abbrev for FUNCTION_BLOCK.
   1554     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1555     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1556     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1557                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1558       llvm_unreachable("Unexpected abbrev ordering!");
   1559   }
   1560   { // INST_RET abbrev for FUNCTION_BLOCK.
   1561     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1562     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1564     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1565                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1566       llvm_unreachable("Unexpected abbrev ordering!");
   1567   }
   1568   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1569     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1570     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1571     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1572                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1573       llvm_unreachable("Unexpected abbrev ordering!");
   1574   }
   1575 
   1576   Stream.ExitBlock();
   1577 }
   1578 
   1579 
   1580 /// WriteModule - Emit the specified module to the bitstream.
   1581 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1582   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1583 
   1584   // Emit the version number if it is non-zero.
   1585   if (CurVersion) {
   1586     SmallVector<unsigned, 1> Vals;
   1587     Vals.push_back(CurVersion);
   1588     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1589   }
   1590 
   1591   // Analyze the module, enumerating globals, functions, etc.
   1592   llvm_2_9::ValueEnumerator VE(M);
   1593 
   1594   // Emit blockinfo, which defines the standard abbreviations etc.
   1595   WriteBlockInfo(VE, Stream);
   1596 
   1597   // Emit information about parameter attributes.
   1598   WriteAttributeTable(VE, Stream);
   1599 
   1600   // Emit information describing all of the types in the module.
   1601   WriteTypeTable(VE, Stream);
   1602 
   1603   // Emit top-level description of module, including target triple, inline asm,
   1604   // descriptors for global variables, and function prototype info.
   1605   WriteModuleInfo(M, VE, Stream);
   1606 
   1607   // Emit constants.
   1608   WriteModuleConstants(VE, Stream);
   1609 
   1610   // Emit metadata.
   1611   WriteModuleMetadata(M, VE, Stream);
   1612 
   1613   // Emit function bodies.
   1614   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1615     if (!F->isDeclaration())
   1616       WriteFunction(*F, VE, Stream);
   1617 
   1618   // Emit metadata.
   1619   WriteModuleMetadataStore(M, Stream);
   1620 
   1621   // Emit names for globals/functions etc.
   1622   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1623 
   1624   Stream.ExitBlock();
   1625 }
   1626 
   1627 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1628 /// header and trailer to make it compatible with the system archiver.  To do
   1629 /// this we emit the following header, and then emit a trailer that pads the
   1630 /// file out to be a multiple of 16 bytes.
   1631 ///
   1632 /// struct bc_header {
   1633 ///   uint32_t Magic;         // 0x0B17C0DE
   1634 ///   uint32_t Version;       // Version, currently always 0.
   1635 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1636 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1637 ///   uint32_t CPUType;       // CPU specifier.
   1638 ///   ... potentially more later ...
   1639 /// };
   1640 enum {
   1641   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1642   DarwinBCHeaderSize = 5*4
   1643 };
   1644 
   1645 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   1646                                uint32_t &Position) {
   1647   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   1648   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   1649   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   1650   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   1651   Position += 4;
   1652 }
   1653 
   1654 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   1655                                          const Triple &TT) {
   1656   unsigned CPUType = ~0U;
   1657 
   1658   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1659   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1660   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1661   // specific constants here because they are implicitly part of the Darwin ABI.
   1662   enum {
   1663     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1664     DARWIN_CPU_TYPE_X86        = 7,
   1665     DARWIN_CPU_TYPE_ARM        = 12,
   1666     DARWIN_CPU_TYPE_POWERPC    = 18
   1667   };
   1668 
   1669   Triple::ArchType Arch = TT.getArch();
   1670   if (Arch == Triple::x86_64)
   1671     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1672   else if (Arch == Triple::x86)
   1673     CPUType = DARWIN_CPU_TYPE_X86;
   1674   else if (Arch == Triple::ppc)
   1675     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1676   else if (Arch == Triple::ppc64)
   1677     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1678   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1679     CPUType = DARWIN_CPU_TYPE_ARM;
   1680 
   1681   // Traditional Bitcode starts after header.
   1682   assert(Buffer.size() >= DarwinBCHeaderSize &&
   1683          "Expected header size to be reserved");
   1684   unsigned BCOffset = DarwinBCHeaderSize;
   1685   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   1686 
   1687   // Write the magic and version.
   1688   unsigned Position = 0;
   1689   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   1690   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   1691   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   1692   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   1693   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   1694 
   1695   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1696   while (Buffer.size() & 15)
   1697     Buffer.push_back(0);
   1698 }
   1699 
   1700 /// WriteBitcodeToFile - Write the specified module to the specified output
   1701 /// stream.
   1702 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1703   SmallVector<char, 1024> Buffer;
   1704   Buffer.reserve(256*1024);
   1705 
   1706   // If this is darwin or another generic macho target, reserve space for the
   1707   // header.
   1708   Triple TT(M->getTargetTriple());
   1709   if (TT.isOSDarwin())
   1710     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   1711 
   1712   // Emit the module into the buffer.
   1713   {
   1714     BitstreamWriter Stream(Buffer);
   1715 
   1716     // Emit the file header.
   1717     Stream.Emit((unsigned)'B', 8);
   1718     Stream.Emit((unsigned)'C', 8);
   1719     Stream.Emit(0x0, 4);
   1720     Stream.Emit(0xC, 4);
   1721     Stream.Emit(0xE, 4);
   1722     Stream.Emit(0xD, 4);
   1723 
   1724     // Emit the module.
   1725     WriteModule(M, Stream);
   1726   }
   1727 
   1728   if (TT.isOSDarwin())
   1729     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   1730 
   1731   // Write the generated bitstream to "Out".
   1732   Out.write((char*)&Buffer.front(), Buffer.size());
   1733 }
   1734