1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ReaderWriter_2_9_func.h" 15 #include "legacy_bitcode.h" 16 #include "ValueEnumerator.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 /// These are manifest constants used by the bitcode writer. They do not need to 36 /// be kept in sync with the reader, but need to be consistent within this file. 37 enum { 38 CurVersion = 0, 39 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 default: llvm_unreachable("Unknown atomic ordering"); 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 default: llvm_unreachable("Unknown synchronization scope"); 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 // Emit information about parameter attributes. 159 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE, 160 BitstreamWriter &Stream) { 161 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 162 if (Attrs.empty()) return; 163 164 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 165 166 SmallVector<uint64_t, 64> Record; 167 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 168 const AttributeSet &A = Attrs[i]; 169 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 170 Record.push_back(A.getSlotIndex(i)); 171 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i))); 172 } 173 174 // This needs to use the 3.2 entry type 175 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); 176 Record.clear(); 177 } 178 179 Stream.ExitBlock(); 180 } 181 182 /// WriteTypeTable - Write out the type table for a module. 183 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE, 184 BitstreamWriter &Stream) { 185 const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes(); 186 187 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 188 SmallVector<uint64_t, 64> TypeVals; 189 190 // Abbrev for TYPE_CODE_POINTER. 191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 192 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 194 Log2_32_Ceil(VE.getTypes().size()+1))); 195 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 196 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 197 198 // Abbrev for TYPE_CODE_FUNCTION. 199 Abbv = new BitCodeAbbrev(); 200 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD)); 201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 202 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 205 Log2_32_Ceil(VE.getTypes().size()+1))); 206 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 207 208 // Abbrev for TYPE_CODE_STRUCT_ANON. 209 Abbv = new BitCodeAbbrev(); 210 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 214 Log2_32_Ceil(VE.getTypes().size()+1))); 215 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 216 217 // Abbrev for TYPE_CODE_STRUCT_NAME. 218 Abbv = new BitCodeAbbrev(); 219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 222 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 223 224 // Abbrev for TYPE_CODE_STRUCT_NAMED. 225 Abbv = new BitCodeAbbrev(); 226 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 230 Log2_32_Ceil(VE.getTypes().size()+1))); 231 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 232 233 // Abbrev for TYPE_CODE_ARRAY. 234 Abbv = new BitCodeAbbrev(); 235 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 238 Log2_32_Ceil(VE.getTypes().size()+1))); 239 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 240 241 // Emit an entry count so the reader can reserve space. 242 TypeVals.push_back(TypeList.size()); 243 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 244 TypeVals.clear(); 245 246 // Loop over all of the types, emitting each in turn. 247 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 248 Type *T = TypeList[i]; 249 int AbbrevToUse = 0; 250 unsigned Code = 0; 251 252 switch (T->getTypeID()) { 253 default: llvm_unreachable("Unknown type!"); 254 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 255 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 256 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 257 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 258 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 259 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 260 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 261 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 262 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 263 case Type::IntegerTyID: 264 // INTEGER: [width] 265 Code = bitc::TYPE_CODE_INTEGER; 266 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 267 break; 268 case Type::PointerTyID: { 269 PointerType *PTy = cast<PointerType>(T); 270 // POINTER: [pointee type, address space] 271 Code = bitc::TYPE_CODE_POINTER; 272 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 273 unsigned AddressSpace = PTy->getAddressSpace(); 274 TypeVals.push_back(AddressSpace); 275 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 276 break; 277 } 278 case Type::FunctionTyID: { 279 FunctionType *FT = cast<FunctionType>(T); 280 // FUNCTION: [isvararg, attrid, retty, paramty x N] 281 Code = bitc::TYPE_CODE_FUNCTION_OLD; 282 TypeVals.push_back(FT->isVarArg()); 283 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 284 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 285 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 286 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 287 AbbrevToUse = FunctionAbbrev; 288 break; 289 } 290 case Type::StructTyID: { 291 StructType *ST = cast<StructType>(T); 292 // STRUCT: [ispacked, eltty x N] 293 TypeVals.push_back(ST->isPacked()); 294 // Output all of the element types. 295 for (StructType::element_iterator I = ST->element_begin(), 296 E = ST->element_end(); I != E; ++I) 297 TypeVals.push_back(VE.getTypeID(*I)); 298 299 if (ST->isLiteral()) { 300 Code = bitc::TYPE_CODE_STRUCT_ANON; 301 AbbrevToUse = StructAnonAbbrev; 302 } else { 303 if (ST->isOpaque()) { 304 Code = bitc::TYPE_CODE_OPAQUE; 305 } else { 306 Code = bitc::TYPE_CODE_STRUCT_NAMED; 307 AbbrevToUse = StructNamedAbbrev; 308 } 309 310 // Emit the name if it is present. 311 if (!ST->getName().empty()) 312 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 313 StructNameAbbrev, Stream); 314 } 315 break; 316 } 317 case Type::ArrayTyID: { 318 ArrayType *AT = cast<ArrayType>(T); 319 // ARRAY: [numelts, eltty] 320 Code = bitc::TYPE_CODE_ARRAY; 321 TypeVals.push_back(AT->getNumElements()); 322 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 323 AbbrevToUse = ArrayAbbrev; 324 break; 325 } 326 case Type::VectorTyID: { 327 VectorType *VT = cast<VectorType>(T); 328 // VECTOR [numelts, eltty] 329 Code = bitc::TYPE_CODE_VECTOR; 330 TypeVals.push_back(VT->getNumElements()); 331 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 332 break; 333 } 334 } 335 336 // Emit the finished record. 337 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 338 TypeVals.clear(); 339 } 340 341 Stream.ExitBlock(); 342 } 343 344 static unsigned getEncodedLinkage(const GlobalValue *GV) { 345 switch (GV->getLinkage()) { 346 case GlobalValue::ExternalLinkage: return 0; 347 case GlobalValue::WeakAnyLinkage: return 1; 348 case GlobalValue::AppendingLinkage: return 2; 349 case GlobalValue::InternalLinkage: return 3; 350 case GlobalValue::LinkOnceAnyLinkage: return 4; 351 case GlobalValue::DLLImportLinkage: return 5; 352 case GlobalValue::DLLExportLinkage: return 6; 353 case GlobalValue::ExternalWeakLinkage: return 7; 354 case GlobalValue::CommonLinkage: return 8; 355 case GlobalValue::PrivateLinkage: return 9; 356 case GlobalValue::WeakODRLinkage: return 10; 357 case GlobalValue::LinkOnceODRLinkage: return 11; 358 case GlobalValue::AvailableExternallyLinkage: return 12; 359 case GlobalValue::LinkerPrivateLinkage: return 13; 360 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 361 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 362 } 363 llvm_unreachable("Invalid linkage"); 364 } 365 366 static unsigned getEncodedVisibility(const GlobalValue *GV) { 367 switch (GV->getVisibility()) { 368 default: llvm_unreachable("Invalid visibility!"); 369 case GlobalValue::DefaultVisibility: return 0; 370 case GlobalValue::HiddenVisibility: return 1; 371 case GlobalValue::ProtectedVisibility: return 2; 372 } 373 } 374 375 // Emit top-level description of module, including target triple, inline asm, 376 // descriptors for global variables, and function prototype info. 377 static void WriteModuleInfo(const Module *M, 378 const llvm_2_9_func::ValueEnumerator &VE, 379 BitstreamWriter &Stream) { 380 // Emit various pieces of data attached to a module. 381 if (!M->getTargetTriple().empty()) 382 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 383 0/*TODO*/, Stream); 384 if (!M->getDataLayout().empty()) 385 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 386 0/*TODO*/, Stream); 387 if (!M->getModuleInlineAsm().empty()) 388 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 389 0/*TODO*/, Stream); 390 391 // Emit information about sections and GC, computing how many there are. Also 392 // compute the maximum alignment value. 393 std::map<std::string, unsigned> SectionMap; 394 std::map<std::string, unsigned> GCMap; 395 unsigned MaxAlignment = 0; 396 unsigned MaxGlobalType = 0; 397 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 398 GV != E; ++GV) { 399 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 400 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 401 402 if (!GV->hasSection()) continue; 403 // Give section names unique ID's. 404 unsigned &Entry = SectionMap[GV->getSection()]; 405 if (Entry != 0) continue; 406 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 407 0/*TODO*/, Stream); 408 Entry = SectionMap.size(); 409 } 410 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 411 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 412 if (F->hasSection()) { 413 // Give section names unique ID's. 414 unsigned &Entry = SectionMap[F->getSection()]; 415 if (!Entry) { 416 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 417 0/*TODO*/, Stream); 418 Entry = SectionMap.size(); 419 } 420 } 421 if (F->hasGC()) { 422 // Same for GC names. 423 unsigned &Entry = GCMap[F->getGC()]; 424 if (!Entry) { 425 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 426 0/*TODO*/, Stream); 427 Entry = GCMap.size(); 428 } 429 } 430 } 431 432 // Emit abbrev for globals, now that we know # sections and max alignment. 433 unsigned SimpleGVarAbbrev = 0; 434 if (!M->global_empty()) { 435 // Add an abbrev for common globals with no visibility or thread localness. 436 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 437 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 439 Log2_32_Ceil(MaxGlobalType+1))); 440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 443 if (MaxAlignment == 0) // Alignment. 444 Abbv->Add(BitCodeAbbrevOp(0)); 445 else { 446 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 448 Log2_32_Ceil(MaxEncAlignment+1))); 449 } 450 if (SectionMap.empty()) // Section. 451 Abbv->Add(BitCodeAbbrevOp(0)); 452 else 453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 454 Log2_32_Ceil(SectionMap.size()+1))); 455 // Don't bother emitting vis + thread local. 456 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 457 } 458 459 // Emit the global variable information. 460 SmallVector<unsigned, 64> Vals; 461 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 462 GV != E; ++GV) { 463 unsigned AbbrevToUse = 0; 464 465 // GLOBALVAR: [type, isconst, initid, 466 // linkage, alignment, section, visibility, threadlocal, 467 // unnamed_addr] 468 Vals.push_back(VE.getTypeID(GV->getType())); 469 Vals.push_back(GV->isConstant()); 470 Vals.push_back(GV->isDeclaration() ? 0 : 471 (VE.getValueID(GV->getInitializer()) + 1)); 472 Vals.push_back(getEncodedLinkage(GV)); 473 Vals.push_back(Log2_32(GV->getAlignment())+1); 474 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 475 if (GV->isThreadLocal() || 476 GV->getVisibility() != GlobalValue::DefaultVisibility || 477 GV->hasUnnamedAddr()) { 478 Vals.push_back(getEncodedVisibility(GV)); 479 Vals.push_back(GV->isThreadLocal()); 480 Vals.push_back(GV->hasUnnamedAddr()); 481 } else { 482 AbbrevToUse = SimpleGVarAbbrev; 483 } 484 485 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 486 Vals.clear(); 487 } 488 489 // Emit the function proto information. 490 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 491 // FUNCTION: [type, callingconv, isproto, paramattr, 492 // linkage, alignment, section, visibility, gc, unnamed_addr] 493 Vals.push_back(VE.getTypeID(F->getType())); 494 Vals.push_back(F->getCallingConv()); 495 Vals.push_back(F->isDeclaration()); 496 Vals.push_back(getEncodedLinkage(F)); 497 Vals.push_back(VE.getAttributeID(F->getAttributes())); 498 Vals.push_back(Log2_32(F->getAlignment())+1); 499 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 500 Vals.push_back(getEncodedVisibility(F)); 501 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 502 Vals.push_back(F->hasUnnamedAddr()); 503 504 unsigned AbbrevToUse = 0; 505 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 506 Vals.clear(); 507 } 508 509 // Emit the alias information. 510 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 511 AI != E; ++AI) { 512 Vals.push_back(VE.getTypeID(AI->getType())); 513 Vals.push_back(VE.getValueID(AI->getAliasee())); 514 Vals.push_back(getEncodedLinkage(AI)); 515 Vals.push_back(getEncodedVisibility(AI)); 516 unsigned AbbrevToUse = 0; 517 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 518 Vals.clear(); 519 } 520 } 521 522 static uint64_t GetOptimizationFlags(const Value *V) { 523 uint64_t Flags = 0; 524 525 if (const OverflowingBinaryOperator *OBO = 526 dyn_cast<OverflowingBinaryOperator>(V)) { 527 if (OBO->hasNoSignedWrap()) 528 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 529 if (OBO->hasNoUnsignedWrap()) 530 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 531 } else if (const PossiblyExactOperator *PEO = 532 dyn_cast<PossiblyExactOperator>(V)) { 533 if (PEO->isExact()) 534 Flags |= 1 << bitc::PEO_EXACT; 535 } 536 537 return Flags; 538 } 539 540 static void WriteMDNode(const MDNode *N, 541 const llvm_2_9_func::ValueEnumerator &VE, 542 BitstreamWriter &Stream, 543 SmallVector<uint64_t, 64> &Record) { 544 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 545 if (N->getOperand(i)) { 546 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 547 Record.push_back(VE.getValueID(N->getOperand(i))); 548 } else { 549 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 550 Record.push_back(0); 551 } 552 } 553 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 554 bitc::METADATA_NODE; 555 Stream.EmitRecord(MDCode, Record, 0); 556 Record.clear(); 557 } 558 559 static void WriteModuleMetadata(const Module *M, 560 const llvm_2_9_func::ValueEnumerator &VE, 561 BitstreamWriter &Stream) { 562 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues(); 563 bool StartedMetadataBlock = false; 564 unsigned MDSAbbrev = 0; 565 SmallVector<uint64_t, 64> Record; 566 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 567 568 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 569 if (!N->isFunctionLocal() || !N->getFunction()) { 570 if (!StartedMetadataBlock) { 571 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 572 StartedMetadataBlock = true; 573 } 574 WriteMDNode(N, VE, Stream, Record); 575 } 576 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 577 if (!StartedMetadataBlock) { 578 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 579 580 // Abbrev for METADATA_STRING. 581 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 582 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 585 MDSAbbrev = Stream.EmitAbbrev(Abbv); 586 StartedMetadataBlock = true; 587 } 588 589 // Code: [strchar x N] 590 Record.append(MDS->begin(), MDS->end()); 591 592 // Emit the finished record. 593 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 594 Record.clear(); 595 } 596 } 597 598 // Write named metadata. 599 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 600 E = M->named_metadata_end(); I != E; ++I) { 601 const NamedMDNode *NMD = I; 602 if (!StartedMetadataBlock) { 603 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 604 StartedMetadataBlock = true; 605 } 606 607 // Write name. 608 StringRef Str = NMD->getName(); 609 for (unsigned i = 0, e = Str.size(); i != e; ++i) 610 Record.push_back(Str[i]); 611 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 612 Record.clear(); 613 614 // Write named metadata operands. 615 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 616 Record.push_back(VE.getValueID(NMD->getOperand(i))); 617 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 618 Record.clear(); 619 } 620 621 if (StartedMetadataBlock) 622 Stream.ExitBlock(); 623 } 624 625 static void WriteFunctionLocalMetadata(const Function &F, 626 const llvm_2_9_func::ValueEnumerator &VE, 627 BitstreamWriter &Stream) { 628 bool StartedMetadataBlock = false; 629 SmallVector<uint64_t, 64> Record; 630 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 631 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 632 if (const MDNode *N = Vals[i]) 633 if (N->isFunctionLocal() && N->getFunction() == &F) { 634 if (!StartedMetadataBlock) { 635 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 636 StartedMetadataBlock = true; 637 } 638 WriteMDNode(N, VE, Stream, Record); 639 } 640 641 if (StartedMetadataBlock) 642 Stream.ExitBlock(); 643 } 644 645 static void WriteMetadataAttachment(const Function &F, 646 const llvm_2_9_func::ValueEnumerator &VE, 647 BitstreamWriter &Stream) { 648 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 649 650 SmallVector<uint64_t, 64> Record; 651 652 // Write metadata attachments 653 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 654 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 655 656 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 657 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 658 I != E; ++I) { 659 MDs.clear(); 660 I->getAllMetadataOtherThanDebugLoc(MDs); 661 662 // If no metadata, ignore instruction. 663 if (MDs.empty()) continue; 664 665 Record.push_back(VE.getInstructionID(I)); 666 667 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 668 Record.push_back(MDs[i].first); 669 Record.push_back(VE.getValueID(MDs[i].second)); 670 } 671 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 672 Record.clear(); 673 } 674 675 Stream.ExitBlock(); 676 } 677 678 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 679 SmallVector<uint64_t, 64> Record; 680 681 // Write metadata kinds 682 // METADATA_KIND - [n x [id, name]] 683 SmallVector<StringRef, 4> Names; 684 M->getMDKindNames(Names); 685 686 if (Names.empty()) return; 687 688 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 689 690 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 691 Record.push_back(MDKindID); 692 StringRef KName = Names[MDKindID]; 693 Record.append(KName.begin(), KName.end()); 694 695 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 696 Record.clear(); 697 } 698 699 Stream.ExitBlock(); 700 } 701 702 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 703 const llvm_2_9_func::ValueEnumerator &VE, 704 BitstreamWriter &Stream, bool isGlobal) { 705 if (FirstVal == LastVal) return; 706 707 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 708 709 unsigned AggregateAbbrev = 0; 710 unsigned String8Abbrev = 0; 711 unsigned CString7Abbrev = 0; 712 unsigned CString6Abbrev = 0; 713 // If this is a constant pool for the module, emit module-specific abbrevs. 714 if (isGlobal) { 715 // Abbrev for CST_CODE_AGGREGATE. 716 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 717 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 720 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 721 722 // Abbrev for CST_CODE_STRING. 723 Abbv = new BitCodeAbbrev(); 724 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 727 String8Abbrev = Stream.EmitAbbrev(Abbv); 728 // Abbrev for CST_CODE_CSTRING. 729 Abbv = new BitCodeAbbrev(); 730 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 733 CString7Abbrev = Stream.EmitAbbrev(Abbv); 734 // Abbrev for CST_CODE_CSTRING. 735 Abbv = new BitCodeAbbrev(); 736 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 739 CString6Abbrev = Stream.EmitAbbrev(Abbv); 740 } 741 742 SmallVector<uint64_t, 64> Record; 743 744 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues(); 745 Type *LastTy = 0; 746 for (unsigned i = FirstVal; i != LastVal; ++i) { 747 const Value *V = Vals[i].first; 748 // If we need to switch types, do so now. 749 if (V->getType() != LastTy) { 750 LastTy = V->getType(); 751 Record.push_back(VE.getTypeID(LastTy)); 752 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 753 CONSTANTS_SETTYPE_ABBREV); 754 Record.clear(); 755 } 756 757 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 758 Record.push_back(unsigned(IA->hasSideEffects()) | 759 unsigned(IA->isAlignStack()) << 1); 760 761 // Add the asm string. 762 const std::string &AsmStr = IA->getAsmString(); 763 Record.push_back(AsmStr.size()); 764 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 765 Record.push_back(AsmStr[i]); 766 767 // Add the constraint string. 768 const std::string &ConstraintStr = IA->getConstraintString(); 769 Record.push_back(ConstraintStr.size()); 770 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 771 Record.push_back(ConstraintStr[i]); 772 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 773 Record.clear(); 774 continue; 775 } 776 const Constant *C = cast<Constant>(V); 777 unsigned Code = -1U; 778 unsigned AbbrevToUse = 0; 779 if (C->isNullValue()) { 780 Code = bitc::CST_CODE_NULL; 781 } else if (isa<UndefValue>(C)) { 782 Code = bitc::CST_CODE_UNDEF; 783 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 784 if (IV->getBitWidth() <= 64) { 785 uint64_t V = IV->getSExtValue(); 786 if ((int64_t)V >= 0) 787 Record.push_back(V << 1); 788 else 789 Record.push_back((-V << 1) | 1); 790 Code = bitc::CST_CODE_INTEGER; 791 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 792 } else { // Wide integers, > 64 bits in size. 793 // We have an arbitrary precision integer value to write whose 794 // bit width is > 64. However, in canonical unsigned integer 795 // format it is likely that the high bits are going to be zero. 796 // So, we only write the number of active words. 797 unsigned NWords = IV->getValue().getActiveWords(); 798 const uint64_t *RawWords = IV->getValue().getRawData(); 799 for (unsigned i = 0; i != NWords; ++i) { 800 int64_t V = RawWords[i]; 801 if (V >= 0) 802 Record.push_back(V << 1); 803 else 804 Record.push_back((-V << 1) | 1); 805 } 806 Code = bitc::CST_CODE_WIDE_INTEGER; 807 } 808 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 809 Code = bitc::CST_CODE_FLOAT; 810 Type *Ty = CFP->getType(); 811 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 812 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 813 } else if (Ty->isX86_FP80Ty()) { 814 // api needed to prevent premature destruction 815 // bits are not in the same order as a normal i80 APInt, compensate. 816 APInt api = CFP->getValueAPF().bitcastToAPInt(); 817 const uint64_t *p = api.getRawData(); 818 Record.push_back((p[1] << 48) | (p[0] >> 16)); 819 Record.push_back(p[0] & 0xffffLL); 820 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 821 APInt api = CFP->getValueAPF().bitcastToAPInt(); 822 const uint64_t *p = api.getRawData(); 823 Record.push_back(p[0]); 824 Record.push_back(p[1]); 825 } else { 826 assert (0 && "Unknown FP type!"); 827 } 828 } else if (isa<ConstantDataSequential>(C) && 829 cast<ConstantDataSequential>(C)->isString()) { 830 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 831 // Emit constant strings specially. 832 unsigned NumElts = Str->getNumElements(); 833 // If this is a null-terminated string, use the denser CSTRING encoding. 834 if (Str->isCString()) { 835 Code = bitc::CST_CODE_CSTRING; 836 --NumElts; // Don't encode the null, which isn't allowed by char6. 837 } else { 838 Code = bitc::CST_CODE_STRING; 839 AbbrevToUse = String8Abbrev; 840 } 841 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 842 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 843 for (unsigned i = 0; i != NumElts; ++i) { 844 unsigned char V = Str->getElementAsInteger(i); 845 Record.push_back(V); 846 isCStr7 &= (V & 128) == 0; 847 if (isCStrChar6) 848 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 849 } 850 851 if (isCStrChar6) 852 AbbrevToUse = CString6Abbrev; 853 else if (isCStr7) 854 AbbrevToUse = CString7Abbrev; 855 } else if (const ConstantDataSequential *CDS = 856 dyn_cast<ConstantDataSequential>(C)) { 857 // We must replace ConstantDataSequential's representation with the 858 // legacy ConstantArray/ConstantVector/ConstantStruct version. 859 // ValueEnumerator is similarly modified to mark the appropriate 860 // Constants as used (so they are emitted). 861 Code = bitc::CST_CODE_AGGREGATE; 862 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 863 Record.push_back(VE.getValueID(CDS->getElementAsConstant(i))); 864 AbbrevToUse = AggregateAbbrev; 865 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 866 isa<ConstantVector>(C)) { 867 Code = bitc::CST_CODE_AGGREGATE; 868 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 869 Record.push_back(VE.getValueID(C->getOperand(i))); 870 AbbrevToUse = AggregateAbbrev; 871 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 872 switch (CE->getOpcode()) { 873 default: 874 if (Instruction::isCast(CE->getOpcode())) { 875 Code = bitc::CST_CODE_CE_CAST; 876 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 877 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 878 Record.push_back(VE.getValueID(C->getOperand(0))); 879 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 880 } else { 881 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 882 Code = bitc::CST_CODE_CE_BINOP; 883 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 884 Record.push_back(VE.getValueID(C->getOperand(0))); 885 Record.push_back(VE.getValueID(C->getOperand(1))); 886 uint64_t Flags = GetOptimizationFlags(CE); 887 if (Flags != 0) 888 Record.push_back(Flags); 889 } 890 break; 891 case Instruction::GetElementPtr: 892 Code = bitc::CST_CODE_CE_GEP; 893 if (cast<GEPOperator>(C)->isInBounds()) 894 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 895 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 896 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 897 Record.push_back(VE.getValueID(C->getOperand(i))); 898 } 899 break; 900 case Instruction::Select: 901 Code = bitc::CST_CODE_CE_SELECT; 902 Record.push_back(VE.getValueID(C->getOperand(0))); 903 Record.push_back(VE.getValueID(C->getOperand(1))); 904 Record.push_back(VE.getValueID(C->getOperand(2))); 905 break; 906 case Instruction::ExtractElement: 907 Code = bitc::CST_CODE_CE_EXTRACTELT; 908 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 909 Record.push_back(VE.getValueID(C->getOperand(0))); 910 Record.push_back(VE.getValueID(C->getOperand(1))); 911 break; 912 case Instruction::InsertElement: 913 Code = bitc::CST_CODE_CE_INSERTELT; 914 Record.push_back(VE.getValueID(C->getOperand(0))); 915 Record.push_back(VE.getValueID(C->getOperand(1))); 916 Record.push_back(VE.getValueID(C->getOperand(2))); 917 break; 918 case Instruction::ShuffleVector: 919 // If the return type and argument types are the same, this is a 920 // standard shufflevector instruction. If the types are different, 921 // then the shuffle is widening or truncating the input vectors, and 922 // the argument type must also be encoded. 923 if (C->getType() == C->getOperand(0)->getType()) { 924 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 925 } else { 926 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 927 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 928 } 929 Record.push_back(VE.getValueID(C->getOperand(0))); 930 Record.push_back(VE.getValueID(C->getOperand(1))); 931 Record.push_back(VE.getValueID(C->getOperand(2))); 932 break; 933 case Instruction::ICmp: 934 case Instruction::FCmp: 935 Code = bitc::CST_CODE_CE_CMP; 936 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 937 Record.push_back(VE.getValueID(C->getOperand(0))); 938 Record.push_back(VE.getValueID(C->getOperand(1))); 939 Record.push_back(CE->getPredicate()); 940 break; 941 } 942 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 943 Code = bitc::CST_CODE_BLOCKADDRESS; 944 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 945 Record.push_back(VE.getValueID(BA->getFunction())); 946 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 947 } else { 948 #ifndef NDEBUG 949 C->dump(); 950 #endif 951 llvm_unreachable("Unknown constant!"); 952 } 953 Stream.EmitRecord(Code, Record, AbbrevToUse); 954 Record.clear(); 955 } 956 957 Stream.ExitBlock(); 958 } 959 960 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE, 961 BitstreamWriter &Stream) { 962 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues(); 963 964 // Find the first constant to emit, which is the first non-globalvalue value. 965 // We know globalvalues have been emitted by WriteModuleInfo. 966 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 967 if (!isa<GlobalValue>(Vals[i].first)) { 968 WriteConstants(i, Vals.size(), VE, Stream, true); 969 return; 970 } 971 } 972 } 973 974 /// PushValueAndType - The file has to encode both the value and type id for 975 /// many values, because we need to know what type to create for forward 976 /// references. However, most operands are not forward references, so this type 977 /// field is not needed. 978 /// 979 /// This function adds V's value ID to Vals. If the value ID is higher than the 980 /// instruction ID, then it is a forward reference, and it also includes the 981 /// type ID. 982 static bool PushValueAndType(const Value *V, unsigned InstID, 983 SmallVector<unsigned, 64> &Vals, 984 llvm_2_9_func::ValueEnumerator &VE) { 985 unsigned ValID = VE.getValueID(V); 986 Vals.push_back(ValID); 987 if (ValID >= InstID) { 988 Vals.push_back(VE.getTypeID(V->getType())); 989 return true; 990 } 991 return false; 992 } 993 994 /// WriteInstruction - Emit an instruction to the specified stream. 995 static void WriteInstruction(const Instruction &I, unsigned InstID, 996 llvm_2_9_func::ValueEnumerator &VE, 997 BitstreamWriter &Stream, 998 SmallVector<unsigned, 64> &Vals) { 999 unsigned Code = 0; 1000 unsigned AbbrevToUse = 0; 1001 VE.setInstructionID(&I); 1002 switch (I.getOpcode()) { 1003 default: 1004 if (Instruction::isCast(I.getOpcode())) { 1005 Code = bitc::FUNC_CODE_INST_CAST; 1006 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1007 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1008 Vals.push_back(VE.getTypeID(I.getType())); 1009 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1010 } else { 1011 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1012 Code = bitc::FUNC_CODE_INST_BINOP; 1013 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1014 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1015 Vals.push_back(VE.getValueID(I.getOperand(1))); 1016 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1017 uint64_t Flags = GetOptimizationFlags(&I); 1018 if (Flags != 0) { 1019 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1020 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1021 Vals.push_back(Flags); 1022 } 1023 } 1024 break; 1025 1026 case Instruction::GetElementPtr: 1027 Code = bitc::FUNC_CODE_INST_GEP; 1028 if (cast<GEPOperator>(&I)->isInBounds()) 1029 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1030 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1031 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1032 break; 1033 case Instruction::ExtractValue: { 1034 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1035 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1036 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1037 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1038 Vals.push_back(*i); 1039 break; 1040 } 1041 case Instruction::InsertValue: { 1042 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1043 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1044 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1045 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1046 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1047 Vals.push_back(*i); 1048 break; 1049 } 1050 case Instruction::Select: 1051 Code = bitc::FUNC_CODE_INST_VSELECT; 1052 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1053 Vals.push_back(VE.getValueID(I.getOperand(2))); 1054 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1055 break; 1056 case Instruction::ExtractElement: 1057 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1058 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1059 Vals.push_back(VE.getValueID(I.getOperand(1))); 1060 break; 1061 case Instruction::InsertElement: 1062 Code = bitc::FUNC_CODE_INST_INSERTELT; 1063 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1064 Vals.push_back(VE.getValueID(I.getOperand(1))); 1065 Vals.push_back(VE.getValueID(I.getOperand(2))); 1066 break; 1067 case Instruction::ShuffleVector: 1068 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1069 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1070 Vals.push_back(VE.getValueID(I.getOperand(1))); 1071 Vals.push_back(VE.getValueID(I.getOperand(2))); 1072 break; 1073 case Instruction::ICmp: 1074 case Instruction::FCmp: 1075 // compare returning Int1Ty or vector of Int1Ty 1076 Code = bitc::FUNC_CODE_INST_CMP2; 1077 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1078 Vals.push_back(VE.getValueID(I.getOperand(1))); 1079 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1080 break; 1081 1082 case Instruction::Ret: 1083 { 1084 Code = bitc::FUNC_CODE_INST_RET; 1085 unsigned NumOperands = I.getNumOperands(); 1086 if (NumOperands == 0) 1087 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1088 else if (NumOperands == 1) { 1089 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1090 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1091 } else { 1092 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1093 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1094 } 1095 } 1096 break; 1097 case Instruction::Br: 1098 { 1099 Code = bitc::FUNC_CODE_INST_BR; 1100 const BranchInst &II = cast<BranchInst>(I); 1101 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1102 if (II.isConditional()) { 1103 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1104 Vals.push_back(VE.getValueID(II.getCondition())); 1105 } 1106 } 1107 break; 1108 case Instruction::Switch: 1109 { 1110 Code = bitc::FUNC_CODE_INST_SWITCH; 1111 const SwitchInst &SI = cast<SwitchInst>(I); 1112 1113 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1114 Vals.push_back(VE.getValueID(SI.getCondition())); 1115 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1116 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1117 i != e; ++i) { 1118 const IntegersSubset& CaseRanges = i.getCaseValueEx(); 1119 1120 if (CaseRanges.isSingleNumber()) { 1121 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt())); 1122 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1123 } else if (CaseRanges.isSingleNumbersOnly()) { 1124 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1125 ri != rn; ++ri) { 1126 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt())); 1127 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1128 } 1129 } else { 1130 llvm_unreachable("Not single number?"); 1131 } 1132 } 1133 } 1134 break; 1135 case Instruction::IndirectBr: 1136 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1137 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1138 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1139 Vals.push_back(VE.getValueID(I.getOperand(i))); 1140 break; 1141 1142 case Instruction::Invoke: { 1143 const InvokeInst *II = cast<InvokeInst>(&I); 1144 const Value *Callee(II->getCalledValue()); 1145 PointerType *PTy = cast<PointerType>(Callee->getType()); 1146 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1147 Code = bitc::FUNC_CODE_INST_INVOKE; 1148 1149 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1150 Vals.push_back(II->getCallingConv()); 1151 Vals.push_back(VE.getValueID(II->getNormalDest())); 1152 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1153 PushValueAndType(Callee, InstID, Vals, VE); 1154 1155 // Emit value #'s for the fixed parameters. 1156 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1157 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1158 1159 // Emit type/value pairs for varargs params. 1160 if (FTy->isVarArg()) { 1161 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1162 i != e; ++i) 1163 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1164 } 1165 break; 1166 } 1167 case Instruction::Resume: 1168 Code = bitc::FUNC_CODE_INST_RESUME; 1169 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1170 break; 1171 case Instruction::Unreachable: 1172 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1173 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1174 break; 1175 1176 case Instruction::PHI: { 1177 const PHINode &PN = cast<PHINode>(I); 1178 Code = bitc::FUNC_CODE_INST_PHI; 1179 Vals.push_back(VE.getTypeID(PN.getType())); 1180 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1181 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1182 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1183 } 1184 break; 1185 } 1186 1187 case Instruction::LandingPad: { 1188 const LandingPadInst &LP = cast<LandingPadInst>(I); 1189 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1190 Vals.push_back(VE.getTypeID(LP.getType())); 1191 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1192 Vals.push_back(LP.isCleanup()); 1193 Vals.push_back(LP.getNumClauses()); 1194 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1195 if (LP.isCatch(I)) 1196 Vals.push_back(LandingPadInst::Catch); 1197 else 1198 Vals.push_back(LandingPadInst::Filter); 1199 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1200 } 1201 break; 1202 } 1203 1204 case Instruction::Alloca: 1205 Code = bitc::FUNC_CODE_INST_ALLOCA; 1206 Vals.push_back(VE.getTypeID(I.getType())); 1207 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1208 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1209 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1210 break; 1211 1212 case Instruction::Load: 1213 if (cast<LoadInst>(I).isAtomic()) { 1214 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1215 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1216 } else { 1217 Code = bitc::FUNC_CODE_INST_LOAD; 1218 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1219 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1220 } 1221 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1222 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1223 if (cast<LoadInst>(I).isAtomic()) { 1224 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1225 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1226 } 1227 break; 1228 case Instruction::Store: 1229 if (cast<StoreInst>(I).isAtomic()) 1230 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1231 else 1232 Code = bitc::FUNC_CODE_INST_STORE; 1233 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1234 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1235 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1236 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1237 if (cast<StoreInst>(I).isAtomic()) { 1238 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1239 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1240 } 1241 break; 1242 case Instruction::AtomicCmpXchg: 1243 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1244 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1245 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1246 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1247 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1248 Vals.push_back(GetEncodedOrdering( 1249 cast<AtomicCmpXchgInst>(I).getOrdering())); 1250 Vals.push_back(GetEncodedSynchScope( 1251 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1252 break; 1253 case Instruction::AtomicRMW: 1254 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1255 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1256 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1257 Vals.push_back(GetEncodedRMWOperation( 1258 cast<AtomicRMWInst>(I).getOperation())); 1259 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1260 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1261 Vals.push_back(GetEncodedSynchScope( 1262 cast<AtomicRMWInst>(I).getSynchScope())); 1263 break; 1264 case Instruction::Fence: 1265 Code = bitc::FUNC_CODE_INST_FENCE; 1266 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1267 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1268 break; 1269 case Instruction::Call: { 1270 const CallInst &CI = cast<CallInst>(I); 1271 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1272 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1273 1274 Code = bitc::FUNC_CODE_INST_CALL; 1275 1276 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1277 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1278 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1279 1280 // Emit value #'s for the fixed parameters. 1281 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1282 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1283 1284 // Emit type/value pairs for varargs params. 1285 if (FTy->isVarArg()) { 1286 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1287 i != e; ++i) 1288 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1289 } 1290 break; 1291 } 1292 case Instruction::VAArg: 1293 Code = bitc::FUNC_CODE_INST_VAARG; 1294 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1295 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1296 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1297 break; 1298 } 1299 1300 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1301 Vals.clear(); 1302 } 1303 1304 // Emit names for globals/functions etc. 1305 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1306 const llvm_2_9_func::ValueEnumerator &VE, 1307 BitstreamWriter &Stream) { 1308 if (VST.empty()) return; 1309 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1310 1311 // FIXME: Set up the abbrev, we know how many values there are! 1312 // FIXME: We know if the type names can use 7-bit ascii. 1313 SmallVector<unsigned, 64> NameVals; 1314 1315 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1316 SI != SE; ++SI) { 1317 1318 const ValueName &Name = *SI; 1319 1320 // Figure out the encoding to use for the name. 1321 bool is7Bit = true; 1322 bool isChar6 = true; 1323 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1324 C != E; ++C) { 1325 if (isChar6) 1326 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1327 if ((unsigned char)*C & 128) { 1328 is7Bit = false; 1329 break; // don't bother scanning the rest. 1330 } 1331 } 1332 1333 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1334 1335 // VST_ENTRY: [valueid, namechar x N] 1336 // VST_BBENTRY: [bbid, namechar x N] 1337 unsigned Code; 1338 if (isa<BasicBlock>(SI->getValue())) { 1339 Code = bitc::VST_CODE_BBENTRY; 1340 if (isChar6) 1341 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1342 } else { 1343 Code = bitc::VST_CODE_ENTRY; 1344 if (isChar6) 1345 AbbrevToUse = VST_ENTRY_6_ABBREV; 1346 else if (is7Bit) 1347 AbbrevToUse = VST_ENTRY_7_ABBREV; 1348 } 1349 1350 NameVals.push_back(VE.getValueID(SI->getValue())); 1351 for (const char *P = Name.getKeyData(), 1352 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1353 NameVals.push_back((unsigned char)*P); 1354 1355 // Emit the finished record. 1356 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1357 NameVals.clear(); 1358 } 1359 Stream.ExitBlock(); 1360 } 1361 1362 /// WriteFunction - Emit a function body to the module stream. 1363 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE, 1364 BitstreamWriter &Stream) { 1365 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1366 VE.incorporateFunction(F); 1367 1368 SmallVector<unsigned, 64> Vals; 1369 1370 // Emit the number of basic blocks, so the reader can create them ahead of 1371 // time. 1372 Vals.push_back(VE.getBasicBlocks().size()); 1373 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1374 Vals.clear(); 1375 1376 // If there are function-local constants, emit them now. 1377 unsigned CstStart, CstEnd; 1378 VE.getFunctionConstantRange(CstStart, CstEnd); 1379 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1380 1381 // If there is function-local metadata, emit it now. 1382 WriteFunctionLocalMetadata(F, VE, Stream); 1383 1384 // Keep a running idea of what the instruction ID is. 1385 unsigned InstID = CstEnd; 1386 1387 bool NeedsMetadataAttachment = false; 1388 1389 DebugLoc LastDL; 1390 1391 // Finally, emit all the instructions, in order. 1392 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1393 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1394 I != E; ++I) { 1395 WriteInstruction(*I, InstID, VE, Stream, Vals); 1396 1397 if (!I->getType()->isVoidTy()) 1398 ++InstID; 1399 1400 // If the instruction has metadata, write a metadata attachment later. 1401 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1402 1403 // If the instruction has a debug location, emit it. 1404 DebugLoc DL = I->getDebugLoc(); 1405 if (DL.isUnknown()) { 1406 // nothing todo. 1407 } else if (DL == LastDL) { 1408 // Just repeat the same debug loc as last time. 1409 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1410 } else { 1411 MDNode *Scope, *IA; 1412 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1413 1414 Vals.push_back(DL.getLine()); 1415 Vals.push_back(DL.getCol()); 1416 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1417 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1418 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1419 Vals.clear(); 1420 1421 LastDL = DL; 1422 } 1423 } 1424 1425 // Emit names for all the instructions etc. 1426 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1427 1428 if (NeedsMetadataAttachment) 1429 WriteMetadataAttachment(F, VE, Stream); 1430 VE.purgeFunction(); 1431 Stream.ExitBlock(); 1432 } 1433 1434 // Emit blockinfo, which defines the standard abbreviations etc. 1435 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE, 1436 BitstreamWriter &Stream) { 1437 // We only want to emit block info records for blocks that have multiple 1438 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1439 // blocks can defined their abbrevs inline. 1440 Stream.EnterBlockInfoBlock(2); 1441 1442 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1443 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1448 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1449 Abbv) != VST_ENTRY_8_ABBREV) 1450 llvm_unreachable("Unexpected abbrev ordering!"); 1451 } 1452 1453 { // 7-bit fixed width VST_ENTRY strings. 1454 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1455 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1459 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1460 Abbv) != VST_ENTRY_7_ABBREV) 1461 llvm_unreachable("Unexpected abbrev ordering!"); 1462 } 1463 { // 6-bit char6 VST_ENTRY strings. 1464 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1465 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1469 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1470 Abbv) != VST_ENTRY_6_ABBREV) 1471 llvm_unreachable("Unexpected abbrev ordering!"); 1472 } 1473 { // 6-bit char6 VST_BBENTRY strings. 1474 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1475 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1479 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1480 Abbv) != VST_BBENTRY_6_ABBREV) 1481 llvm_unreachable("Unexpected abbrev ordering!"); 1482 } 1483 1484 1485 1486 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1487 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1488 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1490 Log2_32_Ceil(VE.getTypes().size()+1))); 1491 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1492 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1493 llvm_unreachable("Unexpected abbrev ordering!"); 1494 } 1495 1496 { // INTEGER abbrev for CONSTANTS_BLOCK. 1497 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1498 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1500 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1501 Abbv) != CONSTANTS_INTEGER_ABBREV) 1502 llvm_unreachable("Unexpected abbrev ordering!"); 1503 } 1504 1505 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1506 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1507 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1510 Log2_32_Ceil(VE.getTypes().size()+1))); 1511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1512 1513 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1514 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1515 llvm_unreachable("Unexpected abbrev ordering!"); 1516 } 1517 { // NULL abbrev for CONSTANTS_BLOCK. 1518 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1519 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1520 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1521 Abbv) != CONSTANTS_NULL_Abbrev) 1522 llvm_unreachable("Unexpected abbrev ordering!"); 1523 } 1524 1525 // FIXME: This should only use space for first class types! 1526 1527 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1528 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1529 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1533 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1534 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1535 llvm_unreachable("Unexpected abbrev ordering!"); 1536 } 1537 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1538 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1539 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1543 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1544 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1545 llvm_unreachable("Unexpected abbrev ordering!"); 1546 } 1547 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1548 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1549 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1554 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1555 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1556 llvm_unreachable("Unexpected abbrev ordering!"); 1557 } 1558 { // INST_CAST abbrev for FUNCTION_BLOCK. 1559 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1560 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1563 Log2_32_Ceil(VE.getTypes().size()+1))); 1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1566 Abbv) != FUNCTION_INST_CAST_ABBREV) 1567 llvm_unreachable("Unexpected abbrev ordering!"); 1568 } 1569 1570 { // INST_RET abbrev for FUNCTION_BLOCK. 1571 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1572 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1573 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1574 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1575 llvm_unreachable("Unexpected abbrev ordering!"); 1576 } 1577 { // INST_RET abbrev for FUNCTION_BLOCK. 1578 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1579 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1581 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1582 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1583 llvm_unreachable("Unexpected abbrev ordering!"); 1584 } 1585 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1586 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1587 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1588 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1589 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1590 llvm_unreachable("Unexpected abbrev ordering!"); 1591 } 1592 1593 Stream.ExitBlock(); 1594 } 1595 1596 1597 /// WriteModule - Emit the specified module to the bitstream. 1598 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1599 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1600 1601 // Emit the version number if it is non-zero. 1602 if (CurVersion) { 1603 SmallVector<unsigned, 1> Vals; 1604 Vals.push_back(CurVersion); 1605 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1606 } 1607 1608 // Analyze the module, enumerating globals, functions, etc. 1609 llvm_2_9_func::ValueEnumerator VE(M); 1610 1611 // Emit blockinfo, which defines the standard abbreviations etc. 1612 WriteBlockInfo(VE, Stream); 1613 1614 // Emit information about parameter attributes. 1615 WriteAttributeTable(VE, Stream); 1616 1617 // Emit information describing all of the types in the module. 1618 WriteTypeTable(VE, Stream); 1619 1620 // Emit top-level description of module, including target triple, inline asm, 1621 // descriptors for global variables, and function prototype info. 1622 WriteModuleInfo(M, VE, Stream); 1623 1624 // Emit constants. 1625 WriteModuleConstants(VE, Stream); 1626 1627 // Emit metadata. 1628 WriteModuleMetadata(M, VE, Stream); 1629 1630 // Emit function bodies. 1631 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1632 if (!F->isDeclaration()) 1633 WriteFunction(*F, VE, Stream); 1634 1635 // Emit metadata. 1636 WriteModuleMetadataStore(M, Stream); 1637 1638 // Emit names for globals/functions etc. 1639 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1640 1641 Stream.ExitBlock(); 1642 } 1643 1644 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1645 /// header and trailer to make it compatible with the system archiver. To do 1646 /// this we emit the following header, and then emit a trailer that pads the 1647 /// file out to be a multiple of 16 bytes. 1648 /// 1649 /// struct bc_header { 1650 /// uint32_t Magic; // 0x0B17C0DE 1651 /// uint32_t Version; // Version, currently always 0. 1652 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1653 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1654 /// uint32_t CPUType; // CPU specifier. 1655 /// ... potentially more later ... 1656 /// }; 1657 enum { 1658 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1659 DarwinBCHeaderSize = 5*4 1660 }; 1661 1662 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1663 uint32_t &Position) { 1664 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1665 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1666 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1667 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1668 Position += 4; 1669 } 1670 1671 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1672 const Triple &TT) { 1673 unsigned CPUType = ~0U; 1674 1675 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1676 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1677 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1678 // specific constants here because they are implicitly part of the Darwin ABI. 1679 enum { 1680 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1681 DARWIN_CPU_TYPE_X86 = 7, 1682 DARWIN_CPU_TYPE_ARM = 12, 1683 DARWIN_CPU_TYPE_POWERPC = 18 1684 }; 1685 1686 Triple::ArchType Arch = TT.getArch(); 1687 if (Arch == Triple::x86_64) 1688 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1689 else if (Arch == Triple::x86) 1690 CPUType = DARWIN_CPU_TYPE_X86; 1691 else if (Arch == Triple::ppc) 1692 CPUType = DARWIN_CPU_TYPE_POWERPC; 1693 else if (Arch == Triple::ppc64) 1694 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1695 else if (Arch == Triple::arm || Arch == Triple::thumb) 1696 CPUType = DARWIN_CPU_TYPE_ARM; 1697 1698 // Traditional Bitcode starts after header. 1699 assert(Buffer.size() >= DarwinBCHeaderSize && 1700 "Expected header size to be reserved"); 1701 unsigned BCOffset = DarwinBCHeaderSize; 1702 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1703 1704 // Write the magic and version. 1705 unsigned Position = 0; 1706 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1707 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1708 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1709 WriteInt32ToBuffer(BCSize , Buffer, Position); 1710 WriteInt32ToBuffer(CPUType , Buffer, Position); 1711 1712 // If the file is not a multiple of 16 bytes, insert dummy padding. 1713 while (Buffer.size() & 15) 1714 Buffer.push_back(0); 1715 } 1716 1717 /// WriteBitcodeToFile - Write the specified module to the specified output 1718 /// stream. 1719 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1720 SmallVector<char, 1024> Buffer; 1721 Buffer.reserve(256*1024); 1722 1723 // If this is darwin or another generic macho target, reserve space for the 1724 // header. 1725 Triple TT(M->getTargetTriple()); 1726 if (TT.isOSDarwin()) 1727 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1728 1729 // Emit the module into the buffer. 1730 { 1731 BitstreamWriter Stream(Buffer); 1732 1733 // Emit the file header. 1734 Stream.Emit((unsigned)'B', 8); 1735 Stream.Emit((unsigned)'C', 8); 1736 Stream.Emit(0x0, 4); 1737 Stream.Emit(0xC, 4); 1738 Stream.Emit(0xE, 4); 1739 Stream.Emit(0xD, 4); 1740 1741 // Emit the module. 1742 WriteModule(M, Stream); 1743 } 1744 1745 if (TT.isOSDarwin()) 1746 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1747 1748 // Write the generated bitstream to "Out". 1749 Out.write((char*)&Buffer.front(), Buffer.size()); 1750 } 1751