1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package java.lang; 19 20 /** 21 * The wrapper for the primitive type {@code double}. 22 * 23 * @see java.lang.Number 24 * @since 1.0 25 */ 26 public final class Double extends Number implements Comparable<Double> { 27 static final int EXPONENT_BIAS = 1023; 28 29 static final int EXPONENT_BITS = 12; 30 static final int MANTISSA_BITS = 52; 31 static final int NON_MANTISSA_BITS = 12; 32 33 static final long SIGN_MASK = 0x8000000000000000L; 34 static final long EXPONENT_MASK = 0x7ff0000000000000L; 35 static final long MANTISSA_MASK = 0x000fffffffffffffL; 36 37 private static final long serialVersionUID = -9172774392245257468L; 38 39 /** 40 * The value which the receiver represents. 41 */ 42 private final double value; 43 44 /** 45 * Constant for the maximum {@code double} value, (2 - 2<sup>-52</sup>) * 46 * 2<sup>1023</sup>. 47 */ 48 public static final double MAX_VALUE = 1.79769313486231570e+308; 49 50 /** 51 * Constant for the minimum {@code double} value, 2<sup>-1074</sup>. 52 */ 53 public static final double MIN_VALUE = 5e-324; 54 55 /* 4.94065645841246544e-324 gets rounded to 9.88131e-324 */ 56 57 /** 58 * Constant for the Not-a-Number (NaN) value of the {@code double} type. 59 */ 60 public static final double NaN = 0.0 / 0.0; 61 62 /** 63 * Constant for the positive infinity value of the {@code double} type. 64 */ 65 public static final double POSITIVE_INFINITY = 1.0 / 0.0; 66 67 /** 68 * Constant for the negative infinity value of the {@code double} type. 69 */ 70 public static final double NEGATIVE_INFINITY = -1.0 / 0.0; 71 72 /** 73 * Constant for the smallest positive normal value of the {@code double} type. 74 * 75 * @since 1.6 76 */ 77 public static final double MIN_NORMAL = 2.2250738585072014E-308; 78 79 /** 80 * Maximum base-2 exponent that a finite value of the {@code double} type may have. 81 * Equal to {@code Math.getExponent(Double.MAX_VALUE)}. 82 * 83 * @since 1.6 84 */ 85 public static final int MAX_EXPONENT = 1023; 86 87 /** 88 * Minimum base-2 exponent that a normal value of the {@code double} type may have. 89 * Equal to {@code Math.getExponent(Double.MIN_NORMAL)}. 90 * 91 * @since 1.6 92 */ 93 public static final int MIN_EXPONENT = -1022; 94 95 /** 96 * The {@link Class} object that represents the primitive type {@code 97 * double}. 98 * 99 * @since 1.1 100 */ 101 @SuppressWarnings("unchecked") 102 public static final Class<Double> TYPE 103 = (Class<Double>) double[].class.getComponentType(); 104 // Note: Double.TYPE can't be set to "double.class", since *that* is 105 // defined to be "java.lang.Double.TYPE"; 106 107 /** 108 * Constant for the number of bits needed to represent a {@code double} in 109 * two's complement form. 110 * 111 * @since 1.5 112 */ 113 public static final int SIZE = 64; 114 115 /** 116 * Constructs a new {@code Double} with the specified primitive double 117 * value. 118 * 119 * @param value 120 * the primitive double value to store in the new instance. 121 */ 122 public Double(double value) { 123 this.value = value; 124 } 125 126 /** 127 * Constructs a new {@code Double} from the specified string. 128 * 129 * @param string 130 * the string representation of a double value. 131 * @throws NumberFormatException 132 * if {@code string} cannot be parsed as a double value. 133 * @see #parseDouble(String) 134 */ 135 public Double(String string) throws NumberFormatException { 136 this(parseDouble(string)); 137 } 138 139 /** 140 * Compares this object to the specified double object to determine their 141 * relative order. There are two special cases: 142 * <ul> 143 * <li>{@code Double.NaN} is equal to {@code Double.NaN} and it is greater 144 * than any other double value, including {@code Double.POSITIVE_INFINITY};</li> 145 * <li>+0.0d is greater than -0.0d</li> 146 * </ul> 147 * 148 * @param object 149 * the double object to compare this object to. 150 * @return a negative value if the value of this double is less than the 151 * value of {@code object}; 0 if the value of this double and the 152 * value of {@code object} are equal; a positive value if the value 153 * of this double is greater than the value of {@code object}. 154 * @throws NullPointerException 155 * if {@code object} is {@code null}. 156 * @see java.lang.Comparable 157 * @since 1.2 158 */ 159 public int compareTo(Double object) { 160 return compare(value, object.value); 161 } 162 163 @Override 164 public byte byteValue() { 165 return (byte) value; 166 } 167 168 /** 169 * Returns an integer corresponding to the bits of the given 170 * <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> double precision 171 * {@code value}. All <em>Not-a-Number (NaN)</em> values are converted to a single NaN 172 * representation ({@code 0x7ff8000000000000L}) (compare to {@link #doubleToRawLongBits}). 173 */ 174 public static native long doubleToLongBits(double value); 175 176 /** 177 * Returns an integer corresponding to the bits of the given 178 * <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> double precision 179 * {@code value}. <em>Not-a-Number (NaN)</em> values are preserved (compare 180 * to {@link #doubleToLongBits}). 181 */ 182 public static native long doubleToRawLongBits(double value); 183 184 /** 185 * Gets the primitive value of this double. 186 * 187 * @return this object's primitive value. 188 */ 189 @Override 190 public double doubleValue() { 191 return value; 192 } 193 194 /** 195 * Tests this double for equality with {@code object}. 196 * To be equal, {@code object} must be an instance of {@code Double} and 197 * {@code doubleToLongBits} must give the same value for both objects. 198 * 199 * <p>Note that, unlike {@code ==}, {@code -0.0} and {@code +0.0} compare 200 * unequal, and {@code NaN}s compare equal by this method. 201 * 202 * @param object 203 * the object to compare this double with. 204 * @return {@code true} if the specified object is equal to this 205 * {@code Double}; {@code false} otherwise. 206 */ 207 @Override 208 public boolean equals(Object object) { 209 return (object instanceof Double) && 210 (doubleToLongBits(this.value) == doubleToLongBits(((Double) object).value)); 211 } 212 213 @Override 214 public float floatValue() { 215 return (float) value; 216 } 217 218 @Override 219 public int hashCode() { 220 long v = doubleToLongBits(value); 221 return (int) (v ^ (v >>> 32)); 222 } 223 224 @Override 225 public int intValue() { 226 return (int) value; 227 } 228 229 /** 230 * Indicates whether this object represents an infinite value. 231 * 232 * @return {@code true} if the value of this double is positive or negative 233 * infinity; {@code false} otherwise. 234 */ 235 public boolean isInfinite() { 236 return isInfinite(value); 237 } 238 239 /** 240 * Indicates whether the specified double represents an infinite value. 241 * 242 * @param d 243 * the double to check. 244 * @return {@code true} if the value of {@code d} is positive or negative 245 * infinity; {@code false} otherwise. 246 */ 247 public static boolean isInfinite(double d) { 248 return (d == POSITIVE_INFINITY) || (d == NEGATIVE_INFINITY); 249 } 250 251 /** 252 * Indicates whether this object is a <em>Not-a-Number (NaN)</em> value. 253 * 254 * @return {@code true} if this double is <em>Not-a-Number</em>; 255 * {@code false} if it is a (potentially infinite) double number. 256 */ 257 public boolean isNaN() { 258 return isNaN(value); 259 } 260 261 /** 262 * Indicates whether the specified double is a <em>Not-a-Number (NaN)</em> 263 * value. 264 * 265 * @param d 266 * the double value to check. 267 * @return {@code true} if {@code d} is <em>Not-a-Number</em>; 268 * {@code false} if it is a (potentially infinite) double number. 269 */ 270 public static boolean isNaN(double d) { 271 return d != d; 272 } 273 274 /** 275 * Returns the <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> 276 * double precision float corresponding to the given {@code bits}. 277 */ 278 public static native double longBitsToDouble(long bits); 279 280 @Override 281 public long longValue() { 282 return (long) value; 283 } 284 285 /** 286 * Parses the specified string as a double value. 287 * 288 * @param string 289 * the string representation of a double value. 290 * @return the primitive double value represented by {@code string}. 291 * @throws NumberFormatException 292 * if {@code string} cannot be parsed as a double value. 293 */ 294 public static double parseDouble(String string) throws NumberFormatException { 295 return StringToReal.parseDouble(string); 296 } 297 298 @Override 299 public short shortValue() { 300 return (short) value; 301 } 302 303 @Override 304 public String toString() { 305 return Double.toString(value); 306 } 307 308 /** 309 * Returns a string containing a concise, human-readable description of the 310 * specified double value. 311 * 312 * @param d 313 * the double to convert to a string. 314 * @return a printable representation of {@code d}. 315 */ 316 public static String toString(double d) { 317 return RealToString.getInstance().doubleToString(d); 318 } 319 320 /** 321 * Parses the specified string as a double value. 322 * 323 * @param string 324 * the string representation of a double value. 325 * @return a {@code Double} instance containing the double value represented 326 * by {@code string}. 327 * @throws NumberFormatException 328 * if {@code string} cannot be parsed as a double value. 329 * @see #parseDouble(String) 330 */ 331 public static Double valueOf(String string) throws NumberFormatException { 332 return parseDouble(string); 333 } 334 335 /** 336 * Compares the two specified double values. There are two special cases: 337 * <ul> 338 * <li>{@code Double.NaN} is equal to {@code Double.NaN} and it is greater 339 * than any other double value, including {@code Double.POSITIVE_INFINITY};</li> 340 * <li>+0.0d is greater than -0.0d</li> 341 * </ul> 342 * 343 * @param double1 344 * the first value to compare. 345 * @param double2 346 * the second value to compare. 347 * @return a negative value if {@code double1} is less than {@code double2}; 348 * 0 if {@code double1} and {@code double2} are equal; a positive 349 * value if {@code double1} is greater than {@code double2}. 350 */ 351 public static int compare(double double1, double double2) { 352 // Non-zero, non-NaN checking. 353 if (double1 > double2) { 354 return 1; 355 } 356 if (double2 > double1) { 357 return -1; 358 } 359 if (double1 == double2 && 0.0d != double1) { 360 return 0; 361 } 362 363 // NaNs are equal to other NaNs and larger than any other double 364 if (isNaN(double1)) { 365 if (isNaN(double2)) { 366 return 0; 367 } 368 return 1; 369 } else if (isNaN(double2)) { 370 return -1; 371 } 372 373 // Deal with +0.0 and -0.0 374 long d1 = doubleToRawLongBits(double1); 375 long d2 = doubleToRawLongBits(double2); 376 // The below expression is equivalent to: 377 // (d1 == d2) ? 0 : (d1 < d2) ? -1 : 1 378 return (int) ((d1 >> 63) - (d2 >> 63)); 379 } 380 381 /** 382 * Returns a {@code Double} instance for the specified double value. 383 * 384 * @param d 385 * the double value to store in the instance. 386 * @return a {@code Double} instance containing {@code d}. 387 * @since 1.5 388 */ 389 public static Double valueOf(double d) { 390 return new Double(d); 391 } 392 393 /** 394 * Converts the specified double into its hexadecimal string representation. 395 * 396 * @param d 397 * the double to convert. 398 * @return the hexadecimal string representation of {@code d}. 399 * @since 1.5 400 */ 401 public static String toHexString(double d) { 402 /* 403 * Reference: http://en.wikipedia.org/wiki/IEEE_754-1985 404 */ 405 if (d != d) { 406 return "NaN"; 407 } 408 if (d == POSITIVE_INFINITY) { 409 return "Infinity"; 410 } 411 if (d == NEGATIVE_INFINITY) { 412 return "-Infinity"; 413 } 414 415 long bitValue = doubleToLongBits(d); 416 417 boolean negative = (bitValue & 0x8000000000000000L) != 0; 418 // mask exponent bits and shift down 419 long exponent = (bitValue & 0x7FF0000000000000L) >>> 52; 420 // mask significand bits and shift up 421 long significand = bitValue & 0x000FFFFFFFFFFFFFL; 422 423 if (exponent == 0 && significand == 0) { 424 return (negative ? "-0x0.0p0" : "0x0.0p0"); 425 } 426 427 StringBuilder hexString = new StringBuilder(10); 428 if (negative) { 429 hexString.append("-0x"); 430 } else { 431 hexString.append("0x"); 432 } 433 434 if (exponent == 0) { // denormal (subnormal) value 435 hexString.append("0."); 436 // significand is 52-bits, so there can be 13 hex digits 437 int fractionDigits = 13; 438 // remove trailing hex zeros, so Integer.toHexString() won't print 439 // them 440 while ((significand != 0) && ((significand & 0xF) == 0)) { 441 significand >>>= 4; 442 fractionDigits--; 443 } 444 // this assumes Integer.toHexString() returns lowercase characters 445 String hexSignificand = Long.toHexString(significand); 446 447 // if there are digits left, then insert some '0' chars first 448 if (significand != 0 && fractionDigits > hexSignificand.length()) { 449 int digitDiff = fractionDigits - hexSignificand.length(); 450 while (digitDiff-- != 0) { 451 hexString.append('0'); 452 } 453 } 454 hexString.append(hexSignificand); 455 hexString.append("p-1022"); 456 } else { // normal value 457 hexString.append("1."); 458 // significand is 52-bits, so there can be 13 hex digits 459 int fractionDigits = 13; 460 // remove trailing hex zeros, so Integer.toHexString() won't print 461 // them 462 while ((significand != 0) && ((significand & 0xF) == 0)) { 463 significand >>>= 4; 464 fractionDigits--; 465 } 466 // this assumes Integer.toHexString() returns lowercase characters 467 String hexSignificand = Long.toHexString(significand); 468 469 // if there are digits left, then insert some '0' chars first 470 if (significand != 0 && fractionDigits > hexSignificand.length()) { 471 int digitDiff = fractionDigits - hexSignificand.length(); 472 while (digitDiff-- != 0) { 473 hexString.append('0'); 474 } 475 } 476 477 hexString.append(hexSignificand); 478 hexString.append('p'); 479 // remove exponent's 'bias' and convert to a string 480 hexString.append(Long.toString(exponent - 1023)); 481 } 482 return hexString.toString(); 483 } 484 } 485