Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef X86BASEINFO_H
     18 #define X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/MC/MCInstrDesc.h"
     22 #include "llvm/Support/DataTypes.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 namespace llvm {
     26 
     27 namespace X86 {
     28   // Enums for memory operand decoding.  Each memory operand is represented with
     29   // a 5 operand sequence in the form:
     30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     31   // These enums help decode this.
     32   enum {
     33     AddrBaseReg = 0,
     34     AddrScaleAmt = 1,
     35     AddrIndexReg = 2,
     36     AddrDisp = 3,
     37 
     38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     39     AddrSegmentReg = 4,
     40 
     41     /// AddrNumOperands - Total number of operands in a memory reference.
     42     AddrNumOperands = 5
     43   };
     44 } // end namespace X86;
     45 
     46 /// X86II - This namespace holds all of the target specific flags that
     47 /// instruction info tracks.
     48 ///
     49 namespace X86II {
     50   /// Target Operand Flag enum.
     51   enum TOF {
     52     //===------------------------------------------------------------------===//
     53     // X86 Specific MachineOperand flags.
     54 
     55     MO_NO_FLAG,
     56 
     57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     58     /// relocation of:
     59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     60     MO_GOT_ABSOLUTE_ADDRESS,
     61 
     62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     63     /// immediate should get the value of the symbol minus the PIC base label:
     64     ///    SYMBOL_LABEL - PICBASELABEL
     65     MO_PIC_BASE_OFFSET,
     66 
     67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     68     /// offset to the GOT entry for the symbol name from the base of the GOT.
     69     ///
     70     /// See the X86-64 ELF ABI supplement for more details.
     71     ///    SYMBOL_LABEL @GOT
     72     MO_GOT,
     73 
     74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     75     /// the offset to the location of the symbol name from the base of the GOT.
     76     ///
     77     /// See the X86-64 ELF ABI supplement for more details.
     78     ///    SYMBOL_LABEL @GOTOFF
     79     MO_GOTOFF,
     80 
     81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
     82     /// offset to the GOT entry for the symbol name from the current code
     83     /// location.
     84     ///
     85     /// See the X86-64 ELF ABI supplement for more details.
     86     ///    SYMBOL_LABEL @GOTPCREL
     87     MO_GOTPCREL,
     88 
     89     /// MO_PLT - On a symbol operand this indicates that the immediate is
     90     /// offset to the PLT entry of symbol name from the current code location.
     91     ///
     92     /// See the X86-64 ELF ABI supplement for more details.
     93     ///    SYMBOL_LABEL @PLT
     94     MO_PLT,
     95 
     96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
     97     /// the offset of the GOT entry with the TLS index structure that contains
     98     /// the module number and variable offset for the symbol. Used in the
     99     /// general dynamic TLS access model.
    100     ///
    101     /// See 'ELF Handling for Thread-Local Storage' for more details.
    102     ///    SYMBOL_LABEL @TLSGD
    103     MO_TLSGD,
    104 
    105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    106     /// the offset of the GOT entry with the TLS index for the module that
    107     /// contains the symbol. When this index is passed to a call to
    108     /// __tls_get_addr, the function will return the base address of the TLS
    109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    110     ///
    111     /// See 'ELF Handling for Thread-Local Storage' for more details.
    112     ///    SYMBOL_LABEL @TLSLD
    113     MO_TLSLD,
    114 
    115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    116     /// the offset of the GOT entry with the TLS index for the module that
    117     /// contains the symbol. When this index is passed to a call to
    118     /// ___tls_get_addr, the function will return the base address of the TLS
    119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    120     ///
    121     /// See 'ELF Handling for Thread-Local Storage' for more details.
    122     ///    SYMBOL_LABEL @TLSLDM
    123     MO_TLSLDM,
    124 
    125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    126     /// the offset of the GOT entry with the thread-pointer offset for the
    127     /// symbol. Used in the x86-64 initial exec TLS access model.
    128     ///
    129     /// See 'ELF Handling for Thread-Local Storage' for more details.
    130     ///    SYMBOL_LABEL @GOTTPOFF
    131     MO_GOTTPOFF,
    132 
    133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    134     /// the absolute address of the GOT entry with the negative thread-pointer
    135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    136     /// model.
    137     ///
    138     /// See 'ELF Handling for Thread-Local Storage' for more details.
    139     ///    SYMBOL_LABEL @INDNTPOFF
    140     MO_INDNTPOFF,
    141 
    142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
    144     /// exec TLS access model.
    145     ///
    146     /// See 'ELF Handling for Thread-Local Storage' for more details.
    147     ///    SYMBOL_LABEL @TPOFF
    148     MO_TPOFF,
    149 
    150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
    152     /// in the local dynamic TLS access model.
    153     ///
    154     /// See 'ELF Handling for Thread-Local Storage' for more details.
    155     ///    SYMBOL_LABEL @DTPOFF
    156     MO_DTPOFF,
    157 
    158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    159     /// the negative thread-pointer offset for the symbol. Used in the IA32
    160     /// local exec TLS access model.
    161     ///
    162     /// See 'ELF Handling for Thread-Local Storage' for more details.
    163     ///    SYMBOL_LABEL @NTPOFF
    164     MO_NTPOFF,
    165 
    166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    167     /// the offset of the GOT entry with the negative thread-pointer offset for
    168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    169     ///
    170     /// See 'ELF Handling for Thread-Local Storage' for more details.
    171     ///    SYMBOL_LABEL @GOTNTPOFF
    172     MO_GOTNTPOFF,
    173 
    174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    176     /// dllimport linkage on windows.
    177     MO_DLLIMPORT,
    178 
    179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
    180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
    181     /// and jumps to external functions on Tiger and earlier.
    182     MO_DARWIN_STUB,
    183 
    184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    187     MO_DARWIN_NONLAZY,
    188 
    189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    192     MO_DARWIN_NONLAZY_PIC_BASE,
    193 
    194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
    195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
    196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
    197     /// stub.
    198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
    199 
    200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    201     /// some TLS offset.
    202     ///
    203     /// This is the TLS offset for the Darwin TLS mechanism.
    204     MO_TLVP,
    205 
    206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    207     /// is some TLS offset from the picbase.
    208     ///
    209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    210     MO_TLVP_PIC_BASE,
    211 
    212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
    213     /// the offset from beginning of section.
    214     ///
    215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
    216     MO_SECREL
    217   };
    218 
    219   enum {
    220     //===------------------------------------------------------------------===//
    221     // Instruction encodings.  These are the standard/most common forms for X86
    222     // instructions.
    223     //
    224 
    225     // PseudoFrm - This represents an instruction that is a pseudo instruction
    226     // or one that has not been implemented yet.  It is illegal to code generate
    227     // it, but tolerated for intermediate implementation stages.
    228     Pseudo         = 0,
    229 
    230     /// Raw - This form is for instructions that don't have any operands, so
    231     /// they are just a fixed opcode value, like 'leave'.
    232     RawFrm         = 1,
    233 
    234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    235     /// their one register operand added to their opcode.
    236     AddRegFrm      = 2,
    237 
    238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    239     /// to specify a destination, which in this case is a register.
    240     ///
    241     MRMDestReg     = 3,
    242 
    243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    244     /// to specify a destination, which in this case is memory.
    245     ///
    246     MRMDestMem     = 4,
    247 
    248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    249     /// to specify a source, which in this case is a register.
    250     ///
    251     MRMSrcReg      = 5,
    252 
    253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    254     /// to specify a source, which in this case is memory.
    255     ///
    256     MRMSrcMem      = 6,
    257 
    258     /// RawFrmMemOffs - This form is for instructions that store an absolute
    259     /// memory offset as an immediate with a possible segment override.
    260     RawFrmMemOffs  = 7,
    261 
    262     /// RawFrmSrc - This form is for instructions that use the source index
    263     /// register SI/ESI/RSI with a possible segment override.
    264     RawFrmSrc      = 8,
    265 
    266     /// RawFrmDst - This form is for instructions that use the destination index
    267     /// register DI/EDI/ESI.
    268     RawFrmDst      = 9,
    269 
    270     /// RawFrmSrc - This form is for instructions that use the the source index
    271     /// register SI/ESI/ERI with a possible segment override, and also the
    272     /// destination index register DI/ESI/RDI.
    273     RawFrmDstSrc   = 10,
    274 
    275     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    276     /// immediates, the first of which is a 16-bit immediate (specified by
    277     /// the imm encoding) and the second is a 8-bit fixed value.
    278     RawFrmImm8 = 11,
    279 
    280     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    281     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    282     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    283     /// manual, this operand is described as pntr16:32 and pntr16:16
    284     RawFrmImm16 = 12,
    285 
    286     /// MRMX[rm] - The forms are used to represent instructions that use a
    287     /// Mod/RM byte, and don't use the middle field for anything.
    288     MRMXr = 14, MRMXm = 15,
    289 
    290     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    291     /// a Mod/RM byte, and use the middle field to hold extended opcode
    292     /// information.  In the intel manual these are represented as /0, /1, ...
    293     ///
    294 
    295     // First, instructions that operate on a register r/m operand...
    296     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    297     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    298 
    299     // Next, instructions that operate on a memory r/m operand...
    300     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    301     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    302 
    303     //// MRM_XX - A mod/rm byte of exactly 0xXX.
    304     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
    305     MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
    306     MRM_CB = 40, MRM_D0 = 41, MRM_D1 = 42, MRM_D4 = 43,
    307     MRM_D5 = 44, MRM_D6 = 45, MRM_D8 = 46, MRM_D9 = 47,
    308     MRM_DA = 48, MRM_DB = 49, MRM_DC = 50, MRM_DD = 51,
    309     MRM_DE = 52, MRM_DF = 53, MRM_E0 = 54, MRM_E1 = 55,
    310     MRM_E2 = 56, MRM_E3 = 57, MRM_E4 = 58, MRM_E5 = 59,
    311     MRM_E8 = 60, MRM_E9 = 61, MRM_EA = 62, MRM_EB = 63,
    312     MRM_EC = 64, MRM_ED = 65, MRM_EE = 66, MRM_F0 = 67,
    313     MRM_F1 = 68, MRM_F2 = 69, MRM_F3 = 70, MRM_F4 = 71,
    314     MRM_F5 = 72, MRM_F6 = 73, MRM_F7 = 74, MRM_F8 = 75,
    315     MRM_F9 = 76, MRM_FA = 77, MRM_FB = 78, MRM_FC = 79,
    316     MRM_FD = 80, MRM_FE = 81, MRM_FF = 82,
    317 
    318     FormMask       = 127,
    319 
    320     //===------------------------------------------------------------------===//
    321     // Actual flags...
    322 
    323     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    324     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    325     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    326     // prefix in 16-bit mode.
    327     OpSizeShift = 7,
    328     OpSizeMask = 0x3 << OpSizeShift,
    329 
    330     OpSize16 = 1,
    331     OpSize32 = 2,
    332 
    333     // AsSize - Set if this instruction requires an operand size prefix (0x67),
    334     // which most often indicates that the instruction address 16 bit address
    335     // instead of 32 bit address (or 32 bit address in 64 bit mode).
    336     AdSizeShift = OpSizeShift + 2,
    337     AdSize      = 1 << AdSizeShift,
    338 
    339     //===------------------------------------------------------------------===//
    340     // OpPrefix - There are several prefix bytes that are used as opcode
    341     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    342     // no prefix.
    343     //
    344     OpPrefixShift = AdSizeShift + 1,
    345     OpPrefixMask  = 0x7 << OpPrefixShift,
    346 
    347     // PS, PD - Prefix code for packed single and double precision vector
    348     // floating point operations performed in the SSE registers.
    349     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
    350 
    351     // XS, XD - These prefix codes are for single and double precision scalar
    352     // floating point operations performed in the SSE registers.
    353     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
    354 
    355     //===------------------------------------------------------------------===//
    356     // OpMap - This field determines which opcode map this instruction
    357     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    358     //
    359     OpMapShift = OpPrefixShift + 3,
    360     OpMapMask  = 0x7 << OpMapShift,
    361 
    362     // OB - OneByte - Set if this instruction has a one byte opcode.
    363     OB = 0 << OpMapShift,
    364 
    365     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    366     // starts with a 0x0F byte before the real opcode.
    367     TB = 1 << OpMapShift,
    368 
    369     // T8, TA - Prefix after the 0x0F prefix.
    370     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
    371 
    372     // XOP8 - Prefix to include use of imm byte.
    373     XOP8 = 4 << OpMapShift,
    374 
    375     // XOP9 - Prefix to exclude use of imm byte.
    376     XOP9 = 5 << OpMapShift,
    377 
    378     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    379     XOPA = 6 << OpMapShift,
    380 
    381     //===------------------------------------------------------------------===//
    382     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    383     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    384     // etc. We only cares about REX.W and REX.R bits and only the former is
    385     // statically determined.
    386     //
    387     REXShift    = OpMapShift + 3,
    388     REX_W       = 1 << REXShift,
    389 
    390     //===------------------------------------------------------------------===//
    391     // This three-bit field describes the size of an immediate operand.  Zero is
    392     // unused so that we can tell if we forgot to set a value.
    393     ImmShift = REXShift + 1,
    394     ImmMask    = 15 << ImmShift,
    395     Imm8       = 1 << ImmShift,
    396     Imm8PCRel  = 2 << ImmShift,
    397     Imm16      = 3 << ImmShift,
    398     Imm16PCRel = 4 << ImmShift,
    399     Imm32      = 5 << ImmShift,
    400     Imm32PCRel = 6 << ImmShift,
    401     Imm32S     = 7 << ImmShift,
    402     Imm64      = 8 << ImmShift,
    403 
    404     //===------------------------------------------------------------------===//
    405     // FP Instruction Classification...  Zero is non-fp instruction.
    406 
    407     // FPTypeMask - Mask for all of the FP types...
    408     FPTypeShift = ImmShift + 4,
    409     FPTypeMask  = 7 << FPTypeShift,
    410 
    411     // NotFP - The default, set for instructions that do not use FP registers.
    412     NotFP      = 0 << FPTypeShift,
    413 
    414     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    415     ZeroArgFP  = 1 << FPTypeShift,
    416 
    417     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    418     OneArgFP   = 2 << FPTypeShift,
    419 
    420     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    421     // result back to ST(0).  For example, fcos, fsqrt, etc.
    422     //
    423     OneArgFPRW = 3 << FPTypeShift,
    424 
    425     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    426     // explicit argument, storing the result to either ST(0) or the implicit
    427     // argument.  For example: fadd, fsub, fmul, etc...
    428     TwoArgFP   = 4 << FPTypeShift,
    429 
    430     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    431     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    432     CompareFP  = 5 << FPTypeShift,
    433 
    434     // CondMovFP - "2 operand" floating point conditional move instructions.
    435     CondMovFP  = 6 << FPTypeShift,
    436 
    437     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    438     SpecialFP  = 7 << FPTypeShift,
    439 
    440     // Lock prefix
    441     LOCKShift = FPTypeShift + 3,
    442     LOCK = 1 << LOCKShift,
    443 
    444     // REP prefix
    445     REPShift = LOCKShift + 1,
    446     REP = 1 << REPShift,
    447 
    448     // Execution domain for SSE instructions.
    449     // 0 means normal, non-SSE instruction.
    450     SSEDomainShift = REPShift + 1,
    451 
    452     // Encoding
    453     EncodingShift = SSEDomainShift + 2,
    454     EncodingMask = 0x3 << EncodingShift,
    455 
    456     // VEX - encoding using 0xC4/0xC5
    457     VEX = 1,
    458 
    459     /// XOP - Opcode prefix used by XOP instructions.
    460     XOP = 2,
    461 
    462     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    463     // syntax support up to 32 512-bit register operands and up to 7 16-bit
    464     // mask operands as well as source operand data swizzling/memory operand
    465     // conversion, eviction hint, and rounding mode.
    466     EVEX = 3,
    467 
    468     // Opcode
    469     OpcodeShift   = EncodingShift + 2,
    470 
    471     //===------------------------------------------------------------------===//
    472     /// VEX - The opcode prefix used by AVX instructions
    473     VEXShift = OpcodeShift + 8,
    474 
    475     /// VEX_W - Has a opcode specific functionality, but is used in the same
    476     /// way as REX_W is for regular SSE instructions.
    477     VEX_W       = 1U << 0,
    478 
    479     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    480     /// address instructions in SSE are represented as 3 address ones in AVX
    481     /// and the additional register is encoded in VEX_VVVV prefix.
    482     VEX_4V      = 1U << 1,
    483 
    484     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
    485     /// operand 3 with VEX.vvvv.
    486     VEX_4VOp3   = 1U << 2,
    487 
    488     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    489     /// must be encoded in the i8 immediate field. This usually happens in
    490     /// instructions with 4 operands.
    491     VEX_I8IMM   = 1U << 3,
    492 
    493     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    494     /// instruction uses 256-bit wide registers. This is usually auto detected
    495     /// if a VR256 register is used, but some AVX instructions also have this
    496     /// field marked when using a f256 memory references.
    497     VEX_L       = 1U << 4,
    498 
    499     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
    500     // prefix. Usually used for scalar instructions. Needed by disassembler.
    501     VEX_LIG     = 1U << 5,
    502 
    503     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
    504     // with following encoding:
    505     // - 00 V128
    506     // - 01 V256
    507     // - 10 V512
    508     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
    509     // this will save 1 tsflag bit
    510 
    511     // EVEX_K - Set if this instruction requires masking
    512     EVEX_K      = 1U << 6,
    513 
    514     // EVEX_Z - Set if this instruction has EVEX.Z field set.
    515     EVEX_Z      = 1U << 7,
    516 
    517     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    518     EVEX_L2     = 1U << 8,
    519 
    520     // EVEX_B - Set if this instruction has EVEX.B field set.
    521     EVEX_B      = 1U << 9,
    522 
    523     // EVEX_CD8E - compressed disp8 form, element-size
    524     EVEX_CD8EShift = VEXShift + 10,
    525     EVEX_CD8EMask = 3,
    526 
    527     // EVEX_CD8V - compressed disp8 form, vector-width
    528     EVEX_CD8VShift = EVEX_CD8EShift + 2,
    529     EVEX_CD8VMask = 7,
    530 
    531     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    532     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    533     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    534     /// storing a classifier in the imm8 field.  To simplify our implementation,
    535     /// we handle this by storeing the classifier in the opcode field and using
    536     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    537     Has3DNow0F0FOpcode = 1U << 15,
    538 
    539     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
    540     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
    541     MemOp4 = 1U << 16,
    542 
    543     /// Explicitly specified rounding control
    544     EVEX_RC = 1U << 17
    545   };
    546 
    547   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    548   // specified machine instruction.
    549   //
    550   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    551     return TSFlags >> X86II::OpcodeShift;
    552   }
    553 
    554   inline bool hasImm(uint64_t TSFlags) {
    555     return (TSFlags & X86II::ImmMask) != 0;
    556   }
    557 
    558   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    559   /// of the specified instruction.
    560   inline unsigned getSizeOfImm(uint64_t TSFlags) {
    561     switch (TSFlags & X86II::ImmMask) {
    562     default: llvm_unreachable("Unknown immediate size");
    563     case X86II::Imm8:
    564     case X86II::Imm8PCRel:  return 1;
    565     case X86II::Imm16:
    566     case X86II::Imm16PCRel: return 2;
    567     case X86II::Imm32:
    568     case X86II::Imm32S:
    569     case X86II::Imm32PCRel: return 4;
    570     case X86II::Imm64:      return 8;
    571     }
    572   }
    573 
    574   /// isImmPCRel - Return true if the immediate of the specified instruction's
    575   /// TSFlags indicates that it is pc relative.
    576   inline unsigned isImmPCRel(uint64_t TSFlags) {
    577     switch (TSFlags & X86II::ImmMask) {
    578     default: llvm_unreachable("Unknown immediate size");
    579     case X86II::Imm8PCRel:
    580     case X86II::Imm16PCRel:
    581     case X86II::Imm32PCRel:
    582       return true;
    583     case X86II::Imm8:
    584     case X86II::Imm16:
    585     case X86II::Imm32:
    586     case X86II::Imm32S:
    587     case X86II::Imm64:
    588       return false;
    589     }
    590   }
    591 
    592   /// isImmSigned - Return true if the immediate of the specified instruction's
    593   /// TSFlags indicates that it is signed.
    594   inline unsigned isImmSigned(uint64_t TSFlags) {
    595     switch (TSFlags & X86II::ImmMask) {
    596     default: llvm_unreachable("Unknown immediate signedness");
    597     case X86II::Imm32S:
    598       return true;
    599     case X86II::Imm8:
    600     case X86II::Imm8PCRel:
    601     case X86II::Imm16:
    602     case X86II::Imm16PCRel:
    603     case X86II::Imm32:
    604     case X86II::Imm32PCRel:
    605     case X86II::Imm64:
    606       return false;
    607     }
    608   }
    609 
    610   /// getOperandBias - compute any additional adjustment needed to
    611   ///                  the offset to the start of the memory operand
    612   ///                  in this instruction.
    613   /// If this is a two-address instruction,skip one of the register operands.
    614   /// FIXME: This should be handled during MCInst lowering.
    615   inline int getOperandBias(const MCInstrDesc& Desc)
    616   {
    617     unsigned NumOps = Desc.getNumOperands();
    618     unsigned CurOp = 0;
    619     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    620       ++CurOp;
    621     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    622              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
    623       // Special case for AVX-512 GATHER with 2 TIED_TO operands
    624       // Skip the first 2 operands: dst, mask_wb
    625       CurOp += 2;
    626     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    627              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
    628       // Special case for GATHER with 2 TIED_TO operands
    629       // Skip the first 2 operands: dst, mask_wb
    630       CurOp += 2;
    631     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
    632       // SCATTER
    633       ++CurOp;
    634     return CurOp;
    635   }
    636 
    637   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    638   /// first field of the memory operand.  If the instruction doesn't have a
    639   /// memory operand, this returns -1.
    640   ///
    641   /// Note that this ignores tied operands.  If there is a tied register which
    642   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    643   /// counted as one operand.
    644   ///
    645   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
    646     bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    647     bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    648     bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
    649 
    650     switch (TSFlags & X86II::FormMask) {
    651     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    652     case X86II::Pseudo:
    653     case X86II::RawFrm:
    654     case X86II::AddRegFrm:
    655     case X86II::MRMDestReg:
    656     case X86II::MRMSrcReg:
    657     case X86II::RawFrmImm8:
    658     case X86II::RawFrmImm16:
    659     case X86II::RawFrmMemOffs:
    660     case X86II::RawFrmSrc:
    661     case X86II::RawFrmDst:
    662     case X86II::RawFrmDstSrc:
    663        return -1;
    664     case X86II::MRMDestMem:
    665       return 0;
    666     case X86II::MRMSrcMem: {
    667       unsigned FirstMemOp = 1;
    668       if (HasVEX_4V)
    669         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
    670       if (HasMemOp4)
    671         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
    672       if (HasEVEX_K)
    673         ++FirstMemOp;// Skip the mask register
    674       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    675       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
    676       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
    677       return FirstMemOp;
    678     }
    679     case X86II::MRMXr:
    680     case X86II::MRM0r: case X86II::MRM1r:
    681     case X86II::MRM2r: case X86II::MRM3r:
    682     case X86II::MRM4r: case X86II::MRM5r:
    683     case X86II::MRM6r: case X86II::MRM7r:
    684       return -1;
    685     case X86II::MRMXm:
    686     case X86II::MRM0m: case X86II::MRM1m:
    687     case X86II::MRM2m: case X86II::MRM3m:
    688     case X86II::MRM4m: case X86II::MRM5m:
    689     case X86II::MRM6m: case X86II::MRM7m: {
    690       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    691       unsigned FirstMemOp = 0;
    692       if (HasVEX_4V)
    693         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
    694       if (HasEVEX_K)
    695         ++FirstMemOp;// Skip the mask register
    696       return FirstMemOp;
    697     }
    698     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    699     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
    700     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    701     case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
    702     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
    703     case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
    704     case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
    705     case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
    706     case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
    707     case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
    708     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    709     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
    710     case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
    711     case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
    712     case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
    713     case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
    714     case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
    715       return -1;
    716     }
    717   }
    718 
    719   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    720   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    721   inline bool isX86_64ExtendedReg(unsigned RegNo) {
    722     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
    723         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
    724         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
    725         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
    726         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
    727         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
    728       return true;
    729 
    730     switch (RegNo) {
    731     default: break;
    732     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    733     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    734     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    735     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    736     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    737     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    738     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    739     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    740     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    741     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    742         return true;
    743     }
    744     return false;
    745   }
    746 
    747   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
    748   /// registers? e.g. zmm21, etc.
    749   static inline bool is32ExtendedReg(unsigned RegNo) {
    750     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
    751             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
    752             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
    753   }
    754 
    755 
    756   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    757     return (reg == X86::SPL || reg == X86::BPL ||
    758             reg == X86::SIL || reg == X86::DIL);
    759   }
    760 }
    761 
    762 } // end namespace llvm;
    763 
    764 #endif
    765