Home | History | Annotate | Download | only in Utils
      1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various functions that are used to clone chunks of LLVM
     11 // code for various purposes.  This varies from copying whole modules into new
     12 // modules, to cloning functions with different arguments, to inlining
     13 // functions, to copying basic blocks to support loop unrolling or superblock
     14 // formation, etc.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
     19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
     20 
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Twine.h"
     23 #include "llvm/IR/ValueHandle.h"
     24 #include "llvm/IR/ValueMap.h"
     25 #include "llvm/Transforms/Utils/ValueMapper.h"
     26 
     27 namespace llvm {
     28 
     29 class Module;
     30 class Function;
     31 class Instruction;
     32 class Pass;
     33 class LPPassManager;
     34 class BasicBlock;
     35 class Value;
     36 class CallInst;
     37 class InvokeInst;
     38 class ReturnInst;
     39 class CallSite;
     40 class Trace;
     41 class CallGraph;
     42 class DataLayout;
     43 class Loop;
     44 class LoopInfo;
     45 class AllocaInst;
     46 
     47 /// CloneModule - Return an exact copy of the specified module
     48 ///
     49 Module *CloneModule(const Module *M);
     50 Module *CloneModule(const Module *M, ValueToValueMapTy &VMap);
     51 
     52 /// ClonedCodeInfo - This struct can be used to capture information about code
     53 /// being cloned, while it is being cloned.
     54 struct ClonedCodeInfo {
     55   /// ContainsCalls - This is set to true if the cloned code contains a normal
     56   /// call instruction.
     57   bool ContainsCalls;
     58 
     59   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
     60   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
     61   /// the entry block or they are in the entry block but are not a constant
     62   /// size.
     63   bool ContainsDynamicAllocas;
     64 
     65   ClonedCodeInfo() : ContainsCalls(false), ContainsDynamicAllocas(false) {}
     66 };
     67 
     68 /// CloneBasicBlock - Return a copy of the specified basic block, but without
     69 /// embedding the block into a particular function.  The block returned is an
     70 /// exact copy of the specified basic block, without any remapping having been
     71 /// performed.  Because of this, this is only suitable for applications where
     72 /// the basic block will be inserted into the same function that it was cloned
     73 /// from (loop unrolling would use this, for example).
     74 ///
     75 /// Also, note that this function makes a direct copy of the basic block, and
     76 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
     77 /// nodes from the original block, even though there are no predecessors for the
     78 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
     79 /// block will branch to the old successors of the original block: these
     80 /// successors will have to have any PHI nodes updated to account for the new
     81 /// incoming edges.
     82 ///
     83 /// The correlation between instructions in the source and result basic blocks
     84 /// is recorded in the VMap map.
     85 ///
     86 /// If you have a particular suffix you'd like to use to add to any cloned
     87 /// names, specify it as the optional third parameter.
     88 ///
     89 /// If you would like the basic block to be auto-inserted into the end of a
     90 /// function, you can specify it as the optional fourth parameter.
     91 ///
     92 /// If you would like to collect additional information about the cloned
     93 /// function, you can specify a ClonedCodeInfo object with the optional fifth
     94 /// parameter.
     95 ///
     96 BasicBlock *CloneBasicBlock(const BasicBlock *BB,
     97                             ValueToValueMapTy &VMap,
     98                             const Twine &NameSuffix = "", Function *F = nullptr,
     99                             ClonedCodeInfo *CodeInfo = nullptr);
    100 
    101 /// CloneFunction - Return a copy of the specified function, but without
    102 /// embedding the function into another module.  Also, any references specified
    103 /// in the VMap are changed to refer to their mapped value instead of the
    104 /// original one.  If any of the arguments to the function are in the VMap,
    105 /// the arguments are deleted from the resultant function.  The VMap is
    106 /// updated to include mappings from all of the instructions and basicblocks in
    107 /// the function from their old to new values.  The final argument captures
    108 /// information about the cloned code if non-null.
    109 ///
    110 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    111 /// mappings, and debug info metadata will not be cloned.
    112 ///
    113 Function *CloneFunction(const Function *F,
    114                         ValueToValueMapTy &VMap,
    115                         bool ModuleLevelChanges,
    116                         ClonedCodeInfo *CodeInfo = nullptr);
    117 
    118 /// Clone OldFunc into NewFunc, transforming the old arguments into references
    119 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
    120 /// cloned into it will be added to the end of the function.  This function
    121 /// fills in a list of return instructions, and can optionally remap types
    122 /// and/or append the specified suffix to all values cloned.
    123 ///
    124 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    125 /// mappings.
    126 ///
    127 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
    128                        ValueToValueMapTy &VMap,
    129                        bool ModuleLevelChanges,
    130                        SmallVectorImpl<ReturnInst*> &Returns,
    131                        const char *NameSuffix = "",
    132                        ClonedCodeInfo *CodeInfo = nullptr,
    133                        ValueMapTypeRemapper *TypeMapper = nullptr,
    134                        ValueMaterializer *Materializer = nullptr);
    135 
    136 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    137 /// except that it does some simple constant prop and DCE on the fly.  The
    138 /// effect of this is to copy significantly less code in cases where (for
    139 /// example) a function call with constant arguments is inlined, and those
    140 /// constant arguments cause a significant amount of code in the callee to be
    141 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
    142 /// used for things like CloneFunction or CloneModule.
    143 ///
    144 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    145 /// mappings.
    146 ///
    147 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    148                                ValueToValueMapTy &VMap,
    149                                bool ModuleLevelChanges,
    150                                SmallVectorImpl<ReturnInst*> &Returns,
    151                                const char *NameSuffix = "",
    152                                ClonedCodeInfo *CodeInfo = nullptr,
    153                                const DataLayout *DL = nullptr,
    154                                Instruction *TheCall = nullptr);
    155 
    156 /// InlineFunctionInfo - This class captures the data input to the
    157 /// InlineFunction call, and records the auxiliary results produced by it.
    158 class InlineFunctionInfo {
    159 public:
    160   explicit InlineFunctionInfo(CallGraph *cg = nullptr, const DataLayout *DL = nullptr)
    161     : CG(cg), DL(DL) {}
    162 
    163   /// CG - If non-null, InlineFunction will update the callgraph to reflect the
    164   /// changes it makes.
    165   CallGraph *CG;
    166   const DataLayout *DL;
    167 
    168   /// StaticAllocas - InlineFunction fills this in with all static allocas that
    169   /// get copied into the caller.
    170   SmallVector<AllocaInst*, 4> StaticAllocas;
    171 
    172   /// InlinedCalls - InlineFunction fills this in with callsites that were
    173   /// inlined from the callee.  This is only filled in if CG is non-null.
    174   SmallVector<WeakVH, 8> InlinedCalls;
    175 
    176   void reset() {
    177     StaticAllocas.clear();
    178     InlinedCalls.clear();
    179   }
    180 };
    181 
    182 /// InlineFunction - This function inlines the called function into the basic
    183 /// block of the caller.  This returns false if it is not possible to inline
    184 /// this call.  The program is still in a well defined state if this occurs
    185 /// though.
    186 ///
    187 /// Note that this only does one level of inlining.  For example, if the
    188 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
    189 /// exists in the instruction stream.  Similarly this will inline a recursive
    190 /// function by one level.
    191 ///
    192 bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI, bool InsertLifetime = true);
    193 bool InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, bool InsertLifetime = true);
    194 bool InlineFunction(CallSite CS, InlineFunctionInfo &IFI, bool InsertLifetime = true);
    195 
    196 } // End llvm namespace
    197 
    198 #endif
    199