Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DebugInfo.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GlobalVariable.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Metadata.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Transforms/Utils/ValueMapper.h"
     34 #include <map>
     35 using namespace llvm;
     36 
     37 // CloneBasicBlock - See comments in Cloning.h
     38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     39                                   ValueToValueMapTy &VMap,
     40                                   const Twine &NameSuffix, Function *F,
     41                                   ClonedCodeInfo *CodeInfo) {
     42   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     43   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     44 
     45   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     46 
     47   // Loop over all instructions, and copy them over.
     48   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     49        II != IE; ++II) {
     50     Instruction *NewInst = II->clone();
     51     if (II->hasName())
     52       NewInst->setName(II->getName()+NameSuffix);
     53     NewBB->getInstList().push_back(NewInst);
     54     VMap[II] = NewInst;                // Add instruction map to value.
     55 
     56     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     57     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     58       if (isa<ConstantInt>(AI->getArraySize()))
     59         hasStaticAllocas = true;
     60       else
     61         hasDynamicAllocas = true;
     62     }
     63   }
     64 
     65   if (CodeInfo) {
     66     CodeInfo->ContainsCalls          |= hasCalls;
     67     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     68     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     69                                         BB != &BB->getParent()->getEntryBlock();
     70   }
     71   return NewBB;
     72 }
     73 
     74 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     75 // VMap values.
     76 //
     77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     78                              ValueToValueMapTy &VMap,
     79                              bool ModuleLevelChanges,
     80                              SmallVectorImpl<ReturnInst*> &Returns,
     81                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     82                              ValueMapTypeRemapper *TypeMapper,
     83                              ValueMaterializer *Materializer) {
     84   assert(NameSuffix && "NameSuffix cannot be null!");
     85 
     86 #ifndef NDEBUG
     87   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     88        E = OldFunc->arg_end(); I != E; ++I)
     89     assert(VMap.count(I) && "No mapping from source argument specified!");
     90 #endif
     91 
     92   // Copy all attributes other than those stored in the AttributeSet.  We need
     93   // to remap the parameter indices of the AttributeSet.
     94   AttributeSet NewAttrs = NewFunc->getAttributes();
     95   NewFunc->copyAttributesFrom(OldFunc);
     96   NewFunc->setAttributes(NewAttrs);
     97 
     98   AttributeSet OldAttrs = OldFunc->getAttributes();
     99   // Clone any argument attributes that are present in the VMap.
    100   for (const Argument &OldArg : OldFunc->args())
    101     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
    102       AttributeSet attrs =
    103           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
    104       if (attrs.getNumSlots() > 0)
    105         NewArg->addAttr(attrs);
    106     }
    107 
    108   NewFunc->setAttributes(
    109       NewFunc->getAttributes()
    110           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
    111                          OldAttrs.getRetAttributes())
    112           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
    113                          OldAttrs.getFnAttributes()));
    114 
    115   // Loop over all of the basic blocks in the function, cloning them as
    116   // appropriate.  Note that we save BE this way in order to handle cloning of
    117   // recursive functions into themselves.
    118   //
    119   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    120        BI != BE; ++BI) {
    121     const BasicBlock &BB = *BI;
    122 
    123     // Create a new basic block and copy instructions into it!
    124     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    125 
    126     // Add basic block mapping.
    127     VMap[&BB] = CBB;
    128 
    129     // It is only legal to clone a function if a block address within that
    130     // function is never referenced outside of the function.  Given that, we
    131     // want to map block addresses from the old function to block addresses in
    132     // the clone. (This is different from the generic ValueMapper
    133     // implementation, which generates an invalid blockaddress when
    134     // cloning a function.)
    135     if (BB.hasAddressTaken()) {
    136       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    137                                               const_cast<BasicBlock*>(&BB));
    138       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    139     }
    140 
    141     // Note return instructions for the caller.
    142     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    143       Returns.push_back(RI);
    144   }
    145 
    146   // Loop over all of the instructions in the function, fixing up operand
    147   // references as we go.  This uses VMap to do all the hard work.
    148   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
    149          BE = NewFunc->end(); BB != BE; ++BB)
    150     // Loop over all instructions, fixing each one as we find it...
    151     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
    152       RemapInstruction(II, VMap,
    153                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    154                        TypeMapper, Materializer);
    155 }
    156 
    157 // Find the MDNode which corresponds to the DISubprogram data that described F.
    158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
    159   for (DISubprogram Subprogram : Finder.subprograms()) {
    160     if (Subprogram.describes(F)) return Subprogram;
    161   }
    162   return nullptr;
    163 }
    164 
    165 // Add an operand to an existing MDNode. The new operand will be added at the
    166 // back of the operand list.
    167 static void AddOperand(MDNode *Node, Value *Operand) {
    168   SmallVector<Value*, 16> Operands;
    169   for (unsigned i = 0; i < Node->getNumOperands(); i++) {
    170     Operands.push_back(Node->getOperand(i));
    171   }
    172   Operands.push_back(Operand);
    173   MDNode *NewNode = MDNode::get(Node->getContext(), Operands);
    174   Node->replaceAllUsesWith(NewNode);
    175 }
    176 
    177 // Clone the module-level debug info associated with OldFunc. The cloned data
    178 // will point to NewFunc instead.
    179 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
    180                             ValueToValueMapTy &VMap) {
    181   DebugInfoFinder Finder;
    182   Finder.processModule(*OldFunc->getParent());
    183 
    184   const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
    185   if (!OldSubprogramMDNode) return;
    186 
    187   // Ensure that OldFunc appears in the map.
    188   // (if it's already there it must point to NewFunc anyway)
    189   VMap[OldFunc] = NewFunc;
    190   DISubprogram NewSubprogram(MapValue(OldSubprogramMDNode, VMap));
    191 
    192   for (DICompileUnit CU : Finder.compile_units()) {
    193     DIArray Subprograms(CU.getSubprograms());
    194 
    195     // If the compile unit's function list contains the old function, it should
    196     // also contain the new one.
    197     for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
    198       if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
    199         AddOperand(Subprograms, NewSubprogram);
    200       }
    201     }
    202   }
    203 }
    204 
    205 /// CloneFunction - Return a copy of the specified function, but without
    206 /// embedding the function into another module.  Also, any references specified
    207 /// in the VMap are changed to refer to their mapped value instead of the
    208 /// original one.  If any of the arguments to the function are in the VMap,
    209 /// the arguments are deleted from the resultant function.  The VMap is
    210 /// updated to include mappings from all of the instructions and basicblocks in
    211 /// the function from their old to new values.
    212 ///
    213 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    214                               bool ModuleLevelChanges,
    215                               ClonedCodeInfo *CodeInfo) {
    216   std::vector<Type*> ArgTypes;
    217 
    218   // The user might be deleting arguments to the function by specifying them in
    219   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    220   //
    221   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    222        I != E; ++I)
    223     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
    224       ArgTypes.push_back(I->getType());
    225 
    226   // Create a new function type...
    227   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    228                                     ArgTypes, F->getFunctionType()->isVarArg());
    229 
    230   // Create the new function...
    231   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    232 
    233   // Loop over the arguments, copying the names of the mapped arguments over...
    234   Function::arg_iterator DestI = NewF->arg_begin();
    235   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    236        I != E; ++I)
    237     if (VMap.count(I) == 0) {   // Is this argument preserved?
    238       DestI->setName(I->getName()); // Copy the name over...
    239       VMap[I] = DestI++;        // Add mapping to VMap
    240     }
    241 
    242   if (ModuleLevelChanges)
    243     CloneDebugInfoMetadata(NewF, F, VMap);
    244 
    245   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    246   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    247   return NewF;
    248 }
    249 
    250 
    251 
    252 namespace {
    253   /// PruningFunctionCloner - This class is a private class used to implement
    254   /// the CloneAndPruneFunctionInto method.
    255   struct PruningFunctionCloner {
    256     Function *NewFunc;
    257     const Function *OldFunc;
    258     ValueToValueMapTy &VMap;
    259     bool ModuleLevelChanges;
    260     const char *NameSuffix;
    261     ClonedCodeInfo *CodeInfo;
    262     const DataLayout *DL;
    263   public:
    264     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    265                           ValueToValueMapTy &valueMap,
    266                           bool moduleLevelChanges,
    267                           const char *nameSuffix,
    268                           ClonedCodeInfo *codeInfo,
    269                           const DataLayout *DL)
    270     : NewFunc(newFunc), OldFunc(oldFunc),
    271       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
    272       NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL) {
    273     }
    274 
    275     /// CloneBlock - The specified block is found to be reachable, clone it and
    276     /// anything that it can reach.
    277     void CloneBlock(const BasicBlock *BB,
    278                     std::vector<const BasicBlock*> &ToClone);
    279   };
    280 }
    281 
    282 /// CloneBlock - The specified block is found to be reachable, clone it and
    283 /// anything that it can reach.
    284 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    285                                        std::vector<const BasicBlock*> &ToClone){
    286   WeakVH &BBEntry = VMap[BB];
    287 
    288   // Have we already cloned this block?
    289   if (BBEntry) return;
    290 
    291   // Nope, clone it now.
    292   BasicBlock *NewBB;
    293   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    294   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    295 
    296   // It is only legal to clone a function if a block address within that
    297   // function is never referenced outside of the function.  Given that, we
    298   // want to map block addresses from the old function to block addresses in
    299   // the clone. (This is different from the generic ValueMapper
    300   // implementation, which generates an invalid blockaddress when
    301   // cloning a function.)
    302   //
    303   // Note that we don't need to fix the mapping for unreachable blocks;
    304   // the default mapping there is safe.
    305   if (BB->hasAddressTaken()) {
    306     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    307                                             const_cast<BasicBlock*>(BB));
    308     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    309   }
    310 
    311 
    312   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    313 
    314   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    315   // loop doesn't include the terminator.
    316   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
    317        II != IE; ++II) {
    318     Instruction *NewInst = II->clone();
    319 
    320     // Eagerly remap operands to the newly cloned instruction, except for PHI
    321     // nodes for which we defer processing until we update the CFG.
    322     if (!isa<PHINode>(NewInst)) {
    323       RemapInstruction(NewInst, VMap,
    324                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    325 
    326       // If we can simplify this instruction to some other value, simply add
    327       // a mapping to that value rather than inserting a new instruction into
    328       // the basic block.
    329       if (Value *V = SimplifyInstruction(NewInst, DL)) {
    330         // On the off-chance that this simplifies to an instruction in the old
    331         // function, map it back into the new function.
    332         if (Value *MappedV = VMap.lookup(V))
    333           V = MappedV;
    334 
    335         VMap[II] = V;
    336         delete NewInst;
    337         continue;
    338       }
    339     }
    340 
    341     if (II->hasName())
    342       NewInst->setName(II->getName()+NameSuffix);
    343     VMap[II] = NewInst;                // Add instruction map to value.
    344     NewBB->getInstList().push_back(NewInst);
    345     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    346     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    347       if (isa<ConstantInt>(AI->getArraySize()))
    348         hasStaticAllocas = true;
    349       else
    350         hasDynamicAllocas = true;
    351     }
    352   }
    353 
    354   // Finally, clone over the terminator.
    355   const TerminatorInst *OldTI = BB->getTerminator();
    356   bool TerminatorDone = false;
    357   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    358     if (BI->isConditional()) {
    359       // If the condition was a known constant in the callee...
    360       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    361       // Or is a known constant in the caller...
    362       if (!Cond) {
    363         Value *V = VMap[BI->getCondition()];
    364         Cond = dyn_cast_or_null<ConstantInt>(V);
    365       }
    366 
    367       // Constant fold to uncond branch!
    368       if (Cond) {
    369         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    370         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    371         ToClone.push_back(Dest);
    372         TerminatorDone = true;
    373       }
    374     }
    375   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    376     // If switching on a value known constant in the caller.
    377     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    378     if (!Cond) { // Or known constant after constant prop in the callee...
    379       Value *V = VMap[SI->getCondition()];
    380       Cond = dyn_cast_or_null<ConstantInt>(V);
    381     }
    382     if (Cond) {     // Constant fold to uncond branch!
    383       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    384       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    385       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    386       ToClone.push_back(Dest);
    387       TerminatorDone = true;
    388     }
    389   }
    390 
    391   if (!TerminatorDone) {
    392     Instruction *NewInst = OldTI->clone();
    393     if (OldTI->hasName())
    394       NewInst->setName(OldTI->getName()+NameSuffix);
    395     NewBB->getInstList().push_back(NewInst);
    396     VMap[OldTI] = NewInst;             // Add instruction map to value.
    397 
    398     // Recursively clone any reachable successor blocks.
    399     const TerminatorInst *TI = BB->getTerminator();
    400     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    401       ToClone.push_back(TI->getSuccessor(i));
    402   }
    403 
    404   if (CodeInfo) {
    405     CodeInfo->ContainsCalls          |= hasCalls;
    406     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    407     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    408       BB != &BB->getParent()->front();
    409   }
    410 }
    411 
    412 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    413 /// except that it does some simple constant prop and DCE on the fly.  The
    414 /// effect of this is to copy significantly less code in cases where (for
    415 /// example) a function call with constant arguments is inlined, and those
    416 /// constant arguments cause a significant amount of code in the callee to be
    417 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    418 /// used for things like CloneFunction or CloneModule.
    419 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    420                                      ValueToValueMapTy &VMap,
    421                                      bool ModuleLevelChanges,
    422                                      SmallVectorImpl<ReturnInst*> &Returns,
    423                                      const char *NameSuffix,
    424                                      ClonedCodeInfo *CodeInfo,
    425                                      const DataLayout *DL,
    426                                      Instruction *TheCall) {
    427   assert(NameSuffix && "NameSuffix cannot be null!");
    428 
    429 #ifndef NDEBUG
    430   for (Function::const_arg_iterator II = OldFunc->arg_begin(),
    431        E = OldFunc->arg_end(); II != E; ++II)
    432     assert(VMap.count(II) && "No mapping from source argument specified!");
    433 #endif
    434 
    435   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    436                             NameSuffix, CodeInfo, DL);
    437 
    438   // Clone the entry block, and anything recursively reachable from it.
    439   std::vector<const BasicBlock*> CloneWorklist;
    440   CloneWorklist.push_back(&OldFunc->getEntryBlock());
    441   while (!CloneWorklist.empty()) {
    442     const BasicBlock *BB = CloneWorklist.back();
    443     CloneWorklist.pop_back();
    444     PFC.CloneBlock(BB, CloneWorklist);
    445   }
    446 
    447   // Loop over all of the basic blocks in the old function.  If the block was
    448   // reachable, we have cloned it and the old block is now in the value map:
    449   // insert it into the new function in the right order.  If not, ignore it.
    450   //
    451   // Defer PHI resolution until rest of function is resolved.
    452   SmallVector<const PHINode*, 16> PHIToResolve;
    453   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    454        BI != BE; ++BI) {
    455     Value *V = VMap[BI];
    456     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    457     if (!NewBB) continue;  // Dead block.
    458 
    459     // Add the new block to the new function.
    460     NewFunc->getBasicBlockList().push_back(NewBB);
    461 
    462     // Handle PHI nodes specially, as we have to remove references to dead
    463     // blocks.
    464     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
    465       if (const PHINode *PN = dyn_cast<PHINode>(I))
    466         PHIToResolve.push_back(PN);
    467       else
    468         break;
    469 
    470     // Finally, remap the terminator instructions, as those can't be remapped
    471     // until all BBs are mapped.
    472     RemapInstruction(NewBB->getTerminator(), VMap,
    473                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    474   }
    475 
    476   // Defer PHI resolution until rest of function is resolved, PHI resolution
    477   // requires the CFG to be up-to-date.
    478   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    479     const PHINode *OPN = PHIToResolve[phino];
    480     unsigned NumPreds = OPN->getNumIncomingValues();
    481     const BasicBlock *OldBB = OPN->getParent();
    482     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    483 
    484     // Map operands for blocks that are live and remove operands for blocks
    485     // that are dead.
    486     for (; phino != PHIToResolve.size() &&
    487          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    488       OPN = PHIToResolve[phino];
    489       PHINode *PN = cast<PHINode>(VMap[OPN]);
    490       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    491         Value *V = VMap[PN->getIncomingBlock(pred)];
    492         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    493           Value *InVal = MapValue(PN->getIncomingValue(pred),
    494                                   VMap,
    495                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    496           assert(InVal && "Unknown input value?");
    497           PN->setIncomingValue(pred, InVal);
    498           PN->setIncomingBlock(pred, MappedBlock);
    499         } else {
    500           PN->removeIncomingValue(pred, false);
    501           --pred, --e;  // Revisit the next entry.
    502         }
    503       }
    504     }
    505 
    506     // The loop above has removed PHI entries for those blocks that are dead
    507     // and has updated others.  However, if a block is live (i.e. copied over)
    508     // but its terminator has been changed to not go to this block, then our
    509     // phi nodes will have invalid entries.  Update the PHI nodes in this
    510     // case.
    511     PHINode *PN = cast<PHINode>(NewBB->begin());
    512     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    513     if (NumPreds != PN->getNumIncomingValues()) {
    514       assert(NumPreds < PN->getNumIncomingValues());
    515       // Count how many times each predecessor comes to this block.
    516       std::map<BasicBlock*, unsigned> PredCount;
    517       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    518            PI != E; ++PI)
    519         --PredCount[*PI];
    520 
    521       // Figure out how many entries to remove from each PHI.
    522       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    523         ++PredCount[PN->getIncomingBlock(i)];
    524 
    525       // At this point, the excess predecessor entries are positive in the
    526       // map.  Loop over all of the PHIs and remove excess predecessor
    527       // entries.
    528       BasicBlock::iterator I = NewBB->begin();
    529       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    530         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    531              E = PredCount.end(); PCI != E; ++PCI) {
    532           BasicBlock *Pred     = PCI->first;
    533           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    534             PN->removeIncomingValue(Pred, false);
    535         }
    536       }
    537     }
    538 
    539     // If the loops above have made these phi nodes have 0 or 1 operand,
    540     // replace them with undef or the input value.  We must do this for
    541     // correctness, because 0-operand phis are not valid.
    542     PN = cast<PHINode>(NewBB->begin());
    543     if (PN->getNumIncomingValues() == 0) {
    544       BasicBlock::iterator I = NewBB->begin();
    545       BasicBlock::const_iterator OldI = OldBB->begin();
    546       while ((PN = dyn_cast<PHINode>(I++))) {
    547         Value *NV = UndefValue::get(PN->getType());
    548         PN->replaceAllUsesWith(NV);
    549         assert(VMap[OldI] == PN && "VMap mismatch");
    550         VMap[OldI] = NV;
    551         PN->eraseFromParent();
    552         ++OldI;
    553       }
    554     }
    555   }
    556 
    557   // Make a second pass over the PHINodes now that all of them have been
    558   // remapped into the new function, simplifying the PHINode and performing any
    559   // recursive simplifications exposed. This will transparently update the
    560   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    561   // two PHINodes, the iteration over the old PHIs remains valid, and the
    562   // mapping will just map us to the new node (which may not even be a PHI
    563   // node).
    564   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    565     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    566       recursivelySimplifyInstruction(PN, DL);
    567 
    568   // Now that the inlined function body has been fully constructed, go through
    569   // and zap unconditional fall-through branches.  This happen all the time when
    570   // specializing code: code specialization turns conditional branches into
    571   // uncond branches, and this code folds them.
    572   Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
    573   Function::iterator I = Begin;
    574   while (I != NewFunc->end()) {
    575     // Check if this block has become dead during inlining or other
    576     // simplifications. Note that the first block will appear dead, as it has
    577     // not yet been wired up properly.
    578     if (I != Begin && (pred_begin(I) == pred_end(I) ||
    579                        I->getSinglePredecessor() == I)) {
    580       BasicBlock *DeadBB = I++;
    581       DeleteDeadBlock(DeadBB);
    582       continue;
    583     }
    584 
    585     // We need to simplify conditional branches and switches with a constant
    586     // operand. We try to prune these out when cloning, but if the
    587     // simplification required looking through PHI nodes, those are only
    588     // available after forming the full basic block. That may leave some here,
    589     // and we still want to prune the dead code as early as possible.
    590     ConstantFoldTerminator(I);
    591 
    592     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    593     if (!BI || BI->isConditional()) { ++I; continue; }
    594 
    595     BasicBlock *Dest = BI->getSuccessor(0);
    596     if (!Dest->getSinglePredecessor()) {
    597       ++I; continue;
    598     }
    599 
    600     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    601     // above should have zapped all of them..
    602     assert(!isa<PHINode>(Dest->begin()));
    603 
    604     // We know all single-entry PHI nodes in the inlined function have been
    605     // removed, so we just need to splice the blocks.
    606     BI->eraseFromParent();
    607 
    608     // Make all PHI nodes that referred to Dest now refer to I as their source.
    609     Dest->replaceAllUsesWith(I);
    610 
    611     // Move all the instructions in the succ to the pred.
    612     I->getInstList().splice(I->end(), Dest->getInstList());
    613 
    614     // Remove the dest block.
    615     Dest->eraseFromParent();
    616 
    617     // Do not increment I, iteratively merge all things this block branches to.
    618   }
    619 
    620   // Make a final pass over the basic blocks from theh old function to gather
    621   // any return instructions which survived folding. We have to do this here
    622   // because we can iteratively remove and merge returns above.
    623   for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
    624                           E = NewFunc->end();
    625        I != E; ++I)
    626     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    627       Returns.push_back(RI);
    628 }
    629