1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPSectionsDirectiveClass: 189 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 190 break; 191 case Stmt::OMPSectionDirectiveClass: 192 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 193 break; 194 case Stmt::OMPSingleDirectiveClass: 195 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 196 break; 197 case Stmt::OMPParallelForDirectiveClass: 198 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 199 break; 200 case Stmt::OMPParallelSectionsDirectiveClass: 201 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 202 break; 203 } 204 } 205 206 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 207 switch (S->getStmtClass()) { 208 default: return false; 209 case Stmt::NullStmtClass: break; 210 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 211 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 212 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 213 case Stmt::AttributedStmtClass: 214 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 215 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 216 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 217 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 218 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 219 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 220 } 221 222 return true; 223 } 224 225 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 226 /// this captures the expression result of the last sub-statement and returns it 227 /// (for use by the statement expression extension). 228 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 229 AggValueSlot AggSlot) { 230 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 231 "LLVM IR generation of compound statement ('{}')"); 232 233 // Keep track of the current cleanup stack depth, including debug scopes. 234 LexicalScope Scope(*this, S.getSourceRange()); 235 236 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 237 } 238 239 llvm::Value* 240 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 241 bool GetLast, 242 AggValueSlot AggSlot) { 243 244 for (CompoundStmt::const_body_iterator I = S.body_begin(), 245 E = S.body_end()-GetLast; I != E; ++I) 246 EmitStmt(*I); 247 248 llvm::Value *RetAlloca = nullptr; 249 if (GetLast) { 250 // We have to special case labels here. They are statements, but when put 251 // at the end of a statement expression, they yield the value of their 252 // subexpression. Handle this by walking through all labels we encounter, 253 // emitting them before we evaluate the subexpr. 254 const Stmt *LastStmt = S.body_back(); 255 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 256 EmitLabel(LS->getDecl()); 257 LastStmt = LS->getSubStmt(); 258 } 259 260 EnsureInsertPoint(); 261 262 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 263 if (hasAggregateEvaluationKind(ExprTy)) { 264 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 265 } else { 266 // We can't return an RValue here because there might be cleanups at 267 // the end of the StmtExpr. Because of that, we have to emit the result 268 // here into a temporary alloca. 269 RetAlloca = CreateMemTemp(ExprTy); 270 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 271 /*IsInit*/false); 272 } 273 274 } 275 276 return RetAlloca; 277 } 278 279 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 280 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 281 282 // If there is a cleanup stack, then we it isn't worth trying to 283 // simplify this block (we would need to remove it from the scope map 284 // and cleanup entry). 285 if (!EHStack.empty()) 286 return; 287 288 // Can only simplify direct branches. 289 if (!BI || !BI->isUnconditional()) 290 return; 291 292 // Can only simplify empty blocks. 293 if (BI != BB->begin()) 294 return; 295 296 BB->replaceAllUsesWith(BI->getSuccessor(0)); 297 BI->eraseFromParent(); 298 BB->eraseFromParent(); 299 } 300 301 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 302 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 303 304 // Fall out of the current block (if necessary). 305 EmitBranch(BB); 306 307 if (IsFinished && BB->use_empty()) { 308 delete BB; 309 return; 310 } 311 312 // Place the block after the current block, if possible, or else at 313 // the end of the function. 314 if (CurBB && CurBB->getParent()) 315 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 316 else 317 CurFn->getBasicBlockList().push_back(BB); 318 Builder.SetInsertPoint(BB); 319 } 320 321 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 322 // Emit a branch from the current block to the target one if this 323 // was a real block. If this was just a fall-through block after a 324 // terminator, don't emit it. 325 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 326 327 if (!CurBB || CurBB->getTerminator()) { 328 // If there is no insert point or the previous block is already 329 // terminated, don't touch it. 330 } else { 331 // Otherwise, create a fall-through branch. 332 Builder.CreateBr(Target); 333 } 334 335 Builder.ClearInsertionPoint(); 336 } 337 338 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 339 bool inserted = false; 340 for (llvm::User *u : block->users()) { 341 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 342 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 343 inserted = true; 344 break; 345 } 346 } 347 348 if (!inserted) 349 CurFn->getBasicBlockList().push_back(block); 350 351 Builder.SetInsertPoint(block); 352 } 353 354 CodeGenFunction::JumpDest 355 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 356 JumpDest &Dest = LabelMap[D]; 357 if (Dest.isValid()) return Dest; 358 359 // Create, but don't insert, the new block. 360 Dest = JumpDest(createBasicBlock(D->getName()), 361 EHScopeStack::stable_iterator::invalid(), 362 NextCleanupDestIndex++); 363 return Dest; 364 } 365 366 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 367 // Add this label to the current lexical scope if we're within any 368 // normal cleanups. Jumps "in" to this label --- when permitted by 369 // the language --- may need to be routed around such cleanups. 370 if (EHStack.hasNormalCleanups() && CurLexicalScope) 371 CurLexicalScope->addLabel(D); 372 373 JumpDest &Dest = LabelMap[D]; 374 375 // If we didn't need a forward reference to this label, just go 376 // ahead and create a destination at the current scope. 377 if (!Dest.isValid()) { 378 Dest = getJumpDestInCurrentScope(D->getName()); 379 380 // Otherwise, we need to give this label a target depth and remove 381 // it from the branch-fixups list. 382 } else { 383 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 384 Dest.setScopeDepth(EHStack.stable_begin()); 385 ResolveBranchFixups(Dest.getBlock()); 386 } 387 388 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 389 EmitBlock(Dest.getBlock()); 390 Cnt.beginRegion(Builder); 391 } 392 393 /// Change the cleanup scope of the labels in this lexical scope to 394 /// match the scope of the enclosing context. 395 void CodeGenFunction::LexicalScope::rescopeLabels() { 396 assert(!Labels.empty()); 397 EHScopeStack::stable_iterator innermostScope 398 = CGF.EHStack.getInnermostNormalCleanup(); 399 400 // Change the scope depth of all the labels. 401 for (SmallVectorImpl<const LabelDecl*>::const_iterator 402 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 403 assert(CGF.LabelMap.count(*i)); 404 JumpDest &dest = CGF.LabelMap.find(*i)->second; 405 assert(dest.getScopeDepth().isValid()); 406 assert(innermostScope.encloses(dest.getScopeDepth())); 407 dest.setScopeDepth(innermostScope); 408 } 409 410 // Reparent the labels if the new scope also has cleanups. 411 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 412 ParentScope->Labels.append(Labels.begin(), Labels.end()); 413 } 414 } 415 416 417 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 418 EmitLabel(S.getDecl()); 419 EmitStmt(S.getSubStmt()); 420 } 421 422 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 423 const Stmt *SubStmt = S.getSubStmt(); 424 switch (SubStmt->getStmtClass()) { 425 case Stmt::DoStmtClass: 426 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 427 break; 428 case Stmt::ForStmtClass: 429 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 430 break; 431 case Stmt::WhileStmtClass: 432 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 433 break; 434 case Stmt::CXXForRangeStmtClass: 435 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 436 break; 437 default: 438 EmitStmt(SubStmt); 439 } 440 } 441 442 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 443 // If this code is reachable then emit a stop point (if generating 444 // debug info). We have to do this ourselves because we are on the 445 // "simple" statement path. 446 if (HaveInsertPoint()) 447 EmitStopPoint(&S); 448 449 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 450 } 451 452 453 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 454 if (const LabelDecl *Target = S.getConstantTarget()) { 455 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 456 return; 457 } 458 459 // Ensure that we have an i8* for our PHI node. 460 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 461 Int8PtrTy, "addr"); 462 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 463 464 // Get the basic block for the indirect goto. 465 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 466 467 // The first instruction in the block has to be the PHI for the switch dest, 468 // add an entry for this branch. 469 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 470 471 EmitBranch(IndGotoBB); 472 } 473 474 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 475 // C99 6.8.4.1: The first substatement is executed if the expression compares 476 // unequal to 0. The condition must be a scalar type. 477 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 478 RegionCounter Cnt = getPGORegionCounter(&S); 479 480 if (S.getConditionVariable()) 481 EmitAutoVarDecl(*S.getConditionVariable()); 482 483 // If the condition constant folds and can be elided, try to avoid emitting 484 // the condition and the dead arm of the if/else. 485 bool CondConstant; 486 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 487 // Figure out which block (then or else) is executed. 488 const Stmt *Executed = S.getThen(); 489 const Stmt *Skipped = S.getElse(); 490 if (!CondConstant) // Condition false? 491 std::swap(Executed, Skipped); 492 493 // If the skipped block has no labels in it, just emit the executed block. 494 // This avoids emitting dead code and simplifies the CFG substantially. 495 if (!ContainsLabel(Skipped)) { 496 if (CondConstant) 497 Cnt.beginRegion(Builder); 498 if (Executed) { 499 RunCleanupsScope ExecutedScope(*this); 500 EmitStmt(Executed); 501 } 502 return; 503 } 504 } 505 506 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 507 // the conditional branch. 508 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 509 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 510 llvm::BasicBlock *ElseBlock = ContBlock; 511 if (S.getElse()) 512 ElseBlock = createBasicBlock("if.else"); 513 514 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 515 516 // Emit the 'then' code. 517 EmitBlock(ThenBlock); 518 Cnt.beginRegion(Builder); 519 { 520 RunCleanupsScope ThenScope(*this); 521 EmitStmt(S.getThen()); 522 } 523 EmitBranch(ContBlock); 524 525 // Emit the 'else' code if present. 526 if (const Stmt *Else = S.getElse()) { 527 // There is no need to emit line number for unconditional branch. 528 if (getDebugInfo()) 529 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 530 EmitBlock(ElseBlock); 531 { 532 RunCleanupsScope ElseScope(*this); 533 EmitStmt(Else); 534 } 535 // There is no need to emit line number for unconditional branch. 536 if (getDebugInfo()) 537 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 538 EmitBranch(ContBlock); 539 } 540 541 // Emit the continuation block for code after the if. 542 EmitBlock(ContBlock, true); 543 } 544 545 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 546 llvm::BranchInst *CondBr, 547 const ArrayRef<const Attr *> &Attrs) { 548 // Return if there are no hints. 549 if (Attrs.empty()) 550 return; 551 552 // Add vectorize and unroll hints to the metadata on the conditional branch. 553 SmallVector<llvm::Value *, 2> Metadata(1); 554 for (const auto *Attr : Attrs) { 555 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 556 557 // Skip non loop hint attributes 558 if (!LH) 559 continue; 560 561 LoopHintAttr::OptionType Option = LH->getOption(); 562 int ValueInt = LH->getValue(); 563 564 const char *MetadataName; 565 switch (Option) { 566 case LoopHintAttr::Vectorize: 567 case LoopHintAttr::VectorizeWidth: 568 MetadataName = "llvm.loop.vectorize.width"; 569 break; 570 case LoopHintAttr::Interleave: 571 case LoopHintAttr::InterleaveCount: 572 MetadataName = "llvm.loop.vectorize.unroll"; 573 break; 574 case LoopHintAttr::Unroll: 575 MetadataName = "llvm.loop.unroll.enable"; 576 break; 577 case LoopHintAttr::UnrollCount: 578 MetadataName = "llvm.loop.unroll.count"; 579 break; 580 } 581 582 llvm::Value *Value; 583 llvm::MDString *Name; 584 switch (Option) { 585 case LoopHintAttr::Vectorize: 586 case LoopHintAttr::Interleave: 587 if (ValueInt == 1) { 588 // FIXME: In the future I will modifiy the behavior of the metadata 589 // so we can enable/disable vectorization and interleaving separately. 590 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 591 Value = Builder.getTrue(); 592 break; 593 } 594 // Vectorization/interleaving is disabled, set width/count to 1. 595 ValueInt = 1; 596 // Fallthrough. 597 case LoopHintAttr::VectorizeWidth: 598 case LoopHintAttr::InterleaveCount: 599 Name = llvm::MDString::get(Context, MetadataName); 600 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 601 break; 602 case LoopHintAttr::Unroll: 603 Name = llvm::MDString::get(Context, MetadataName); 604 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue(); 605 break; 606 case LoopHintAttr::UnrollCount: 607 Name = llvm::MDString::get(Context, MetadataName); 608 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 609 break; 610 } 611 612 SmallVector<llvm::Value *, 2> OpValues; 613 OpValues.push_back(Name); 614 OpValues.push_back(Value); 615 616 // Set or overwrite metadata indicated by Name. 617 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 618 } 619 620 if (!Metadata.empty()) { 621 // Add llvm.loop MDNode to CondBr. 622 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 623 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 624 625 CondBr->setMetadata("llvm.loop", LoopID); 626 } 627 } 628 629 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 630 const ArrayRef<const Attr *> &WhileAttrs) { 631 RegionCounter Cnt = getPGORegionCounter(&S); 632 633 // Emit the header for the loop, which will also become 634 // the continue target. 635 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 636 EmitBlock(LoopHeader.getBlock()); 637 638 LoopStack.push(LoopHeader.getBlock()); 639 640 // Create an exit block for when the condition fails, which will 641 // also become the break target. 642 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 643 644 // Store the blocks to use for break and continue. 645 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 646 647 // C++ [stmt.while]p2: 648 // When the condition of a while statement is a declaration, the 649 // scope of the variable that is declared extends from its point 650 // of declaration (3.3.2) to the end of the while statement. 651 // [...] 652 // The object created in a condition is destroyed and created 653 // with each iteration of the loop. 654 RunCleanupsScope ConditionScope(*this); 655 656 if (S.getConditionVariable()) 657 EmitAutoVarDecl(*S.getConditionVariable()); 658 659 // Evaluate the conditional in the while header. C99 6.8.5.1: The 660 // evaluation of the controlling expression takes place before each 661 // execution of the loop body. 662 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 663 664 // while(1) is common, avoid extra exit blocks. Be sure 665 // to correctly handle break/continue though. 666 bool EmitBoolCondBranch = true; 667 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 668 if (C->isOne()) 669 EmitBoolCondBranch = false; 670 671 // As long as the condition is true, go to the loop body. 672 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 673 if (EmitBoolCondBranch) { 674 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 675 if (ConditionScope.requiresCleanups()) 676 ExitBlock = createBasicBlock("while.exit"); 677 llvm::BranchInst *CondBr = 678 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 679 PGO.createLoopWeights(S.getCond(), Cnt)); 680 681 if (ExitBlock != LoopExit.getBlock()) { 682 EmitBlock(ExitBlock); 683 EmitBranchThroughCleanup(LoopExit); 684 } 685 686 // Attach metadata to loop body conditional branch. 687 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 688 } 689 690 // Emit the loop body. We have to emit this in a cleanup scope 691 // because it might be a singleton DeclStmt. 692 { 693 RunCleanupsScope BodyScope(*this); 694 EmitBlock(LoopBody); 695 Cnt.beginRegion(Builder); 696 EmitStmt(S.getBody()); 697 } 698 699 BreakContinueStack.pop_back(); 700 701 // Immediately force cleanup. 702 ConditionScope.ForceCleanup(); 703 704 // Branch to the loop header again. 705 EmitBranch(LoopHeader.getBlock()); 706 707 LoopStack.pop(); 708 709 // Emit the exit block. 710 EmitBlock(LoopExit.getBlock(), true); 711 712 // The LoopHeader typically is just a branch if we skipped emitting 713 // a branch, try to erase it. 714 if (!EmitBoolCondBranch) 715 SimplifyForwardingBlocks(LoopHeader.getBlock()); 716 } 717 718 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 719 const ArrayRef<const Attr *> &DoAttrs) { 720 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 721 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 722 723 RegionCounter Cnt = getPGORegionCounter(&S); 724 725 // Store the blocks to use for break and continue. 726 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 727 728 // Emit the body of the loop. 729 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 730 731 LoopStack.push(LoopBody); 732 733 EmitBlockWithFallThrough(LoopBody, Cnt); 734 { 735 RunCleanupsScope BodyScope(*this); 736 EmitStmt(S.getBody()); 737 } 738 739 EmitBlock(LoopCond.getBlock()); 740 741 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 742 // after each execution of the loop body." 743 744 // Evaluate the conditional in the while header. 745 // C99 6.8.5p2/p4: The first substatement is executed if the expression 746 // compares unequal to 0. The condition must be a scalar type. 747 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 748 749 BreakContinueStack.pop_back(); 750 751 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 752 // to correctly handle break/continue though. 753 bool EmitBoolCondBranch = true; 754 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 755 if (C->isZero()) 756 EmitBoolCondBranch = false; 757 758 // As long as the condition is true, iterate the loop. 759 if (EmitBoolCondBranch) { 760 llvm::BranchInst *CondBr = 761 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 762 PGO.createLoopWeights(S.getCond(), Cnt)); 763 764 // Attach metadata to loop body conditional branch. 765 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 766 } 767 768 LoopStack.pop(); 769 770 // Emit the exit block. 771 EmitBlock(LoopExit.getBlock()); 772 773 // The DoCond block typically is just a branch if we skipped 774 // emitting a branch, try to erase it. 775 if (!EmitBoolCondBranch) 776 SimplifyForwardingBlocks(LoopCond.getBlock()); 777 } 778 779 void CodeGenFunction::EmitForStmt(const ForStmt &S, 780 const ArrayRef<const Attr *> &ForAttrs) { 781 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 782 783 RunCleanupsScope ForScope(*this); 784 785 CGDebugInfo *DI = getDebugInfo(); 786 if (DI) 787 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 788 789 // Evaluate the first part before the loop. 790 if (S.getInit()) 791 EmitStmt(S.getInit()); 792 793 RegionCounter Cnt = getPGORegionCounter(&S); 794 795 // Start the loop with a block that tests the condition. 796 // If there's an increment, the continue scope will be overwritten 797 // later. 798 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 799 llvm::BasicBlock *CondBlock = Continue.getBlock(); 800 EmitBlock(CondBlock); 801 802 LoopStack.push(CondBlock); 803 804 // If the for loop doesn't have an increment we can just use the 805 // condition as the continue block. Otherwise we'll need to create 806 // a block for it (in the current scope, i.e. in the scope of the 807 // condition), and that we will become our continue block. 808 if (S.getInc()) 809 Continue = getJumpDestInCurrentScope("for.inc"); 810 811 // Store the blocks to use for break and continue. 812 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 813 814 // Create a cleanup scope for the condition variable cleanups. 815 RunCleanupsScope ConditionScope(*this); 816 817 if (S.getCond()) { 818 // If the for statement has a condition scope, emit the local variable 819 // declaration. 820 if (S.getConditionVariable()) { 821 EmitAutoVarDecl(*S.getConditionVariable()); 822 } 823 824 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 825 // If there are any cleanups between here and the loop-exit scope, 826 // create a block to stage a loop exit along. 827 if (ForScope.requiresCleanups()) 828 ExitBlock = createBasicBlock("for.cond.cleanup"); 829 830 // As long as the condition is true, iterate the loop. 831 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 832 833 // C99 6.8.5p2/p4: The first substatement is executed if the expression 834 // compares unequal to 0. The condition must be a scalar type. 835 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 836 llvm::BranchInst *CondBr = 837 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 838 PGO.createLoopWeights(S.getCond(), Cnt)); 839 840 // Attach metadata to loop body conditional branch. 841 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 842 843 if (ExitBlock != LoopExit.getBlock()) { 844 EmitBlock(ExitBlock); 845 EmitBranchThroughCleanup(LoopExit); 846 } 847 848 EmitBlock(ForBody); 849 } else { 850 // Treat it as a non-zero constant. Don't even create a new block for the 851 // body, just fall into it. 852 } 853 Cnt.beginRegion(Builder); 854 855 { 856 // Create a separate cleanup scope for the body, in case it is not 857 // a compound statement. 858 RunCleanupsScope BodyScope(*this); 859 EmitStmt(S.getBody()); 860 } 861 862 // If there is an increment, emit it next. 863 if (S.getInc()) { 864 EmitBlock(Continue.getBlock()); 865 EmitStmt(S.getInc()); 866 } 867 868 BreakContinueStack.pop_back(); 869 870 ConditionScope.ForceCleanup(); 871 EmitBranch(CondBlock); 872 873 ForScope.ForceCleanup(); 874 875 if (DI) 876 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 877 878 LoopStack.pop(); 879 880 // Emit the fall-through block. 881 EmitBlock(LoopExit.getBlock(), true); 882 } 883 884 void 885 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 886 const ArrayRef<const Attr *> &ForAttrs) { 887 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 888 889 RunCleanupsScope ForScope(*this); 890 891 CGDebugInfo *DI = getDebugInfo(); 892 if (DI) 893 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 894 895 // Evaluate the first pieces before the loop. 896 EmitStmt(S.getRangeStmt()); 897 EmitStmt(S.getBeginEndStmt()); 898 899 RegionCounter Cnt = getPGORegionCounter(&S); 900 901 // Start the loop with a block that tests the condition. 902 // If there's an increment, the continue scope will be overwritten 903 // later. 904 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 905 EmitBlock(CondBlock); 906 907 LoopStack.push(CondBlock); 908 909 // If there are any cleanups between here and the loop-exit scope, 910 // create a block to stage a loop exit along. 911 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 912 if (ForScope.requiresCleanups()) 913 ExitBlock = createBasicBlock("for.cond.cleanup"); 914 915 // The loop body, consisting of the specified body and the loop variable. 916 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 917 918 // The body is executed if the expression, contextually converted 919 // to bool, is true. 920 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 921 llvm::BranchInst *CondBr = Builder.CreateCondBr( 922 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 923 924 // Attach metadata to loop body conditional branch. 925 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 926 927 if (ExitBlock != LoopExit.getBlock()) { 928 EmitBlock(ExitBlock); 929 EmitBranchThroughCleanup(LoopExit); 930 } 931 932 EmitBlock(ForBody); 933 Cnt.beginRegion(Builder); 934 935 // Create a block for the increment. In case of a 'continue', we jump there. 936 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 937 938 // Store the blocks to use for break and continue. 939 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 940 941 { 942 // Create a separate cleanup scope for the loop variable and body. 943 RunCleanupsScope BodyScope(*this); 944 EmitStmt(S.getLoopVarStmt()); 945 EmitStmt(S.getBody()); 946 } 947 948 // If there is an increment, emit it next. 949 EmitBlock(Continue.getBlock()); 950 EmitStmt(S.getInc()); 951 952 BreakContinueStack.pop_back(); 953 954 EmitBranch(CondBlock); 955 956 ForScope.ForceCleanup(); 957 958 if (DI) 959 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 960 961 LoopStack.pop(); 962 963 // Emit the fall-through block. 964 EmitBlock(LoopExit.getBlock(), true); 965 } 966 967 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 968 if (RV.isScalar()) { 969 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 970 } else if (RV.isAggregate()) { 971 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 972 } else { 973 EmitStoreOfComplex(RV.getComplexVal(), 974 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 975 /*init*/ true); 976 } 977 EmitBranchThroughCleanup(ReturnBlock); 978 } 979 980 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 981 /// if the function returns void, or may be missing one if the function returns 982 /// non-void. Fun stuff :). 983 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 984 // Emit the result value, even if unused, to evalute the side effects. 985 const Expr *RV = S.getRetValue(); 986 987 // Treat block literals in a return expression as if they appeared 988 // in their own scope. This permits a small, easily-implemented 989 // exception to our over-conservative rules about not jumping to 990 // statements following block literals with non-trivial cleanups. 991 RunCleanupsScope cleanupScope(*this); 992 if (const ExprWithCleanups *cleanups = 993 dyn_cast_or_null<ExprWithCleanups>(RV)) { 994 enterFullExpression(cleanups); 995 RV = cleanups->getSubExpr(); 996 } 997 998 // FIXME: Clean this up by using an LValue for ReturnTemp, 999 // EmitStoreThroughLValue, and EmitAnyExpr. 1000 if (getLangOpts().ElideConstructors && 1001 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1002 // Apply the named return value optimization for this return statement, 1003 // which means doing nothing: the appropriate result has already been 1004 // constructed into the NRVO variable. 1005 1006 // If there is an NRVO flag for this variable, set it to 1 into indicate 1007 // that the cleanup code should not destroy the variable. 1008 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1009 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1010 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1011 // Make sure not to return anything, but evaluate the expression 1012 // for side effects. 1013 if (RV) 1014 EmitAnyExpr(RV); 1015 } else if (!RV) { 1016 // Do nothing (return value is left uninitialized) 1017 } else if (FnRetTy->isReferenceType()) { 1018 // If this function returns a reference, take the address of the expression 1019 // rather than the value. 1020 RValue Result = EmitReferenceBindingToExpr(RV); 1021 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1022 } else { 1023 switch (getEvaluationKind(RV->getType())) { 1024 case TEK_Scalar: 1025 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1026 break; 1027 case TEK_Complex: 1028 EmitComplexExprIntoLValue(RV, 1029 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1030 /*isInit*/ true); 1031 break; 1032 case TEK_Aggregate: { 1033 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1034 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1035 Qualifiers(), 1036 AggValueSlot::IsDestructed, 1037 AggValueSlot::DoesNotNeedGCBarriers, 1038 AggValueSlot::IsNotAliased)); 1039 break; 1040 } 1041 } 1042 } 1043 1044 ++NumReturnExprs; 1045 if (!RV || RV->isEvaluatable(getContext())) 1046 ++NumSimpleReturnExprs; 1047 1048 cleanupScope.ForceCleanup(); 1049 EmitBranchThroughCleanup(ReturnBlock); 1050 } 1051 1052 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1053 // As long as debug info is modeled with instructions, we have to ensure we 1054 // have a place to insert here and write the stop point here. 1055 if (HaveInsertPoint()) 1056 EmitStopPoint(&S); 1057 1058 for (const auto *I : S.decls()) 1059 EmitDecl(*I); 1060 } 1061 1062 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1063 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1064 1065 // If this code is reachable then emit a stop point (if generating 1066 // debug info). We have to do this ourselves because we are on the 1067 // "simple" statement path. 1068 if (HaveInsertPoint()) 1069 EmitStopPoint(&S); 1070 1071 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1072 } 1073 1074 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1075 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1076 1077 // If this code is reachable then emit a stop point (if generating 1078 // debug info). We have to do this ourselves because we are on the 1079 // "simple" statement path. 1080 if (HaveInsertPoint()) 1081 EmitStopPoint(&S); 1082 1083 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1084 } 1085 1086 /// EmitCaseStmtRange - If case statement range is not too big then 1087 /// add multiple cases to switch instruction, one for each value within 1088 /// the range. If range is too big then emit "if" condition check. 1089 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1090 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1091 1092 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1093 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1094 1095 RegionCounter CaseCnt = getPGORegionCounter(&S); 1096 1097 // Emit the code for this case. We do this first to make sure it is 1098 // properly chained from our predecessor before generating the 1099 // switch machinery to enter this block. 1100 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1101 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1102 EmitStmt(S.getSubStmt()); 1103 1104 // If range is empty, do nothing. 1105 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1106 return; 1107 1108 llvm::APInt Range = RHS - LHS; 1109 // FIXME: parameters such as this should not be hardcoded. 1110 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1111 // Range is small enough to add multiple switch instruction cases. 1112 uint64_t Total = CaseCnt.getCount(); 1113 unsigned NCases = Range.getZExtValue() + 1; 1114 // We only have one region counter for the entire set of cases here, so we 1115 // need to divide the weights evenly between the generated cases, ensuring 1116 // that the total weight is preserved. E.g., a weight of 5 over three cases 1117 // will be distributed as weights of 2, 2, and 1. 1118 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1119 for (unsigned I = 0; I != NCases; ++I) { 1120 if (SwitchWeights) 1121 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1122 if (Rem) 1123 Rem--; 1124 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1125 LHS++; 1126 } 1127 return; 1128 } 1129 1130 // The range is too big. Emit "if" condition into a new block, 1131 // making sure to save and restore the current insertion point. 1132 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1133 1134 // Push this test onto the chain of range checks (which terminates 1135 // in the default basic block). The switch's default will be changed 1136 // to the top of this chain after switch emission is complete. 1137 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1138 CaseRangeBlock = createBasicBlock("sw.caserange"); 1139 1140 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1141 Builder.SetInsertPoint(CaseRangeBlock); 1142 1143 // Emit range check. 1144 llvm::Value *Diff = 1145 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1146 llvm::Value *Cond = 1147 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1148 1149 llvm::MDNode *Weights = nullptr; 1150 if (SwitchWeights) { 1151 uint64_t ThisCount = CaseCnt.getCount(); 1152 uint64_t DefaultCount = (*SwitchWeights)[0]; 1153 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1154 1155 // Since we're chaining the switch default through each large case range, we 1156 // need to update the weight for the default, ie, the first case, to include 1157 // this case. 1158 (*SwitchWeights)[0] += ThisCount; 1159 } 1160 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1161 1162 // Restore the appropriate insertion point. 1163 if (RestoreBB) 1164 Builder.SetInsertPoint(RestoreBB); 1165 else 1166 Builder.ClearInsertionPoint(); 1167 } 1168 1169 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1170 // If there is no enclosing switch instance that we're aware of, then this 1171 // case statement and its block can be elided. This situation only happens 1172 // when we've constant-folded the switch, are emitting the constant case, 1173 // and part of the constant case includes another case statement. For 1174 // instance: switch (4) { case 4: do { case 5: } while (1); } 1175 if (!SwitchInsn) { 1176 EmitStmt(S.getSubStmt()); 1177 return; 1178 } 1179 1180 // Handle case ranges. 1181 if (S.getRHS()) { 1182 EmitCaseStmtRange(S); 1183 return; 1184 } 1185 1186 RegionCounter CaseCnt = getPGORegionCounter(&S); 1187 llvm::ConstantInt *CaseVal = 1188 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1189 1190 // If the body of the case is just a 'break', try to not emit an empty block. 1191 // If we're profiling or we're not optimizing, leave the block in for better 1192 // debug and coverage analysis. 1193 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1194 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1195 isa<BreakStmt>(S.getSubStmt())) { 1196 JumpDest Block = BreakContinueStack.back().BreakBlock; 1197 1198 // Only do this optimization if there are no cleanups that need emitting. 1199 if (isObviouslyBranchWithoutCleanups(Block)) { 1200 if (SwitchWeights) 1201 SwitchWeights->push_back(CaseCnt.getCount()); 1202 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1203 1204 // If there was a fallthrough into this case, make sure to redirect it to 1205 // the end of the switch as well. 1206 if (Builder.GetInsertBlock()) { 1207 Builder.CreateBr(Block.getBlock()); 1208 Builder.ClearInsertionPoint(); 1209 } 1210 return; 1211 } 1212 } 1213 1214 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1215 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1216 if (SwitchWeights) 1217 SwitchWeights->push_back(CaseCnt.getCount()); 1218 SwitchInsn->addCase(CaseVal, CaseDest); 1219 1220 // Recursively emitting the statement is acceptable, but is not wonderful for 1221 // code where we have many case statements nested together, i.e.: 1222 // case 1: 1223 // case 2: 1224 // case 3: etc. 1225 // Handling this recursively will create a new block for each case statement 1226 // that falls through to the next case which is IR intensive. It also causes 1227 // deep recursion which can run into stack depth limitations. Handle 1228 // sequential non-range case statements specially. 1229 const CaseStmt *CurCase = &S; 1230 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1231 1232 // Otherwise, iteratively add consecutive cases to this switch stmt. 1233 while (NextCase && NextCase->getRHS() == nullptr) { 1234 CurCase = NextCase; 1235 llvm::ConstantInt *CaseVal = 1236 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1237 1238 CaseCnt = getPGORegionCounter(NextCase); 1239 if (SwitchWeights) 1240 SwitchWeights->push_back(CaseCnt.getCount()); 1241 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1242 CaseDest = createBasicBlock("sw.bb"); 1243 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1244 } 1245 1246 SwitchInsn->addCase(CaseVal, CaseDest); 1247 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1248 } 1249 1250 // Normal default recursion for non-cases. 1251 EmitStmt(CurCase->getSubStmt()); 1252 } 1253 1254 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1255 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1256 assert(DefaultBlock->empty() && 1257 "EmitDefaultStmt: Default block already defined?"); 1258 1259 RegionCounter Cnt = getPGORegionCounter(&S); 1260 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1261 1262 EmitStmt(S.getSubStmt()); 1263 } 1264 1265 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1266 /// constant value that is being switched on, see if we can dead code eliminate 1267 /// the body of the switch to a simple series of statements to emit. Basically, 1268 /// on a switch (5) we want to find these statements: 1269 /// case 5: 1270 /// printf(...); <-- 1271 /// ++i; <-- 1272 /// break; 1273 /// 1274 /// and add them to the ResultStmts vector. If it is unsafe to do this 1275 /// transformation (for example, one of the elided statements contains a label 1276 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1277 /// should include statements after it (e.g. the printf() line is a substmt of 1278 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1279 /// statement, then return CSFC_Success. 1280 /// 1281 /// If Case is non-null, then we are looking for the specified case, checking 1282 /// that nothing we jump over contains labels. If Case is null, then we found 1283 /// the case and are looking for the break. 1284 /// 1285 /// If the recursive walk actually finds our Case, then we set FoundCase to 1286 /// true. 1287 /// 1288 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1289 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1290 const SwitchCase *Case, 1291 bool &FoundCase, 1292 SmallVectorImpl<const Stmt*> &ResultStmts) { 1293 // If this is a null statement, just succeed. 1294 if (!S) 1295 return Case ? CSFC_Success : CSFC_FallThrough; 1296 1297 // If this is the switchcase (case 4: or default) that we're looking for, then 1298 // we're in business. Just add the substatement. 1299 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1300 if (S == Case) { 1301 FoundCase = true; 1302 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1303 ResultStmts); 1304 } 1305 1306 // Otherwise, this is some other case or default statement, just ignore it. 1307 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1308 ResultStmts); 1309 } 1310 1311 // If we are in the live part of the code and we found our break statement, 1312 // return a success! 1313 if (!Case && isa<BreakStmt>(S)) 1314 return CSFC_Success; 1315 1316 // If this is a switch statement, then it might contain the SwitchCase, the 1317 // break, or neither. 1318 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1319 // Handle this as two cases: we might be looking for the SwitchCase (if so 1320 // the skipped statements must be skippable) or we might already have it. 1321 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1322 if (Case) { 1323 // Keep track of whether we see a skipped declaration. The code could be 1324 // using the declaration even if it is skipped, so we can't optimize out 1325 // the decl if the kept statements might refer to it. 1326 bool HadSkippedDecl = false; 1327 1328 // If we're looking for the case, just see if we can skip each of the 1329 // substatements. 1330 for (; Case && I != E; ++I) { 1331 HadSkippedDecl |= isa<DeclStmt>(*I); 1332 1333 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1334 case CSFC_Failure: return CSFC_Failure; 1335 case CSFC_Success: 1336 // A successful result means that either 1) that the statement doesn't 1337 // have the case and is skippable, or 2) does contain the case value 1338 // and also contains the break to exit the switch. In the later case, 1339 // we just verify the rest of the statements are elidable. 1340 if (FoundCase) { 1341 // If we found the case and skipped declarations, we can't do the 1342 // optimization. 1343 if (HadSkippedDecl) 1344 return CSFC_Failure; 1345 1346 for (++I; I != E; ++I) 1347 if (CodeGenFunction::ContainsLabel(*I, true)) 1348 return CSFC_Failure; 1349 return CSFC_Success; 1350 } 1351 break; 1352 case CSFC_FallThrough: 1353 // If we have a fallthrough condition, then we must have found the 1354 // case started to include statements. Consider the rest of the 1355 // statements in the compound statement as candidates for inclusion. 1356 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1357 // We recursively found Case, so we're not looking for it anymore. 1358 Case = nullptr; 1359 1360 // If we found the case and skipped declarations, we can't do the 1361 // optimization. 1362 if (HadSkippedDecl) 1363 return CSFC_Failure; 1364 break; 1365 } 1366 } 1367 } 1368 1369 // If we have statements in our range, then we know that the statements are 1370 // live and need to be added to the set of statements we're tracking. 1371 for (; I != E; ++I) { 1372 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1373 case CSFC_Failure: return CSFC_Failure; 1374 case CSFC_FallThrough: 1375 // A fallthrough result means that the statement was simple and just 1376 // included in ResultStmt, keep adding them afterwards. 1377 break; 1378 case CSFC_Success: 1379 // A successful result means that we found the break statement and 1380 // stopped statement inclusion. We just ensure that any leftover stmts 1381 // are skippable and return success ourselves. 1382 for (++I; I != E; ++I) 1383 if (CodeGenFunction::ContainsLabel(*I, true)) 1384 return CSFC_Failure; 1385 return CSFC_Success; 1386 } 1387 } 1388 1389 return Case ? CSFC_Success : CSFC_FallThrough; 1390 } 1391 1392 // Okay, this is some other statement that we don't handle explicitly, like a 1393 // for statement or increment etc. If we are skipping over this statement, 1394 // just verify it doesn't have labels, which would make it invalid to elide. 1395 if (Case) { 1396 if (CodeGenFunction::ContainsLabel(S, true)) 1397 return CSFC_Failure; 1398 return CSFC_Success; 1399 } 1400 1401 // Otherwise, we want to include this statement. Everything is cool with that 1402 // so long as it doesn't contain a break out of the switch we're in. 1403 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1404 1405 // Otherwise, everything is great. Include the statement and tell the caller 1406 // that we fall through and include the next statement as well. 1407 ResultStmts.push_back(S); 1408 return CSFC_FallThrough; 1409 } 1410 1411 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1412 /// then invoke CollectStatementsForCase to find the list of statements to emit 1413 /// for a switch on constant. See the comment above CollectStatementsForCase 1414 /// for more details. 1415 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1416 const llvm::APSInt &ConstantCondValue, 1417 SmallVectorImpl<const Stmt*> &ResultStmts, 1418 ASTContext &C, 1419 const SwitchCase *&ResultCase) { 1420 // First step, find the switch case that is being branched to. We can do this 1421 // efficiently by scanning the SwitchCase list. 1422 const SwitchCase *Case = S.getSwitchCaseList(); 1423 const DefaultStmt *DefaultCase = nullptr; 1424 1425 for (; Case; Case = Case->getNextSwitchCase()) { 1426 // It's either a default or case. Just remember the default statement in 1427 // case we're not jumping to any numbered cases. 1428 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1429 DefaultCase = DS; 1430 continue; 1431 } 1432 1433 // Check to see if this case is the one we're looking for. 1434 const CaseStmt *CS = cast<CaseStmt>(Case); 1435 // Don't handle case ranges yet. 1436 if (CS->getRHS()) return false; 1437 1438 // If we found our case, remember it as 'case'. 1439 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1440 break; 1441 } 1442 1443 // If we didn't find a matching case, we use a default if it exists, or we 1444 // elide the whole switch body! 1445 if (!Case) { 1446 // It is safe to elide the body of the switch if it doesn't contain labels 1447 // etc. If it is safe, return successfully with an empty ResultStmts list. 1448 if (!DefaultCase) 1449 return !CodeGenFunction::ContainsLabel(&S); 1450 Case = DefaultCase; 1451 } 1452 1453 // Ok, we know which case is being jumped to, try to collect all the 1454 // statements that follow it. This can fail for a variety of reasons. Also, 1455 // check to see that the recursive walk actually found our case statement. 1456 // Insane cases like this can fail to find it in the recursive walk since we 1457 // don't handle every stmt kind: 1458 // switch (4) { 1459 // while (1) { 1460 // case 4: ... 1461 bool FoundCase = false; 1462 ResultCase = Case; 1463 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1464 ResultStmts) != CSFC_Failure && 1465 FoundCase; 1466 } 1467 1468 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1469 // Handle nested switch statements. 1470 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1471 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1472 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1473 1474 // See if we can constant fold the condition of the switch and therefore only 1475 // emit the live case statement (if any) of the switch. 1476 llvm::APSInt ConstantCondValue; 1477 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1478 SmallVector<const Stmt*, 4> CaseStmts; 1479 const SwitchCase *Case = nullptr; 1480 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1481 getContext(), Case)) { 1482 if (Case) { 1483 RegionCounter CaseCnt = getPGORegionCounter(Case); 1484 CaseCnt.beginRegion(Builder); 1485 } 1486 RunCleanupsScope ExecutedScope(*this); 1487 1488 // Emit the condition variable if needed inside the entire cleanup scope 1489 // used by this special case for constant folded switches. 1490 if (S.getConditionVariable()) 1491 EmitAutoVarDecl(*S.getConditionVariable()); 1492 1493 // At this point, we are no longer "within" a switch instance, so 1494 // we can temporarily enforce this to ensure that any embedded case 1495 // statements are not emitted. 1496 SwitchInsn = nullptr; 1497 1498 // Okay, we can dead code eliminate everything except this case. Emit the 1499 // specified series of statements and we're good. 1500 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1501 EmitStmt(CaseStmts[i]); 1502 RegionCounter ExitCnt = getPGORegionCounter(&S); 1503 ExitCnt.beginRegion(Builder); 1504 1505 // Now we want to restore the saved switch instance so that nested 1506 // switches continue to function properly 1507 SwitchInsn = SavedSwitchInsn; 1508 1509 return; 1510 } 1511 } 1512 1513 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1514 1515 RunCleanupsScope ConditionScope(*this); 1516 if (S.getConditionVariable()) 1517 EmitAutoVarDecl(*S.getConditionVariable()); 1518 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1519 1520 // Create basic block to hold stuff that comes after switch 1521 // statement. We also need to create a default block now so that 1522 // explicit case ranges tests can have a place to jump to on 1523 // failure. 1524 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1525 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1526 if (PGO.haveRegionCounts()) { 1527 // Walk the SwitchCase list to find how many there are. 1528 uint64_t DefaultCount = 0; 1529 unsigned NumCases = 0; 1530 for (const SwitchCase *Case = S.getSwitchCaseList(); 1531 Case; 1532 Case = Case->getNextSwitchCase()) { 1533 if (isa<DefaultStmt>(Case)) 1534 DefaultCount = getPGORegionCounter(Case).getCount(); 1535 NumCases += 1; 1536 } 1537 SwitchWeights = new SmallVector<uint64_t, 16>(); 1538 SwitchWeights->reserve(NumCases); 1539 // The default needs to be first. We store the edge count, so we already 1540 // know the right weight. 1541 SwitchWeights->push_back(DefaultCount); 1542 } 1543 CaseRangeBlock = DefaultBlock; 1544 1545 // Clear the insertion point to indicate we are in unreachable code. 1546 Builder.ClearInsertionPoint(); 1547 1548 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1549 // then reuse last ContinueBlock. 1550 JumpDest OuterContinue; 1551 if (!BreakContinueStack.empty()) 1552 OuterContinue = BreakContinueStack.back().ContinueBlock; 1553 1554 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1555 1556 // Emit switch body. 1557 EmitStmt(S.getBody()); 1558 1559 BreakContinueStack.pop_back(); 1560 1561 // Update the default block in case explicit case range tests have 1562 // been chained on top. 1563 SwitchInsn->setDefaultDest(CaseRangeBlock); 1564 1565 // If a default was never emitted: 1566 if (!DefaultBlock->getParent()) { 1567 // If we have cleanups, emit the default block so that there's a 1568 // place to jump through the cleanups from. 1569 if (ConditionScope.requiresCleanups()) { 1570 EmitBlock(DefaultBlock); 1571 1572 // Otherwise, just forward the default block to the switch end. 1573 } else { 1574 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1575 delete DefaultBlock; 1576 } 1577 } 1578 1579 ConditionScope.ForceCleanup(); 1580 1581 // Emit continuation. 1582 EmitBlock(SwitchExit.getBlock(), true); 1583 RegionCounter ExitCnt = getPGORegionCounter(&S); 1584 ExitCnt.beginRegion(Builder); 1585 1586 if (SwitchWeights) { 1587 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1588 "switch weights do not match switch cases"); 1589 // If there's only one jump destination there's no sense weighting it. 1590 if (SwitchWeights->size() > 1) 1591 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1592 PGO.createBranchWeights(*SwitchWeights)); 1593 delete SwitchWeights; 1594 } 1595 SwitchInsn = SavedSwitchInsn; 1596 SwitchWeights = SavedSwitchWeights; 1597 CaseRangeBlock = SavedCRBlock; 1598 } 1599 1600 static std::string 1601 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1602 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1603 std::string Result; 1604 1605 while (*Constraint) { 1606 switch (*Constraint) { 1607 default: 1608 Result += Target.convertConstraint(Constraint); 1609 break; 1610 // Ignore these 1611 case '*': 1612 case '?': 1613 case '!': 1614 case '=': // Will see this and the following in mult-alt constraints. 1615 case '+': 1616 break; 1617 case '#': // Ignore the rest of the constraint alternative. 1618 while (Constraint[1] && Constraint[1] != ',') 1619 Constraint++; 1620 break; 1621 case ',': 1622 Result += "|"; 1623 break; 1624 case 'g': 1625 Result += "imr"; 1626 break; 1627 case '[': { 1628 assert(OutCons && 1629 "Must pass output names to constraints with a symbolic name"); 1630 unsigned Index; 1631 bool result = Target.resolveSymbolicName(Constraint, 1632 &(*OutCons)[0], 1633 OutCons->size(), Index); 1634 assert(result && "Could not resolve symbolic name"); (void)result; 1635 Result += llvm::utostr(Index); 1636 break; 1637 } 1638 } 1639 1640 Constraint++; 1641 } 1642 1643 return Result; 1644 } 1645 1646 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1647 /// as using a particular register add that as a constraint that will be used 1648 /// in this asm stmt. 1649 static std::string 1650 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1651 const TargetInfo &Target, CodeGenModule &CGM, 1652 const AsmStmt &Stmt) { 1653 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1654 if (!AsmDeclRef) 1655 return Constraint; 1656 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1657 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1658 if (!Variable) 1659 return Constraint; 1660 if (Variable->getStorageClass() != SC_Register) 1661 return Constraint; 1662 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1663 if (!Attr) 1664 return Constraint; 1665 StringRef Register = Attr->getLabel(); 1666 assert(Target.isValidGCCRegisterName(Register)); 1667 // We're using validateOutputConstraint here because we only care if 1668 // this is a register constraint. 1669 TargetInfo::ConstraintInfo Info(Constraint, ""); 1670 if (Target.validateOutputConstraint(Info) && 1671 !Info.allowsRegister()) { 1672 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1673 return Constraint; 1674 } 1675 // Canonicalize the register here before returning it. 1676 Register = Target.getNormalizedGCCRegisterName(Register); 1677 return "{" + Register.str() + "}"; 1678 } 1679 1680 llvm::Value* 1681 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1682 LValue InputValue, QualType InputType, 1683 std::string &ConstraintStr, 1684 SourceLocation Loc) { 1685 llvm::Value *Arg; 1686 if (Info.allowsRegister() || !Info.allowsMemory()) { 1687 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1688 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1689 } else { 1690 llvm::Type *Ty = ConvertType(InputType); 1691 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1692 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1693 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1694 Ty = llvm::PointerType::getUnqual(Ty); 1695 1696 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1697 Ty)); 1698 } else { 1699 Arg = InputValue.getAddress(); 1700 ConstraintStr += '*'; 1701 } 1702 } 1703 } else { 1704 Arg = InputValue.getAddress(); 1705 ConstraintStr += '*'; 1706 } 1707 1708 return Arg; 1709 } 1710 1711 llvm::Value* CodeGenFunction::EmitAsmInput( 1712 const TargetInfo::ConstraintInfo &Info, 1713 const Expr *InputExpr, 1714 std::string &ConstraintStr) { 1715 if (Info.allowsRegister() || !Info.allowsMemory()) 1716 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1717 return EmitScalarExpr(InputExpr); 1718 1719 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1720 LValue Dest = EmitLValue(InputExpr); 1721 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1722 InputExpr->getExprLoc()); 1723 } 1724 1725 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1726 /// asm call instruction. The !srcloc MDNode contains a list of constant 1727 /// integers which are the source locations of the start of each line in the 1728 /// asm. 1729 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1730 CodeGenFunction &CGF) { 1731 SmallVector<llvm::Value *, 8> Locs; 1732 // Add the location of the first line to the MDNode. 1733 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1734 Str->getLocStart().getRawEncoding())); 1735 StringRef StrVal = Str->getString(); 1736 if (!StrVal.empty()) { 1737 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1738 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1739 1740 // Add the location of the start of each subsequent line of the asm to the 1741 // MDNode. 1742 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1743 if (StrVal[i] != '\n') continue; 1744 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1745 CGF.getTarget()); 1746 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1747 LineLoc.getRawEncoding())); 1748 } 1749 } 1750 1751 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1752 } 1753 1754 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1755 // Assemble the final asm string. 1756 std::string AsmString = S.generateAsmString(getContext()); 1757 1758 // Get all the output and input constraints together. 1759 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1760 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1761 1762 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1763 StringRef Name; 1764 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1765 Name = GAS->getOutputName(i); 1766 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1767 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1768 assert(IsValid && "Failed to parse output constraint"); 1769 OutputConstraintInfos.push_back(Info); 1770 } 1771 1772 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1773 StringRef Name; 1774 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1775 Name = GAS->getInputName(i); 1776 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1777 bool IsValid = 1778 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1779 S.getNumOutputs(), Info); 1780 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1781 InputConstraintInfos.push_back(Info); 1782 } 1783 1784 std::string Constraints; 1785 1786 std::vector<LValue> ResultRegDests; 1787 std::vector<QualType> ResultRegQualTys; 1788 std::vector<llvm::Type *> ResultRegTypes; 1789 std::vector<llvm::Type *> ResultTruncRegTypes; 1790 std::vector<llvm::Type *> ArgTypes; 1791 std::vector<llvm::Value*> Args; 1792 1793 // Keep track of inout constraints. 1794 std::string InOutConstraints; 1795 std::vector<llvm::Value*> InOutArgs; 1796 std::vector<llvm::Type*> InOutArgTypes; 1797 1798 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1799 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1800 1801 // Simplify the output constraint. 1802 std::string OutputConstraint(S.getOutputConstraint(i)); 1803 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1804 getTarget()); 1805 1806 const Expr *OutExpr = S.getOutputExpr(i); 1807 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1808 1809 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1810 getTarget(), CGM, S); 1811 1812 LValue Dest = EmitLValue(OutExpr); 1813 if (!Constraints.empty()) 1814 Constraints += ','; 1815 1816 // If this is a register output, then make the inline asm return it 1817 // by-value. If this is a memory result, return the value by-reference. 1818 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1819 Constraints += "=" + OutputConstraint; 1820 ResultRegQualTys.push_back(OutExpr->getType()); 1821 ResultRegDests.push_back(Dest); 1822 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1823 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1824 1825 // If this output is tied to an input, and if the input is larger, then 1826 // we need to set the actual result type of the inline asm node to be the 1827 // same as the input type. 1828 if (Info.hasMatchingInput()) { 1829 unsigned InputNo; 1830 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1831 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1832 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1833 break; 1834 } 1835 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1836 1837 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1838 QualType OutputType = OutExpr->getType(); 1839 1840 uint64_t InputSize = getContext().getTypeSize(InputTy); 1841 if (getContext().getTypeSize(OutputType) < InputSize) { 1842 // Form the asm to return the value as a larger integer or fp type. 1843 ResultRegTypes.back() = ConvertType(InputTy); 1844 } 1845 } 1846 if (llvm::Type* AdjTy = 1847 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1848 ResultRegTypes.back())) 1849 ResultRegTypes.back() = AdjTy; 1850 else { 1851 CGM.getDiags().Report(S.getAsmLoc(), 1852 diag::err_asm_invalid_type_in_input) 1853 << OutExpr->getType() << OutputConstraint; 1854 } 1855 } else { 1856 ArgTypes.push_back(Dest.getAddress()->getType()); 1857 Args.push_back(Dest.getAddress()); 1858 Constraints += "=*"; 1859 Constraints += OutputConstraint; 1860 } 1861 1862 if (Info.isReadWrite()) { 1863 InOutConstraints += ','; 1864 1865 const Expr *InputExpr = S.getOutputExpr(i); 1866 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1867 InOutConstraints, 1868 InputExpr->getExprLoc()); 1869 1870 if (llvm::Type* AdjTy = 1871 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1872 Arg->getType())) 1873 Arg = Builder.CreateBitCast(Arg, AdjTy); 1874 1875 if (Info.allowsRegister()) 1876 InOutConstraints += llvm::utostr(i); 1877 else 1878 InOutConstraints += OutputConstraint; 1879 1880 InOutArgTypes.push_back(Arg->getType()); 1881 InOutArgs.push_back(Arg); 1882 } 1883 } 1884 1885 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1886 1887 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1888 const Expr *InputExpr = S.getInputExpr(i); 1889 1890 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1891 1892 if (!Constraints.empty()) 1893 Constraints += ','; 1894 1895 // Simplify the input constraint. 1896 std::string InputConstraint(S.getInputConstraint(i)); 1897 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1898 &OutputConstraintInfos); 1899 1900 InputConstraint = 1901 AddVariableConstraints(InputConstraint, 1902 *InputExpr->IgnoreParenNoopCasts(getContext()), 1903 getTarget(), CGM, S); 1904 1905 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1906 1907 // If this input argument is tied to a larger output result, extend the 1908 // input to be the same size as the output. The LLVM backend wants to see 1909 // the input and output of a matching constraint be the same size. Note 1910 // that GCC does not define what the top bits are here. We use zext because 1911 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1912 if (Info.hasTiedOperand()) { 1913 unsigned Output = Info.getTiedOperand(); 1914 QualType OutputType = S.getOutputExpr(Output)->getType(); 1915 QualType InputTy = InputExpr->getType(); 1916 1917 if (getContext().getTypeSize(OutputType) > 1918 getContext().getTypeSize(InputTy)) { 1919 // Use ptrtoint as appropriate so that we can do our extension. 1920 if (isa<llvm::PointerType>(Arg->getType())) 1921 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1922 llvm::Type *OutputTy = ConvertType(OutputType); 1923 if (isa<llvm::IntegerType>(OutputTy)) 1924 Arg = Builder.CreateZExt(Arg, OutputTy); 1925 else if (isa<llvm::PointerType>(OutputTy)) 1926 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1927 else { 1928 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1929 Arg = Builder.CreateFPExt(Arg, OutputTy); 1930 } 1931 } 1932 } 1933 if (llvm::Type* AdjTy = 1934 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1935 Arg->getType())) 1936 Arg = Builder.CreateBitCast(Arg, AdjTy); 1937 else 1938 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1939 << InputExpr->getType() << InputConstraint; 1940 1941 ArgTypes.push_back(Arg->getType()); 1942 Args.push_back(Arg); 1943 Constraints += InputConstraint; 1944 } 1945 1946 // Append the "input" part of inout constraints last. 1947 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1948 ArgTypes.push_back(InOutArgTypes[i]); 1949 Args.push_back(InOutArgs[i]); 1950 } 1951 Constraints += InOutConstraints; 1952 1953 // Clobbers 1954 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1955 StringRef Clobber = S.getClobber(i); 1956 1957 if (Clobber != "memory" && Clobber != "cc") 1958 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1959 1960 if (i != 0 || NumConstraints != 0) 1961 Constraints += ','; 1962 1963 Constraints += "~{"; 1964 Constraints += Clobber; 1965 Constraints += '}'; 1966 } 1967 1968 // Add machine specific clobbers 1969 std::string MachineClobbers = getTarget().getClobbers(); 1970 if (!MachineClobbers.empty()) { 1971 if (!Constraints.empty()) 1972 Constraints += ','; 1973 Constraints += MachineClobbers; 1974 } 1975 1976 llvm::Type *ResultType; 1977 if (ResultRegTypes.empty()) 1978 ResultType = VoidTy; 1979 else if (ResultRegTypes.size() == 1) 1980 ResultType = ResultRegTypes[0]; 1981 else 1982 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1983 1984 llvm::FunctionType *FTy = 1985 llvm::FunctionType::get(ResultType, ArgTypes, false); 1986 1987 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1988 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1989 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1990 llvm::InlineAsm *IA = 1991 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1992 /* IsAlignStack */ false, AsmDialect); 1993 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1994 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1995 llvm::Attribute::NoUnwind); 1996 1997 // Slap the source location of the inline asm into a !srcloc metadata on the 1998 // call. FIXME: Handle metadata for MS-style inline asms. 1999 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2000 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2001 *this)); 2002 2003 // Extract all of the register value results from the asm. 2004 std::vector<llvm::Value*> RegResults; 2005 if (ResultRegTypes.size() == 1) { 2006 RegResults.push_back(Result); 2007 } else { 2008 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2009 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2010 RegResults.push_back(Tmp); 2011 } 2012 } 2013 2014 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2015 llvm::Value *Tmp = RegResults[i]; 2016 2017 // If the result type of the LLVM IR asm doesn't match the result type of 2018 // the expression, do the conversion. 2019 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2020 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2021 2022 // Truncate the integer result to the right size, note that TruncTy can be 2023 // a pointer. 2024 if (TruncTy->isFloatingPointTy()) 2025 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2026 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2027 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2028 Tmp = Builder.CreateTrunc(Tmp, 2029 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2030 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2031 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2032 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2033 Tmp = Builder.CreatePtrToInt(Tmp, 2034 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2035 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2036 } else if (TruncTy->isIntegerTy()) { 2037 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2038 } else if (TruncTy->isVectorTy()) { 2039 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2040 } 2041 } 2042 2043 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2044 } 2045 } 2046 2047 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2048 const RecordDecl *RD = S.getCapturedRecordDecl(); 2049 QualType RecordTy = CGF.getContext().getRecordType(RD); 2050 2051 // Initialize the captured struct. 2052 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2053 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2054 2055 RecordDecl::field_iterator CurField = RD->field_begin(); 2056 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2057 E = S.capture_init_end(); 2058 I != E; ++I, ++CurField) { 2059 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2060 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2061 } 2062 2063 return SlotLV; 2064 } 2065 2066 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2067 for (auto &C : S.captures()) { 2068 if (C.capturesVariable()) { 2069 QualType QTy; 2070 auto VD = C.getCapturedVar(); 2071 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2072 QTy = PVD->getOriginalType(); 2073 else 2074 QTy = VD->getType(); 2075 if (QTy->isVariablyModifiedType()) { 2076 CGF.EmitVariablyModifiedType(QTy); 2077 } 2078 } 2079 } 2080 } 2081 2082 /// Generate an outlined function for the body of a CapturedStmt, store any 2083 /// captured variables into the captured struct, and call the outlined function. 2084 llvm::Function * 2085 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2086 LValue CapStruct = InitCapturedStruct(*this, S); 2087 2088 // Emit the CapturedDecl 2089 CodeGenFunction CGF(CGM, true); 2090 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2091 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2092 delete CGF.CapturedStmtInfo; 2093 2094 // Emit call to the helper function. 2095 EmitCallOrInvoke(F, CapStruct.getAddress()); 2096 2097 return F; 2098 } 2099 2100 llvm::Value * 2101 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2102 LValue CapStruct = InitCapturedStruct(*this, S); 2103 return CapStruct.getAddress(); 2104 } 2105 2106 /// Creates the outlined function for a CapturedStmt. 2107 llvm::Function * 2108 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2109 assert(CapturedStmtInfo && 2110 "CapturedStmtInfo should be set when generating the captured function"); 2111 const CapturedDecl *CD = S.getCapturedDecl(); 2112 const RecordDecl *RD = S.getCapturedRecordDecl(); 2113 SourceLocation Loc = S.getLocStart(); 2114 assert(CD->hasBody() && "missing CapturedDecl body"); 2115 2116 // Build the argument list. 2117 ASTContext &Ctx = CGM.getContext(); 2118 FunctionArgList Args; 2119 Args.append(CD->param_begin(), CD->param_end()); 2120 2121 // Create the function declaration. 2122 FunctionType::ExtInfo ExtInfo; 2123 const CGFunctionInfo &FuncInfo = 2124 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2125 /*IsVariadic=*/false); 2126 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2127 2128 llvm::Function *F = 2129 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2130 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2131 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2132 2133 // Generate the function. 2134 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2135 CD->getLocation(), 2136 CD->getBody()->getLocStart()); 2137 // Set the context parameter in CapturedStmtInfo. 2138 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2139 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2140 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2141 2142 // Initialize variable-length arrays. 2143 InitVLACaptures(*this, S); 2144 2145 // If 'this' is captured, load it into CXXThisValue. 2146 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2147 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2148 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2149 Ctx.getTagDeclType(RD)); 2150 LValue ThisLValue = EmitLValueForField(LV, FD); 2151 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2152 } 2153 2154 PGO.assignRegionCounters(CD, F); 2155 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2156 FinishFunction(CD->getBodyRBrace()); 2157 PGO.emitInstrumentationData(); 2158 PGO.destroyRegionCounters(); 2159 2160 return F; 2161 } 2162