Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a coalescing interval map for small objects.
     11 //
     12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
     13 // same value are represented in a compressed form.
     14 //
     15 // Iterators provide ordered access to the compressed intervals rather than the
     16 // individual keys, and insert and erase operations use key intervals as well.
     17 //
     18 // Like SmallVector, IntervalMap will store the first N intervals in the map
     19 // object itself without any allocations. When space is exhausted it switches to
     20 // a B+-tree representation with very small overhead for small key and value
     21 // objects.
     22 //
     23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
     24 // work with both closed and half-open intervals.
     25 //
     26 // Keys and values are not stored next to each other in a std::pair, so we don't
     27 // provide such a value_type. Dereferencing iterators only returns the mapped
     28 // value. The interval bounds are accessible through the start() and stop()
     29 // iterator methods.
     30 //
     31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
     32 // is the optimal size. For large objects use std::map instead.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 //
     36 // Synopsis:
     37 //
     38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     39 // class IntervalMap {
     40 // public:
     41 //   typedef KeyT key_type;
     42 //   typedef ValT mapped_type;
     43 //   typedef RecyclingAllocator<...> Allocator;
     44 //   class iterator;
     45 //   class const_iterator;
     46 //
     47 //   explicit IntervalMap(Allocator&);
     48 //   ~IntervalMap():
     49 //
     50 //   bool empty() const;
     51 //   KeyT start() const;
     52 //   KeyT stop() const;
     53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
     54 //
     55 //   const_iterator begin() const;
     56 //   const_iterator end() const;
     57 //   iterator begin();
     58 //   iterator end();
     59 //   const_iterator find(KeyT x) const;
     60 //   iterator find(KeyT x);
     61 //
     62 //   void insert(KeyT a, KeyT b, ValT y);
     63 //   void clear();
     64 // };
     65 //
     66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     67 // class IntervalMap::const_iterator :
     68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
     69 // public:
     70 //   bool operator==(const const_iterator &) const;
     71 //   bool operator!=(const const_iterator &) const;
     72 //   bool valid() const;
     73 //
     74 //   const KeyT &start() const;
     75 //   const KeyT &stop() const;
     76 //   const ValT &value() const;
     77 //   const ValT &operator*() const;
     78 //   const ValT *operator->() const;
     79 //
     80 //   const_iterator &operator++();
     81 //   const_iterator &operator++(int);
     82 //   const_iterator &operator--();
     83 //   const_iterator &operator--(int);
     84 //   void goToBegin();
     85 //   void goToEnd();
     86 //   void find(KeyT x);
     87 //   void advanceTo(KeyT x);
     88 // };
     89 //
     90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     91 // class IntervalMap::iterator : public const_iterator {
     92 // public:
     93 //   void insert(KeyT a, KeyT b, Value y);
     94 //   void erase();
     95 // };
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #ifndef LLVM_ADT_INTERVALMAP_H
    100 #define LLVM_ADT_INTERVALMAP_H
    101 
    102 #include "llvm/ADT/PointerIntPair.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/Support/Allocator.h"
    105 #include "llvm/Support/RecyclingAllocator.h"
    106 #include <iterator>
    107 
    108 namespace llvm {
    109 
    110 
    111 //===----------------------------------------------------------------------===//
    112 //---                              Key traits                              ---//
    113 //===----------------------------------------------------------------------===//
    114 //
    115 // The IntervalMap works with closed or half-open intervals.
    116 // Adjacent intervals that map to the same value are coalesced.
    117 //
    118 // The IntervalMapInfo traits class is used to determine if a key is contained
    119 // in an interval, and if two intervals are adjacent so they can be coalesced.
    120 // The provided implementation works for closed integer intervals, other keys
    121 // probably need a specialized version.
    122 //
    123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
    124 //
    125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
    126 // allowed. This is so that stopLess(a, b) can be used to determine if two
    127 // intervals overlap.
    128 //
    129 //===----------------------------------------------------------------------===//
    130 
    131 template <typename T>
    132 struct IntervalMapInfo {
    133 
    134   /// startLess - Return true if x is not in [a;b].
    135   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
    136   static inline bool startLess(const T &x, const T &a) {
    137     return x < a;
    138   }
    139 
    140   /// stopLess - Return true if x is not in [a;b].
    141   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
    142   static inline bool stopLess(const T &b, const T &x) {
    143     return b < x;
    144   }
    145 
    146   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
    147   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
    148   static inline bool adjacent(const T &a, const T &b) {
    149     return a+1 == b;
    150   }
    151 
    152 };
    153 
    154 template <typename T>
    155 struct IntervalMapHalfOpenInfo {
    156 
    157   /// startLess - Return true if x is not in [a;b).
    158   static inline bool startLess(const T &x, const T &a) {
    159     return x < a;
    160   }
    161 
    162   /// stopLess - Return true if x is not in [a;b).
    163   static inline bool stopLess(const T &b, const T &x) {
    164     return b <= x;
    165   }
    166 
    167   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
    168   static inline bool adjacent(const T &a, const T &b) {
    169     return a == b;
    170   }
    171 
    172 };
    173 
    174 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
    175 /// It should be considered private to the implementation.
    176 namespace IntervalMapImpl {
    177 
    178 // Forward declarations.
    179 template <typename, typename, unsigned, typename> class LeafNode;
    180 template <typename, typename, unsigned, typename> class BranchNode;
    181 
    182 typedef std::pair<unsigned,unsigned> IdxPair;
    183 
    184 
    185 //===----------------------------------------------------------------------===//
    186 //---                    IntervalMapImpl::NodeBase                         ---//
    187 //===----------------------------------------------------------------------===//
    188 //
    189 // Both leaf and branch nodes store vectors of pairs.
    190 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
    191 //
    192 // Keys and values are stored in separate arrays to avoid padding caused by
    193 // different object alignments. This also helps improve locality of reference
    194 // when searching the keys.
    195 //
    196 // The nodes don't know how many elements they contain - that information is
    197 // stored elsewhere. Omitting the size field prevents padding and allows a node
    198 // to fill the allocated cache lines completely.
    199 //
    200 // These are typical key and value sizes, the node branching factor (N), and
    201 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
    202 //
    203 //   T1  T2   N Waste  Used by
    204 //    4   4  24   0    Branch<4> (32-bit pointers)
    205 //    8   4  16   0    Leaf<4,4>, Branch<4>
    206 //    8   8  12   0    Leaf<4,8>, Branch<8>
    207 //   16   4   9  12    Leaf<8,4>
    208 //   16   8   8   0    Leaf<8,8>
    209 //
    210 //===----------------------------------------------------------------------===//
    211 
    212 template <typename T1, typename T2, unsigned N>
    213 class NodeBase {
    214 public:
    215   enum { Capacity = N };
    216 
    217   T1 first[N];
    218   T2 second[N];
    219 
    220   /// copy - Copy elements from another node.
    221   /// @param Other Node elements are copied from.
    222   /// @param i     Beginning of the source range in other.
    223   /// @param j     Beginning of the destination range in this.
    224   /// @param Count Number of elements to copy.
    225   template <unsigned M>
    226   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
    227             unsigned j, unsigned Count) {
    228     assert(i + Count <= M && "Invalid source range");
    229     assert(j + Count <= N && "Invalid dest range");
    230     for (unsigned e = i + Count; i != e; ++i, ++j) {
    231       first[j]  = Other.first[i];
    232       second[j] = Other.second[i];
    233     }
    234   }
    235 
    236   /// moveLeft - Move elements to the left.
    237   /// @param i     Beginning of the source range.
    238   /// @param j     Beginning of the destination range.
    239   /// @param Count Number of elements to copy.
    240   void moveLeft(unsigned i, unsigned j, unsigned Count) {
    241     assert(j <= i && "Use moveRight shift elements right");
    242     copy(*this, i, j, Count);
    243   }
    244 
    245   /// moveRight - Move elements to the right.
    246   /// @param i     Beginning of the source range.
    247   /// @param j     Beginning of the destination range.
    248   /// @param Count Number of elements to copy.
    249   void moveRight(unsigned i, unsigned j, unsigned Count) {
    250     assert(i <= j && "Use moveLeft shift elements left");
    251     assert(j + Count <= N && "Invalid range");
    252     while (Count--) {
    253       first[j + Count]  = first[i + Count];
    254       second[j + Count] = second[i + Count];
    255     }
    256   }
    257 
    258   /// erase - Erase elements [i;j).
    259   /// @param i    Beginning of the range to erase.
    260   /// @param j    End of the range. (Exclusive).
    261   /// @param Size Number of elements in node.
    262   void erase(unsigned i, unsigned j, unsigned Size) {
    263     moveLeft(j, i, Size - j);
    264   }
    265 
    266   /// erase - Erase element at i.
    267   /// @param i    Index of element to erase.
    268   /// @param Size Number of elements in node.
    269   void erase(unsigned i, unsigned Size) {
    270     erase(i, i+1, Size);
    271   }
    272 
    273   /// shift - Shift elements [i;size) 1 position to the right.
    274   /// @param i    Beginning of the range to move.
    275   /// @param Size Number of elements in node.
    276   void shift(unsigned i, unsigned Size) {
    277     moveRight(i, i + 1, Size - i);
    278   }
    279 
    280   /// transferToLeftSib - Transfer elements to a left sibling node.
    281   /// @param Size  Number of elements in this.
    282   /// @param Sib   Left sibling node.
    283   /// @param SSize Number of elements in sib.
    284   /// @param Count Number of elements to transfer.
    285   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    286                          unsigned Count) {
    287     Sib.copy(*this, 0, SSize, Count);
    288     erase(0, Count, Size);
    289   }
    290 
    291   /// transferToRightSib - Transfer elements to a right sibling node.
    292   /// @param Size  Number of elements in this.
    293   /// @param Sib   Right sibling node.
    294   /// @param SSize Number of elements in sib.
    295   /// @param Count Number of elements to transfer.
    296   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    297                           unsigned Count) {
    298     Sib.moveRight(0, Count, SSize);
    299     Sib.copy(*this, Size-Count, 0, Count);
    300   }
    301 
    302   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
    303   /// elements to or from a left sibling node.
    304   /// @param Size  Number of elements in this.
    305   /// @param Sib   Right sibling node.
    306   /// @param SSize Number of elements in sib.
    307   /// @param Add   The number of elements to add to this node, possibly < 0.
    308   /// @return      Number of elements added to this node, possibly negative.
    309   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
    310     if (Add > 0) {
    311       // We want to grow, copy from sib.
    312       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
    313       Sib.transferToRightSib(SSize, *this, Size, Count);
    314       return Count;
    315     } else {
    316       // We want to shrink, copy to sib.
    317       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
    318       transferToLeftSib(Size, Sib, SSize, Count);
    319       return -Count;
    320     }
    321   }
    322 };
    323 
    324 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
    325 /// @param Node  Array of pointers to sibling nodes.
    326 /// @param Nodes Number of nodes.
    327 /// @param CurSize Array of current node sizes, will be overwritten.
    328 /// @param NewSize Array of desired node sizes.
    329 template <typename NodeT>
    330 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
    331                         unsigned CurSize[], const unsigned NewSize[]) {
    332   // Move elements right.
    333   for (int n = Nodes - 1; n; --n) {
    334     if (CurSize[n] == NewSize[n])
    335       continue;
    336     for (int m = n - 1; m != -1; --m) {
    337       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
    338                                          NewSize[n] - CurSize[n]);
    339       CurSize[m] -= d;
    340       CurSize[n] += d;
    341       // Keep going if the current node was exhausted.
    342       if (CurSize[n] >= NewSize[n])
    343           break;
    344     }
    345   }
    346 
    347   if (Nodes == 0)
    348     return;
    349 
    350   // Move elements left.
    351   for (unsigned n = 0; n != Nodes - 1; ++n) {
    352     if (CurSize[n] == NewSize[n])
    353       continue;
    354     for (unsigned m = n + 1; m != Nodes; ++m) {
    355       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
    356                                         CurSize[n] -  NewSize[n]);
    357       CurSize[m] += d;
    358       CurSize[n] -= d;
    359       // Keep going if the current node was exhausted.
    360       if (CurSize[n] >= NewSize[n])
    361           break;
    362     }
    363   }
    364 
    365 #ifndef NDEBUG
    366   for (unsigned n = 0; n != Nodes; n++)
    367     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
    368 #endif
    369 }
    370 
    371 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
    372 /// after an overflow or underflow. Reserve space for a new element at Position,
    373 /// and compute the node that will hold Position after redistributing node
    374 /// elements.
    375 ///
    376 /// It is required that
    377 ///
    378 ///   Elements == sum(CurSize), and
    379 ///   Elements + Grow <= Nodes * Capacity.
    380 ///
    381 /// NewSize[] will be filled in such that:
    382 ///
    383 ///   sum(NewSize) == Elements, and
    384 ///   NewSize[i] <= Capacity.
    385 ///
    386 /// The returned index is the node where Position will go, so:
    387 ///
    388 ///   sum(NewSize[0..idx-1]) <= Position
    389 ///   sum(NewSize[0..idx])   >= Position
    390 ///
    391 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
    392 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
    393 /// before the one holding the Position'th element where there is room for an
    394 /// insertion.
    395 ///
    396 /// @param Nodes    The number of nodes.
    397 /// @param Elements Total elements in all nodes.
    398 /// @param Capacity The capacity of each node.
    399 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
    400 /// @param NewSize  Array[Nodes] to receive the new node sizes.
    401 /// @param Position Insert position.
    402 /// @param Grow     Reserve space for a new element at Position.
    403 /// @return         (node, offset) for Position.
    404 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
    405                    const unsigned *CurSize, unsigned NewSize[],
    406                    unsigned Position, bool Grow);
    407 
    408 
    409 //===----------------------------------------------------------------------===//
    410 //---                   IntervalMapImpl::NodeSizer                         ---//
    411 //===----------------------------------------------------------------------===//
    412 //
    413 // Compute node sizes from key and value types.
    414 //
    415 // The branching factors are chosen to make nodes fit in three cache lines.
    416 // This may not be possible if keys or values are very large. Such large objects
    417 // are handled correctly, but a std::map would probably give better performance.
    418 //
    419 //===----------------------------------------------------------------------===//
    420 
    421 enum {
    422   // Cache line size. Most architectures have 32 or 64 byte cache lines.
    423   // We use 64 bytes here because it provides good branching factors.
    424   Log2CacheLine = 6,
    425   CacheLineBytes = 1 << Log2CacheLine,
    426   DesiredNodeBytes = 3 * CacheLineBytes
    427 };
    428 
    429 template <typename KeyT, typename ValT>
    430 struct NodeSizer {
    431   enum {
    432     // Compute the leaf node branching factor that makes a node fit in three
    433     // cache lines. The branching factor must be at least 3, or some B+-tree
    434     // balancing algorithms won't work.
    435     // LeafSize can't be larger than CacheLineBytes. This is required by the
    436     // PointerIntPair used by NodeRef.
    437     DesiredLeafSize = DesiredNodeBytes /
    438       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
    439     MinLeafSize = 3,
    440     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
    441   };
    442 
    443   typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
    444 
    445   enum {
    446     // Now that we have the leaf branching factor, compute the actual allocation
    447     // unit size by rounding up to a whole number of cache lines.
    448     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
    449 
    450     // Determine the branching factor for branch nodes.
    451     BranchSize = AllocBytes /
    452       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
    453   };
    454 
    455   /// Allocator - The recycling allocator used for both branch and leaf nodes.
    456   /// This typedef is very likely to be identical for all IntervalMaps with
    457   /// reasonably sized entries, so the same allocator can be shared among
    458   /// different kinds of maps.
    459   typedef RecyclingAllocator<BumpPtrAllocator, char,
    460                              AllocBytes, CacheLineBytes> Allocator;
    461 
    462 };
    463 
    464 
    465 //===----------------------------------------------------------------------===//
    466 //---                     IntervalMapImpl::NodeRef                         ---//
    467 //===----------------------------------------------------------------------===//
    468 //
    469 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
    470 // pointer that can point to both kinds.
    471 //
    472 // All nodes are cache line aligned and the low 6 bits of a node pointer are
    473 // always 0. These bits are used to store the number of elements in the
    474 // referenced node. Besides saving space, placing node sizes in the parents
    475 // allow tree balancing algorithms to run without faulting cache lines for nodes
    476 // that may not need to be modified.
    477 //
    478 // A NodeRef doesn't know whether it references a leaf node or a branch node.
    479 // It is the responsibility of the caller to use the correct types.
    480 //
    481 // Nodes are never supposed to be empty, and it is invalid to store a node size
    482 // of 0 in a NodeRef. The valid range of sizes is 1-64.
    483 //
    484 //===----------------------------------------------------------------------===//
    485 
    486 class NodeRef {
    487   struct CacheAlignedPointerTraits {
    488     static inline void *getAsVoidPointer(void *P) { return P; }
    489     static inline void *getFromVoidPointer(void *P) { return P; }
    490     enum { NumLowBitsAvailable = Log2CacheLine };
    491   };
    492   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
    493 
    494 public:
    495   /// NodeRef - Create a null ref.
    496   NodeRef() {}
    497 
    498   /// operator bool - Detect a null ref.
    499   LLVM_EXPLICIT operator bool() const { return pip.getOpaqueValue(); }
    500 
    501   /// NodeRef - Create a reference to the node p with n elements.
    502   template <typename NodeT>
    503   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
    504     assert(n <= NodeT::Capacity && "Size too big for node");
    505   }
    506 
    507   /// size - Return the number of elements in the referenced node.
    508   unsigned size() const { return pip.getInt() + 1; }
    509 
    510   /// setSize - Update the node size.
    511   void setSize(unsigned n) { pip.setInt(n - 1); }
    512 
    513   /// subtree - Access the i'th subtree reference in a branch node.
    514   /// This depends on branch nodes storing the NodeRef array as their first
    515   /// member.
    516   NodeRef &subtree(unsigned i) const {
    517     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
    518   }
    519 
    520   /// get - Dereference as a NodeT reference.
    521   template <typename NodeT>
    522   NodeT &get() const {
    523     return *reinterpret_cast<NodeT*>(pip.getPointer());
    524   }
    525 
    526   bool operator==(const NodeRef &RHS) const {
    527     if (pip == RHS.pip)
    528       return true;
    529     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
    530     return false;
    531   }
    532 
    533   bool operator!=(const NodeRef &RHS) const {
    534     return !operator==(RHS);
    535   }
    536 };
    537 
    538 //===----------------------------------------------------------------------===//
    539 //---                      IntervalMapImpl::LeafNode                       ---//
    540 //===----------------------------------------------------------------------===//
    541 //
    542 // Leaf nodes store up to N disjoint intervals with corresponding values.
    543 //
    544 // The intervals are kept sorted and fully coalesced so there are no adjacent
    545 // intervals mapping to the same value.
    546 //
    547 // These constraints are always satisfied:
    548 //
    549 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
    550 //
    551 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
    552 //
    553 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
    554 //                                          - Fully coalesced.
    555 //
    556 //===----------------------------------------------------------------------===//
    557 
    558 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    559 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
    560 public:
    561   const KeyT &start(unsigned i) const { return this->first[i].first; }
    562   const KeyT &stop(unsigned i) const { return this->first[i].second; }
    563   const ValT &value(unsigned i) const { return this->second[i]; }
    564 
    565   KeyT &start(unsigned i) { return this->first[i].first; }
    566   KeyT &stop(unsigned i) { return this->first[i].second; }
    567   ValT &value(unsigned i) { return this->second[i]; }
    568 
    569   /// findFrom - Find the first interval after i that may contain x.
    570   /// @param i    Starting index for the search.
    571   /// @param Size Number of elements in node.
    572   /// @param x    Key to search for.
    573   /// @return     First index with !stopLess(key[i].stop, x), or size.
    574   ///             This is the first interval that can possibly contain x.
    575   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    576     assert(i <= Size && Size <= N && "Bad indices");
    577     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    578            "Index is past the needed point");
    579     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    580     return i;
    581   }
    582 
    583   /// safeFind - Find an interval that is known to exist. This is the same as
    584   /// findFrom except is it assumed that x is at least within range of the last
    585   /// interval.
    586   /// @param i Starting index for the search.
    587   /// @param x Key to search for.
    588   /// @return  First index with !stopLess(key[i].stop, x), never size.
    589   ///          This is the first interval that can possibly contain x.
    590   unsigned safeFind(unsigned i, KeyT x) const {
    591     assert(i < N && "Bad index");
    592     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    593            "Index is past the needed point");
    594     while (Traits::stopLess(stop(i), x)) ++i;
    595     assert(i < N && "Unsafe intervals");
    596     return i;
    597   }
    598 
    599   /// safeLookup - Lookup mapped value for a safe key.
    600   /// It is assumed that x is within range of the last entry.
    601   /// @param x        Key to search for.
    602   /// @param NotFound Value to return if x is not in any interval.
    603   /// @return         The mapped value at x or NotFound.
    604   ValT safeLookup(KeyT x, ValT NotFound) const {
    605     unsigned i = safeFind(0, x);
    606     return Traits::startLess(x, start(i)) ? NotFound : value(i);
    607   }
    608 
    609   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
    610 };
    611 
    612 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
    613 /// possible. This may cause the node to grow by 1, or it may cause the node
    614 /// to shrink because of coalescing.
    615 /// @param Pos  Starting index = insertFrom(0, size, a)
    616 /// @param Size Number of elements in node.
    617 /// @param a    Interval start.
    618 /// @param b    Interval stop.
    619 /// @param y    Value be mapped.
    620 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
    621 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    622 unsigned LeafNode<KeyT, ValT, N, Traits>::
    623 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
    624   unsigned i = Pos;
    625   assert(i <= Size && Size <= N && "Invalid index");
    626   assert(!Traits::stopLess(b, a) && "Invalid interval");
    627 
    628   // Verify the findFrom invariant.
    629   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
    630   assert((i == Size || !Traits::stopLess(stop(i), a)));
    631   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
    632 
    633   // Coalesce with previous interval.
    634   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
    635     Pos = i - 1;
    636     // Also coalesce with next interval?
    637     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
    638       stop(i - 1) = stop(i);
    639       this->erase(i, Size);
    640       return Size - 1;
    641     }
    642     stop(i - 1) = b;
    643     return Size;
    644   }
    645 
    646   // Detect overflow.
    647   if (i == N)
    648     return N + 1;
    649 
    650   // Add new interval at end.
    651   if (i == Size) {
    652     start(i) = a;
    653     stop(i) = b;
    654     value(i) = y;
    655     return Size + 1;
    656   }
    657 
    658   // Try to coalesce with following interval.
    659   if (value(i) == y && Traits::adjacent(b, start(i))) {
    660     start(i) = a;
    661     return Size;
    662   }
    663 
    664   // We must insert before i. Detect overflow.
    665   if (Size == N)
    666     return N + 1;
    667 
    668   // Insert before i.
    669   this->shift(i, Size);
    670   start(i) = a;
    671   stop(i) = b;
    672   value(i) = y;
    673   return Size + 1;
    674 }
    675 
    676 
    677 //===----------------------------------------------------------------------===//
    678 //---                   IntervalMapImpl::BranchNode                        ---//
    679 //===----------------------------------------------------------------------===//
    680 //
    681 // A branch node stores references to 1--N subtrees all of the same height.
    682 //
    683 // The key array in a branch node holds the rightmost stop key of each subtree.
    684 // It is redundant to store the last stop key since it can be found in the
    685 // parent node, but doing so makes tree balancing a lot simpler.
    686 //
    687 // It is unusual for a branch node to only have one subtree, but it can happen
    688 // in the root node if it is smaller than the normal nodes.
    689 //
    690 // When all of the leaf nodes from all the subtrees are concatenated, they must
    691 // satisfy the same constraints as a single leaf node. They must be sorted,
    692 // sane, and fully coalesced.
    693 //
    694 //===----------------------------------------------------------------------===//
    695 
    696 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    697 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
    698 public:
    699   const KeyT &stop(unsigned i) const { return this->second[i]; }
    700   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
    701 
    702   KeyT &stop(unsigned i) { return this->second[i]; }
    703   NodeRef &subtree(unsigned i) { return this->first[i]; }
    704 
    705   /// findFrom - Find the first subtree after i that may contain x.
    706   /// @param i    Starting index for the search.
    707   /// @param Size Number of elements in node.
    708   /// @param x    Key to search for.
    709   /// @return     First index with !stopLess(key[i], x), or size.
    710   ///             This is the first subtree that can possibly contain x.
    711   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    712     assert(i <= Size && Size <= N && "Bad indices");
    713     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    714            "Index to findFrom is past the needed point");
    715     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    716     return i;
    717   }
    718 
    719   /// safeFind - Find a subtree that is known to exist. This is the same as
    720   /// findFrom except is it assumed that x is in range.
    721   /// @param i Starting index for the search.
    722   /// @param x Key to search for.
    723   /// @return  First index with !stopLess(key[i], x), never size.
    724   ///          This is the first subtree that can possibly contain x.
    725   unsigned safeFind(unsigned i, KeyT x) const {
    726     assert(i < N && "Bad index");
    727     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    728            "Index is past the needed point");
    729     while (Traits::stopLess(stop(i), x)) ++i;
    730     assert(i < N && "Unsafe intervals");
    731     return i;
    732   }
    733 
    734   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
    735   /// @param x Key to search for.
    736   /// @return  Subtree containing x
    737   NodeRef safeLookup(KeyT x) const {
    738     return subtree(safeFind(0, x));
    739   }
    740 
    741   /// insert - Insert a new (subtree, stop) pair.
    742   /// @param i    Insert position, following entries will be shifted.
    743   /// @param Size Number of elements in node.
    744   /// @param Node Subtree to insert.
    745   /// @param Stop Last key in subtree.
    746   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
    747     assert(Size < N && "branch node overflow");
    748     assert(i <= Size && "Bad insert position");
    749     this->shift(i, Size);
    750     subtree(i) = Node;
    751     stop(i) = Stop;
    752   }
    753 };
    754 
    755 //===----------------------------------------------------------------------===//
    756 //---                         IntervalMapImpl::Path                        ---//
    757 //===----------------------------------------------------------------------===//
    758 //
    759 // A Path is used by iterators to represent a position in a B+-tree, and the
    760 // path to get there from the root.
    761 //
    762 // The Path class also contains the tree navigation code that doesn't have to
    763 // be templatized.
    764 //
    765 //===----------------------------------------------------------------------===//
    766 
    767 class Path {
    768   /// Entry - Each step in the path is a node pointer and an offset into that
    769   /// node.
    770   struct Entry {
    771     void *node;
    772     unsigned size;
    773     unsigned offset;
    774 
    775     Entry(void *Node, unsigned Size, unsigned Offset)
    776       : node(Node), size(Size), offset(Offset) {}
    777 
    778     Entry(NodeRef Node, unsigned Offset)
    779       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
    780 
    781     NodeRef &subtree(unsigned i) const {
    782       return reinterpret_cast<NodeRef*>(node)[i];
    783     }
    784   };
    785 
    786   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
    787   SmallVector<Entry, 4> path;
    788 
    789 public:
    790   // Node accessors.
    791   template <typename NodeT> NodeT &node(unsigned Level) const {
    792     return *reinterpret_cast<NodeT*>(path[Level].node);
    793   }
    794   unsigned size(unsigned Level) const { return path[Level].size; }
    795   unsigned offset(unsigned Level) const { return path[Level].offset; }
    796   unsigned &offset(unsigned Level) { return path[Level].offset; }
    797 
    798   // Leaf accessors.
    799   template <typename NodeT> NodeT &leaf() const {
    800     return *reinterpret_cast<NodeT*>(path.back().node);
    801   }
    802   unsigned leafSize() const { return path.back().size; }
    803   unsigned leafOffset() const { return path.back().offset; }
    804   unsigned &leafOffset() { return path.back().offset; }
    805 
    806   /// valid - Return true if path is at a valid node, not at end().
    807   bool valid() const {
    808     return !path.empty() && path.front().offset < path.front().size;
    809   }
    810 
    811   /// height - Return the height of the tree corresponding to this path.
    812   /// This matches map->height in a full path.
    813   unsigned height() const { return path.size() - 1; }
    814 
    815   /// subtree - Get the subtree referenced from Level. When the path is
    816   /// consistent, node(Level + 1) == subtree(Level).
    817   /// @param Level 0..height-1. The leaves have no subtrees.
    818   NodeRef &subtree(unsigned Level) const {
    819     return path[Level].subtree(path[Level].offset);
    820   }
    821 
    822   /// reset - Reset cached information about node(Level) from subtree(Level -1).
    823   /// @param Level 1..height. THe node to update after parent node changed.
    824   void reset(unsigned Level) {
    825     path[Level] = Entry(subtree(Level - 1), offset(Level));
    826   }
    827 
    828   /// push - Add entry to path.
    829   /// @param Node Node to add, should be subtree(path.size()-1).
    830   /// @param Offset Offset into Node.
    831   void push(NodeRef Node, unsigned Offset) {
    832     path.push_back(Entry(Node, Offset));
    833   }
    834 
    835   /// pop - Remove the last path entry.
    836   void pop() {
    837     path.pop_back();
    838   }
    839 
    840   /// setSize - Set the size of a node both in the path and in the tree.
    841   /// @param Level 0..height. Note that setting the root size won't change
    842   ///              map->rootSize.
    843   /// @param Size New node size.
    844   void setSize(unsigned Level, unsigned Size) {
    845     path[Level].size = Size;
    846     if (Level)
    847       subtree(Level - 1).setSize(Size);
    848   }
    849 
    850   /// setRoot - Clear the path and set a new root node.
    851   /// @param Node New root node.
    852   /// @param Size New root size.
    853   /// @param Offset Offset into root node.
    854   void setRoot(void *Node, unsigned Size, unsigned Offset) {
    855     path.clear();
    856     path.push_back(Entry(Node, Size, Offset));
    857   }
    858 
    859   /// replaceRoot - Replace the current root node with two new entries after the
    860   /// tree height has increased.
    861   /// @param Root The new root node.
    862   /// @param Size Number of entries in the new root.
    863   /// @param Offsets Offsets into the root and first branch nodes.
    864   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
    865 
    866   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    867   /// @param Level Get the sibling to node(Level).
    868   /// @return Left sibling, or NodeRef().
    869   NodeRef getLeftSibling(unsigned Level) const;
    870 
    871   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
    872   /// unaltered.
    873   /// @param Level Move node(Level).
    874   void moveLeft(unsigned Level);
    875 
    876   /// fillLeft - Grow path to Height by taking leftmost branches.
    877   /// @param Height The target height.
    878   void fillLeft(unsigned Height) {
    879     while (height() < Height)
    880       push(subtree(height()), 0);
    881   }
    882 
    883   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    884   /// @param Level Get the sinbling to node(Level).
    885   /// @return Left sibling, or NodeRef().
    886   NodeRef getRightSibling(unsigned Level) const;
    887 
    888   /// moveRight - Move path to the left sibling at Level. Leave nodes below
    889   /// Level unaltered.
    890   /// @param Level Move node(Level).
    891   void moveRight(unsigned Level);
    892 
    893   /// atBegin - Return true if path is at begin().
    894   bool atBegin() const {
    895     for (unsigned i = 0, e = path.size(); i != e; ++i)
    896       if (path[i].offset != 0)
    897         return false;
    898     return true;
    899   }
    900 
    901   /// atLastEntry - Return true if the path is at the last entry of the node at
    902   /// Level.
    903   /// @param Level Node to examine.
    904   bool atLastEntry(unsigned Level) const {
    905     return path[Level].offset == path[Level].size - 1;
    906   }
    907 
    908   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
    909   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
    910   /// ensures that node(Level) is real by moving back to the last node at Level,
    911   /// and setting offset(Level) to size(Level) if required.
    912   /// @param Level The level where an insertion is about to take place.
    913   void legalizeForInsert(unsigned Level) {
    914     if (valid())
    915       return;
    916     moveLeft(Level);
    917     ++path[Level].offset;
    918   }
    919 };
    920 
    921 } // namespace IntervalMapImpl
    922 
    923 
    924 //===----------------------------------------------------------------------===//
    925 //---                          IntervalMap                                ----//
    926 //===----------------------------------------------------------------------===//
    927 
    928 template <typename KeyT, typename ValT,
    929           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
    930           typename Traits = IntervalMapInfo<KeyT> >
    931 class IntervalMap {
    932   typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
    933   typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
    934   typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
    935     Branch;
    936   typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
    937   typedef IntervalMapImpl::IdxPair IdxPair;
    938 
    939   // The RootLeaf capacity is given as a template parameter. We must compute the
    940   // corresponding RootBranch capacity.
    941   enum {
    942     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
    943       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
    944     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
    945   };
    946 
    947   typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
    948     RootBranch;
    949 
    950   // When branched, we store a global start key as well as the branch node.
    951   struct RootBranchData {
    952     KeyT start;
    953     RootBranch node;
    954   };
    955 
    956   enum {
    957     RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
    958                    sizeof(RootBranchData) : sizeof(RootLeaf)
    959   };
    960 
    961 public:
    962   typedef typename Sizer::Allocator Allocator;
    963   typedef KeyT KeyType;
    964   typedef ValT ValueType;
    965   typedef Traits KeyTraits;
    966 
    967 private:
    968   // The root data is either a RootLeaf or a RootBranchData instance.
    969   // We can't put them in a union since C++03 doesn't allow non-trivial
    970   // constructors in unions.
    971   // Instead, we use a char array with pointer alignment. The alignment is
    972   // ensured by the allocator member in the class, but still verified in the
    973   // constructor. We don't support keys or values that are more aligned than a
    974   // pointer.
    975   char data[RootDataSize];
    976 
    977   // Tree height.
    978   // 0: Leaves in root.
    979   // 1: Root points to leaf.
    980   // 2: root->branch->leaf ...
    981   unsigned height;
    982 
    983   // Number of entries in the root node.
    984   unsigned rootSize;
    985 
    986   // Allocator used for creating external nodes.
    987   Allocator &allocator;
    988 
    989   /// dataAs - Represent data as a node type without breaking aliasing rules.
    990   template <typename T>
    991   T &dataAs() const {
    992     union {
    993       const char *d;
    994       T *t;
    995     } u;
    996     u.d = data;
    997     return *u.t;
    998   }
    999 
   1000   const RootLeaf &rootLeaf() const {
   1001     assert(!branched() && "Cannot acces leaf data in branched root");
   1002     return dataAs<RootLeaf>();
   1003   }
   1004   RootLeaf &rootLeaf() {
   1005     assert(!branched() && "Cannot acces leaf data in branched root");
   1006     return dataAs<RootLeaf>();
   1007   }
   1008   RootBranchData &rootBranchData() const {
   1009     assert(branched() && "Cannot access branch data in non-branched root");
   1010     return dataAs<RootBranchData>();
   1011   }
   1012   RootBranchData &rootBranchData() {
   1013     assert(branched() && "Cannot access branch data in non-branched root");
   1014     return dataAs<RootBranchData>();
   1015   }
   1016   const RootBranch &rootBranch() const { return rootBranchData().node; }
   1017   RootBranch &rootBranch()             { return rootBranchData().node; }
   1018   KeyT rootBranchStart() const { return rootBranchData().start; }
   1019   KeyT &rootBranchStart()      { return rootBranchData().start; }
   1020 
   1021   template <typename NodeT> NodeT *newNode() {
   1022     return new(allocator.template Allocate<NodeT>()) NodeT();
   1023   }
   1024 
   1025   template <typename NodeT> void deleteNode(NodeT *P) {
   1026     P->~NodeT();
   1027     allocator.Deallocate(P);
   1028   }
   1029 
   1030   IdxPair branchRoot(unsigned Position);
   1031   IdxPair splitRoot(unsigned Position);
   1032 
   1033   void switchRootToBranch() {
   1034     rootLeaf().~RootLeaf();
   1035     height = 1;
   1036     new (&rootBranchData()) RootBranchData();
   1037   }
   1038 
   1039   void switchRootToLeaf() {
   1040     rootBranchData().~RootBranchData();
   1041     height = 0;
   1042     new(&rootLeaf()) RootLeaf();
   1043   }
   1044 
   1045   bool branched() const { return height > 0; }
   1046 
   1047   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
   1048   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
   1049                   unsigned Level));
   1050   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
   1051 
   1052 public:
   1053   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
   1054     assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
   1055            "Insufficient alignment");
   1056     new(&rootLeaf()) RootLeaf();
   1057   }
   1058 
   1059   ~IntervalMap() {
   1060     clear();
   1061     rootLeaf().~RootLeaf();
   1062   }
   1063 
   1064   /// empty -  Return true when no intervals are mapped.
   1065   bool empty() const {
   1066     return rootSize == 0;
   1067   }
   1068 
   1069   /// start - Return the smallest mapped key in a non-empty map.
   1070   KeyT start() const {
   1071     assert(!empty() && "Empty IntervalMap has no start");
   1072     return !branched() ? rootLeaf().start(0) : rootBranchStart();
   1073   }
   1074 
   1075   /// stop - Return the largest mapped key in a non-empty map.
   1076   KeyT stop() const {
   1077     assert(!empty() && "Empty IntervalMap has no stop");
   1078     return !branched() ? rootLeaf().stop(rootSize - 1) :
   1079                          rootBranch().stop(rootSize - 1);
   1080   }
   1081 
   1082   /// lookup - Return the mapped value at x or NotFound.
   1083   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
   1084     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
   1085       return NotFound;
   1086     return branched() ? treeSafeLookup(x, NotFound) :
   1087                         rootLeaf().safeLookup(x, NotFound);
   1088   }
   1089 
   1090   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
   1091   /// It is assumed that no key in the interval is mapped to another value, but
   1092   /// overlapping intervals already mapped to y will be coalesced.
   1093   void insert(KeyT a, KeyT b, ValT y) {
   1094     if (branched() || rootSize == RootLeaf::Capacity)
   1095       return find(a).insert(a, b, y);
   1096 
   1097     // Easy insert into root leaf.
   1098     unsigned p = rootLeaf().findFrom(0, rootSize, a);
   1099     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
   1100   }
   1101 
   1102   /// clear - Remove all entries.
   1103   void clear();
   1104 
   1105   class const_iterator;
   1106   class iterator;
   1107   friend class const_iterator;
   1108   friend class iterator;
   1109 
   1110   const_iterator begin() const {
   1111     const_iterator I(*this);
   1112     I.goToBegin();
   1113     return I;
   1114   }
   1115 
   1116   iterator begin() {
   1117     iterator I(*this);
   1118     I.goToBegin();
   1119     return I;
   1120   }
   1121 
   1122   const_iterator end() const {
   1123     const_iterator I(*this);
   1124     I.goToEnd();
   1125     return I;
   1126   }
   1127 
   1128   iterator end() {
   1129     iterator I(*this);
   1130     I.goToEnd();
   1131     return I;
   1132   }
   1133 
   1134   /// find - Return an iterator pointing to the first interval ending at or
   1135   /// after x, or end().
   1136   const_iterator find(KeyT x) const {
   1137     const_iterator I(*this);
   1138     I.find(x);
   1139     return I;
   1140   }
   1141 
   1142   iterator find(KeyT x) {
   1143     iterator I(*this);
   1144     I.find(x);
   1145     return I;
   1146   }
   1147 };
   1148 
   1149 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
   1150 /// branched root.
   1151 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1152 ValT IntervalMap<KeyT, ValT, N, Traits>::
   1153 treeSafeLookup(KeyT x, ValT NotFound) const {
   1154   assert(branched() && "treeLookup assumes a branched root");
   1155 
   1156   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
   1157   for (unsigned h = height-1; h; --h)
   1158     NR = NR.get<Branch>().safeLookup(x);
   1159   return NR.get<Leaf>().safeLookup(x, NotFound);
   1160 }
   1161 
   1162 
   1163 // branchRoot - Switch from a leaf root to a branched root.
   1164 // Return the new (root offset, node offset) corresponding to Position.
   1165 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1166 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1167 branchRoot(unsigned Position) {
   1168   using namespace IntervalMapImpl;
   1169   // How many external leaf nodes to hold RootLeaf+1?
   1170   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
   1171 
   1172   // Compute element distribution among new nodes.
   1173   unsigned size[Nodes];
   1174   IdxPair NewOffset(0, Position);
   1175 
   1176   // Is is very common for the root node to be smaller than external nodes.
   1177   if (Nodes == 1)
   1178     size[0] = rootSize;
   1179   else
   1180     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
   1181                            Position, true);
   1182 
   1183   // Allocate new nodes.
   1184   unsigned pos = 0;
   1185   NodeRef node[Nodes];
   1186   for (unsigned n = 0; n != Nodes; ++n) {
   1187     Leaf *L = newNode<Leaf>();
   1188     L->copy(rootLeaf(), pos, 0, size[n]);
   1189     node[n] = NodeRef(L, size[n]);
   1190     pos += size[n];
   1191   }
   1192 
   1193   // Destroy the old leaf node, construct branch node instead.
   1194   switchRootToBranch();
   1195   for (unsigned n = 0; n != Nodes; ++n) {
   1196     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
   1197     rootBranch().subtree(n) = node[n];
   1198   }
   1199   rootBranchStart() = node[0].template get<Leaf>().start(0);
   1200   rootSize = Nodes;
   1201   return NewOffset;
   1202 }
   1203 
   1204 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
   1205 // Return the new (root offset, node offset) corresponding to Position.
   1206 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1207 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1208 splitRoot(unsigned Position) {
   1209   using namespace IntervalMapImpl;
   1210   // How many external leaf nodes to hold RootBranch+1?
   1211   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
   1212 
   1213   // Compute element distribution among new nodes.
   1214   unsigned Size[Nodes];
   1215   IdxPair NewOffset(0, Position);
   1216 
   1217   // Is is very common for the root node to be smaller than external nodes.
   1218   if (Nodes == 1)
   1219     Size[0] = rootSize;
   1220   else
   1221     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
   1222                            Position, true);
   1223 
   1224   // Allocate new nodes.
   1225   unsigned Pos = 0;
   1226   NodeRef Node[Nodes];
   1227   for (unsigned n = 0; n != Nodes; ++n) {
   1228     Branch *B = newNode<Branch>();
   1229     B->copy(rootBranch(), Pos, 0, Size[n]);
   1230     Node[n] = NodeRef(B, Size[n]);
   1231     Pos += Size[n];
   1232   }
   1233 
   1234   for (unsigned n = 0; n != Nodes; ++n) {
   1235     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
   1236     rootBranch().subtree(n) = Node[n];
   1237   }
   1238   rootSize = Nodes;
   1239   ++height;
   1240   return NewOffset;
   1241 }
   1242 
   1243 /// visitNodes - Visit each external node.
   1244 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1245 void IntervalMap<KeyT, ValT, N, Traits>::
   1246 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
   1247   if (!branched())
   1248     return;
   1249   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
   1250 
   1251   // Collect level 0 nodes from the root.
   1252   for (unsigned i = 0; i != rootSize; ++i)
   1253     Refs.push_back(rootBranch().subtree(i));
   1254 
   1255   // Visit all branch nodes.
   1256   for (unsigned h = height - 1; h; --h) {
   1257     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
   1258       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
   1259         NextRefs.push_back(Refs[i].subtree(j));
   1260       (this->*f)(Refs[i], h);
   1261     }
   1262     Refs.clear();
   1263     Refs.swap(NextRefs);
   1264   }
   1265 
   1266   // Visit all leaf nodes.
   1267   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
   1268     (this->*f)(Refs[i], 0);
   1269 }
   1270 
   1271 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1272 void IntervalMap<KeyT, ValT, N, Traits>::
   1273 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
   1274   if (Level)
   1275     deleteNode(&Node.get<Branch>());
   1276   else
   1277     deleteNode(&Node.get<Leaf>());
   1278 }
   1279 
   1280 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1281 void IntervalMap<KeyT, ValT, N, Traits>::
   1282 clear() {
   1283   if (branched()) {
   1284     visitNodes(&IntervalMap::deleteNode);
   1285     switchRootToLeaf();
   1286   }
   1287   rootSize = 0;
   1288 }
   1289 
   1290 //===----------------------------------------------------------------------===//
   1291 //---                   IntervalMap::const_iterator                       ----//
   1292 //===----------------------------------------------------------------------===//
   1293 
   1294 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1295 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
   1296   public std::iterator<std::bidirectional_iterator_tag, ValT> {
   1297 protected:
   1298   friend class IntervalMap;
   1299 
   1300   // The map referred to.
   1301   IntervalMap *map;
   1302 
   1303   // We store a full path from the root to the current position.
   1304   // The path may be partially filled, but never between iterator calls.
   1305   IntervalMapImpl::Path path;
   1306 
   1307   explicit const_iterator(const IntervalMap &map) :
   1308     map(const_cast<IntervalMap*>(&map)) {}
   1309 
   1310   bool branched() const {
   1311     assert(map && "Invalid iterator");
   1312     return map->branched();
   1313   }
   1314 
   1315   void setRoot(unsigned Offset) {
   1316     if (branched())
   1317       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
   1318     else
   1319       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
   1320   }
   1321 
   1322   void pathFillFind(KeyT x);
   1323   void treeFind(KeyT x);
   1324   void treeAdvanceTo(KeyT x);
   1325 
   1326   /// unsafeStart - Writable access to start() for iterator.
   1327   KeyT &unsafeStart() const {
   1328     assert(valid() && "Cannot access invalid iterator");
   1329     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
   1330                         path.leaf<RootLeaf>().start(path.leafOffset());
   1331   }
   1332 
   1333   /// unsafeStop - Writable access to stop() for iterator.
   1334   KeyT &unsafeStop() const {
   1335     assert(valid() && "Cannot access invalid iterator");
   1336     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
   1337                         path.leaf<RootLeaf>().stop(path.leafOffset());
   1338   }
   1339 
   1340   /// unsafeValue - Writable access to value() for iterator.
   1341   ValT &unsafeValue() const {
   1342     assert(valid() && "Cannot access invalid iterator");
   1343     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
   1344                         path.leaf<RootLeaf>().value(path.leafOffset());
   1345   }
   1346 
   1347 public:
   1348   /// const_iterator - Create an iterator that isn't pointing anywhere.
   1349   const_iterator() : map(nullptr) {}
   1350 
   1351   /// setMap - Change the map iterated over. This call must be followed by a
   1352   /// call to goToBegin(), goToEnd(), or find()
   1353   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
   1354 
   1355   /// valid - Return true if the current position is valid, false for end().
   1356   bool valid() const { return path.valid(); }
   1357 
   1358   /// atBegin - Return true if the current position is the first map entry.
   1359   bool atBegin() const { return path.atBegin(); }
   1360 
   1361   /// start - Return the beginning of the current interval.
   1362   const KeyT &start() const { return unsafeStart(); }
   1363 
   1364   /// stop - Return the end of the current interval.
   1365   const KeyT &stop() const { return unsafeStop(); }
   1366 
   1367   /// value - Return the mapped value at the current interval.
   1368   const ValT &value() const { return unsafeValue(); }
   1369 
   1370   const ValT &operator*() const { return value(); }
   1371 
   1372   bool operator==(const const_iterator &RHS) const {
   1373     assert(map == RHS.map && "Cannot compare iterators from different maps");
   1374     if (!valid())
   1375       return !RHS.valid();
   1376     if (path.leafOffset() != RHS.path.leafOffset())
   1377       return false;
   1378     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
   1379   }
   1380 
   1381   bool operator!=(const const_iterator &RHS) const {
   1382     return !operator==(RHS);
   1383   }
   1384 
   1385   /// goToBegin - Move to the first interval in map.
   1386   void goToBegin() {
   1387     setRoot(0);
   1388     if (branched())
   1389       path.fillLeft(map->height);
   1390   }
   1391 
   1392   /// goToEnd - Move beyond the last interval in map.
   1393   void goToEnd() {
   1394     setRoot(map->rootSize);
   1395   }
   1396 
   1397   /// preincrement - move to the next interval.
   1398   const_iterator &operator++() {
   1399     assert(valid() && "Cannot increment end()");
   1400     if (++path.leafOffset() == path.leafSize() && branched())
   1401       path.moveRight(map->height);
   1402     return *this;
   1403   }
   1404 
   1405   /// postincrement - Dont do that!
   1406   const_iterator operator++(int) {
   1407     const_iterator tmp = *this;
   1408     operator++();
   1409     return tmp;
   1410   }
   1411 
   1412   /// predecrement - move to the previous interval.
   1413   const_iterator &operator--() {
   1414     if (path.leafOffset() && (valid() || !branched()))
   1415       --path.leafOffset();
   1416     else
   1417       path.moveLeft(map->height);
   1418     return *this;
   1419   }
   1420 
   1421   /// postdecrement - Dont do that!
   1422   const_iterator operator--(int) {
   1423     const_iterator tmp = *this;
   1424     operator--();
   1425     return tmp;
   1426   }
   1427 
   1428   /// find - Move to the first interval with stop >= x, or end().
   1429   /// This is a full search from the root, the current position is ignored.
   1430   void find(KeyT x) {
   1431     if (branched())
   1432       treeFind(x);
   1433     else
   1434       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
   1435   }
   1436 
   1437   /// advanceTo - Move to the first interval with stop >= x, or end().
   1438   /// The search is started from the current position, and no earlier positions
   1439   /// can be found. This is much faster than find() for small moves.
   1440   void advanceTo(KeyT x) {
   1441     if (!valid())
   1442       return;
   1443     if (branched())
   1444       treeAdvanceTo(x);
   1445     else
   1446       path.leafOffset() =
   1447         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
   1448   }
   1449 
   1450 };
   1451 
   1452 /// pathFillFind - Complete path by searching for x.
   1453 /// @param x Key to search for.
   1454 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1455 void IntervalMap<KeyT, ValT, N, Traits>::
   1456 const_iterator::pathFillFind(KeyT x) {
   1457   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
   1458   for (unsigned i = map->height - path.height() - 1; i; --i) {
   1459     unsigned p = NR.get<Branch>().safeFind(0, x);
   1460     path.push(NR, p);
   1461     NR = NR.subtree(p);
   1462   }
   1463   path.push(NR, NR.get<Leaf>().safeFind(0, x));
   1464 }
   1465 
   1466 /// treeFind - Find in a branched tree.
   1467 /// @param x Key to search for.
   1468 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1469 void IntervalMap<KeyT, ValT, N, Traits>::
   1470 const_iterator::treeFind(KeyT x) {
   1471   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
   1472   if (valid())
   1473     pathFillFind(x);
   1474 }
   1475 
   1476 /// treeAdvanceTo - Find position after the current one.
   1477 /// @param x Key to search for.
   1478 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1479 void IntervalMap<KeyT, ValT, N, Traits>::
   1480 const_iterator::treeAdvanceTo(KeyT x) {
   1481   // Can we stay on the same leaf node?
   1482   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
   1483     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
   1484     return;
   1485   }
   1486 
   1487   // Drop the current leaf.
   1488   path.pop();
   1489 
   1490   // Search towards the root for a usable subtree.
   1491   if (path.height()) {
   1492     for (unsigned l = path.height() - 1; l; --l) {
   1493       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
   1494         // The branch node at l+1 is usable
   1495         path.offset(l + 1) =
   1496           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
   1497         return pathFillFind(x);
   1498       }
   1499       path.pop();
   1500     }
   1501     // Is the level-1 Branch usable?
   1502     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
   1503       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
   1504       return pathFillFind(x);
   1505     }
   1506   }
   1507 
   1508   // We reached the root.
   1509   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
   1510   if (valid())
   1511     pathFillFind(x);
   1512 }
   1513 
   1514 //===----------------------------------------------------------------------===//
   1515 //---                       IntervalMap::iterator                         ----//
   1516 //===----------------------------------------------------------------------===//
   1517 
   1518 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1519 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
   1520   friend class IntervalMap;
   1521   typedef IntervalMapImpl::IdxPair IdxPair;
   1522 
   1523   explicit iterator(IntervalMap &map) : const_iterator(map) {}
   1524 
   1525   void setNodeStop(unsigned Level, KeyT Stop);
   1526   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
   1527   template <typename NodeT> bool overflow(unsigned Level);
   1528   void treeInsert(KeyT a, KeyT b, ValT y);
   1529   void eraseNode(unsigned Level);
   1530   void treeErase(bool UpdateRoot = true);
   1531   bool canCoalesceLeft(KeyT Start, ValT x);
   1532   bool canCoalesceRight(KeyT Stop, ValT x);
   1533 
   1534 public:
   1535   /// iterator - Create null iterator.
   1536   iterator() {}
   1537 
   1538   /// setStart - Move the start of the current interval.
   1539   /// This may cause coalescing with the previous interval.
   1540   /// @param a New start key, must not overlap the previous interval.
   1541   void setStart(KeyT a);
   1542 
   1543   /// setStop - Move the end of the current interval.
   1544   /// This may cause coalescing with the following interval.
   1545   /// @param b New stop key, must not overlap the following interval.
   1546   void setStop(KeyT b);
   1547 
   1548   /// setValue - Change the mapped value of the current interval.
   1549   /// This may cause coalescing with the previous and following intervals.
   1550   /// @param x New value.
   1551   void setValue(ValT x);
   1552 
   1553   /// setStartUnchecked - Move the start of the current interval without
   1554   /// checking for coalescing or overlaps.
   1555   /// This should only be used when it is known that coalescing is not required.
   1556   /// @param a New start key.
   1557   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
   1558 
   1559   /// setStopUnchecked - Move the end of the current interval without checking
   1560   /// for coalescing or overlaps.
   1561   /// This should only be used when it is known that coalescing is not required.
   1562   /// @param b New stop key.
   1563   void setStopUnchecked(KeyT b) {
   1564     this->unsafeStop() = b;
   1565     // Update keys in branch nodes as well.
   1566     if (this->path.atLastEntry(this->path.height()))
   1567       setNodeStop(this->path.height(), b);
   1568   }
   1569 
   1570   /// setValueUnchecked - Change the mapped value of the current interval
   1571   /// without checking for coalescing.
   1572   /// @param x New value.
   1573   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
   1574 
   1575   /// insert - Insert mapping [a;b] -> y before the current position.
   1576   void insert(KeyT a, KeyT b, ValT y);
   1577 
   1578   /// erase - Erase the current interval.
   1579   void erase();
   1580 
   1581   iterator &operator++() {
   1582     const_iterator::operator++();
   1583     return *this;
   1584   }
   1585 
   1586   iterator operator++(int) {
   1587     iterator tmp = *this;
   1588     operator++();
   1589     return tmp;
   1590   }
   1591 
   1592   iterator &operator--() {
   1593     const_iterator::operator--();
   1594     return *this;
   1595   }
   1596 
   1597   iterator operator--(int) {
   1598     iterator tmp = *this;
   1599     operator--();
   1600     return tmp;
   1601   }
   1602 
   1603 };
   1604 
   1605 /// canCoalesceLeft - Can the current interval coalesce to the left after
   1606 /// changing start or value?
   1607 /// @param Start New start of current interval.
   1608 /// @param Value New value for current interval.
   1609 /// @return True when updating the current interval would enable coalescing.
   1610 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1611 bool IntervalMap<KeyT, ValT, N, Traits>::
   1612 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
   1613   using namespace IntervalMapImpl;
   1614   Path &P = this->path;
   1615   if (!this->branched()) {
   1616     unsigned i = P.leafOffset();
   1617     RootLeaf &Node = P.leaf<RootLeaf>();
   1618     return i && Node.value(i-1) == Value &&
   1619                 Traits::adjacent(Node.stop(i-1), Start);
   1620   }
   1621   // Branched.
   1622   if (unsigned i = P.leafOffset()) {
   1623     Leaf &Node = P.leaf<Leaf>();
   1624     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
   1625   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
   1626     unsigned i = NR.size() - 1;
   1627     Leaf &Node = NR.get<Leaf>();
   1628     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
   1629   }
   1630   return false;
   1631 }
   1632 
   1633 /// canCoalesceRight - Can the current interval coalesce to the right after
   1634 /// changing stop or value?
   1635 /// @param Stop New stop of current interval.
   1636 /// @param Value New value for current interval.
   1637 /// @return True when updating the current interval would enable coalescing.
   1638 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1639 bool IntervalMap<KeyT, ValT, N, Traits>::
   1640 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
   1641   using namespace IntervalMapImpl;
   1642   Path &P = this->path;
   1643   unsigned i = P.leafOffset() + 1;
   1644   if (!this->branched()) {
   1645     if (i >= P.leafSize())
   1646       return false;
   1647     RootLeaf &Node = P.leaf<RootLeaf>();
   1648     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1649   }
   1650   // Branched.
   1651   if (i < P.leafSize()) {
   1652     Leaf &Node = P.leaf<Leaf>();
   1653     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1654   } else if (NodeRef NR = P.getRightSibling(P.height())) {
   1655     Leaf &Node = NR.get<Leaf>();
   1656     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
   1657   }
   1658   return false;
   1659 }
   1660 
   1661 /// setNodeStop - Update the stop key of the current node at level and above.
   1662 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1663 void IntervalMap<KeyT, ValT, N, Traits>::
   1664 iterator::setNodeStop(unsigned Level, KeyT Stop) {
   1665   // There are no references to the root node, so nothing to update.
   1666   if (!Level)
   1667     return;
   1668   IntervalMapImpl::Path &P = this->path;
   1669   // Update nodes pointing to the current node.
   1670   while (--Level) {
   1671     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
   1672     if (!P.atLastEntry(Level))
   1673       return;
   1674   }
   1675   // Update root separately since it has a different layout.
   1676   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
   1677 }
   1678 
   1679 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1680 void IntervalMap<KeyT, ValT, N, Traits>::
   1681 iterator::setStart(KeyT a) {
   1682   assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
   1683   KeyT &CurStart = this->unsafeStart();
   1684   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
   1685     CurStart = a;
   1686     return;
   1687   }
   1688   // Coalesce with the interval to the left.
   1689   --*this;
   1690   a = this->start();
   1691   erase();
   1692   setStartUnchecked(a);
   1693 }
   1694 
   1695 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1696 void IntervalMap<KeyT, ValT, N, Traits>::
   1697 iterator::setStop(KeyT b) {
   1698   assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
   1699   if (Traits::startLess(b, this->stop()) ||
   1700       !canCoalesceRight(b, this->value())) {
   1701     setStopUnchecked(b);
   1702     return;
   1703   }
   1704   // Coalesce with interval to the right.
   1705   KeyT a = this->start();
   1706   erase();
   1707   setStartUnchecked(a);
   1708 }
   1709 
   1710 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1711 void IntervalMap<KeyT, ValT, N, Traits>::
   1712 iterator::setValue(ValT x) {
   1713   setValueUnchecked(x);
   1714   if (canCoalesceRight(this->stop(), x)) {
   1715     KeyT a = this->start();
   1716     erase();
   1717     setStartUnchecked(a);
   1718   }
   1719   if (canCoalesceLeft(this->start(), x)) {
   1720     --*this;
   1721     KeyT a = this->start();
   1722     erase();
   1723     setStartUnchecked(a);
   1724   }
   1725 }
   1726 
   1727 /// insertNode - insert a node before the current path at level.
   1728 /// Leave the current path pointing at the new node.
   1729 /// @param Level path index of the node to be inserted.
   1730 /// @param Node The node to be inserted.
   1731 /// @param Stop The last index in the new node.
   1732 /// @return True if the tree height was increased.
   1733 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1734 bool IntervalMap<KeyT, ValT, N, Traits>::
   1735 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
   1736   assert(Level && "Cannot insert next to the root");
   1737   bool SplitRoot = false;
   1738   IntervalMap &IM = *this->map;
   1739   IntervalMapImpl::Path &P = this->path;
   1740 
   1741   if (Level == 1) {
   1742     // Insert into the root branch node.
   1743     if (IM.rootSize < RootBranch::Capacity) {
   1744       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
   1745       P.setSize(0, ++IM.rootSize);
   1746       P.reset(Level);
   1747       return SplitRoot;
   1748     }
   1749 
   1750     // We need to split the root while keeping our position.
   1751     SplitRoot = true;
   1752     IdxPair Offset = IM.splitRoot(P.offset(0));
   1753     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1754 
   1755     // Fall through to insert at the new higher level.
   1756     ++Level;
   1757   }
   1758 
   1759   // When inserting before end(), make sure we have a valid path.
   1760   P.legalizeForInsert(--Level);
   1761 
   1762   // Insert into the branch node at Level-1.
   1763   if (P.size(Level) == Branch::Capacity) {
   1764     // Branch node is full, handle handle the overflow.
   1765     assert(!SplitRoot && "Cannot overflow after splitting the root");
   1766     SplitRoot = overflow<Branch>(Level);
   1767     Level += SplitRoot;
   1768   }
   1769   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
   1770   P.setSize(Level, P.size(Level) + 1);
   1771   if (P.atLastEntry(Level))
   1772     setNodeStop(Level, Stop);
   1773   P.reset(Level + 1);
   1774   return SplitRoot;
   1775 }
   1776 
   1777 // insert
   1778 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1779 void IntervalMap<KeyT, ValT, N, Traits>::
   1780 iterator::insert(KeyT a, KeyT b, ValT y) {
   1781   if (this->branched())
   1782     return treeInsert(a, b, y);
   1783   IntervalMap &IM = *this->map;
   1784   IntervalMapImpl::Path &P = this->path;
   1785 
   1786   // Try simple root leaf insert.
   1787   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
   1788 
   1789   // Was the root node insert successful?
   1790   if (Size <= RootLeaf::Capacity) {
   1791     P.setSize(0, IM.rootSize = Size);
   1792     return;
   1793   }
   1794 
   1795   // Root leaf node is full, we must branch.
   1796   IdxPair Offset = IM.branchRoot(P.leafOffset());
   1797   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1798 
   1799   // Now it fits in the new leaf.
   1800   treeInsert(a, b, y);
   1801 }
   1802 
   1803 
   1804 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1805 void IntervalMap<KeyT, ValT, N, Traits>::
   1806 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
   1807   using namespace IntervalMapImpl;
   1808   Path &P = this->path;
   1809 
   1810   if (!P.valid())
   1811     P.legalizeForInsert(this->map->height);
   1812 
   1813   // Check if this insertion will extend the node to the left.
   1814   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
   1815     // Node is growing to the left, will it affect a left sibling node?
   1816     if (NodeRef Sib = P.getLeftSibling(P.height())) {
   1817       Leaf &SibLeaf = Sib.get<Leaf>();
   1818       unsigned SibOfs = Sib.size() - 1;
   1819       if (SibLeaf.value(SibOfs) == y &&
   1820           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
   1821         // This insertion will coalesce with the last entry in SibLeaf. We can
   1822         // handle it in two ways:
   1823         //  1. Extend SibLeaf.stop to b and be done, or
   1824         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
   1825         // We prefer 1., but need 2 when coalescing to the right as well.
   1826         Leaf &CurLeaf = P.leaf<Leaf>();
   1827         P.moveLeft(P.height());
   1828         if (Traits::stopLess(b, CurLeaf.start(0)) &&
   1829             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
   1830           // Easy, just extend SibLeaf and we're done.
   1831           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
   1832           return;
   1833         } else {
   1834           // We have both left and right coalescing. Erase the old SibLeaf entry
   1835           // and continue inserting the larger interval.
   1836           a = SibLeaf.start(SibOfs);
   1837           treeErase(/* UpdateRoot= */false);
   1838         }
   1839       }
   1840     } else {
   1841       // No left sibling means we are at begin(). Update cached bound.
   1842       this->map->rootBranchStart() = a;
   1843     }
   1844   }
   1845 
   1846   // When we are inserting at the end of a leaf node, we must update stops.
   1847   unsigned Size = P.leafSize();
   1848   bool Grow = P.leafOffset() == Size;
   1849   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
   1850 
   1851   // Leaf insertion unsuccessful? Overflow and try again.
   1852   if (Size > Leaf::Capacity) {
   1853     overflow<Leaf>(P.height());
   1854     Grow = P.leafOffset() == P.leafSize();
   1855     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
   1856     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
   1857   }
   1858 
   1859   // Inserted, update offset and leaf size.
   1860   P.setSize(P.height(), Size);
   1861 
   1862   // Insert was the last node entry, update stops.
   1863   if (Grow)
   1864     setNodeStop(P.height(), b);
   1865 }
   1866 
   1867 /// erase - erase the current interval and move to the next position.
   1868 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1869 void IntervalMap<KeyT, ValT, N, Traits>::
   1870 iterator::erase() {
   1871   IntervalMap &IM = *this->map;
   1872   IntervalMapImpl::Path &P = this->path;
   1873   assert(P.valid() && "Cannot erase end()");
   1874   if (this->branched())
   1875     return treeErase();
   1876   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
   1877   P.setSize(0, --IM.rootSize);
   1878 }
   1879 
   1880 /// treeErase - erase() for a branched tree.
   1881 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1882 void IntervalMap<KeyT, ValT, N, Traits>::
   1883 iterator::treeErase(bool UpdateRoot) {
   1884   IntervalMap &IM = *this->map;
   1885   IntervalMapImpl::Path &P = this->path;
   1886   Leaf &Node = P.leaf<Leaf>();
   1887 
   1888   // Nodes are not allowed to become empty.
   1889   if (P.leafSize() == 1) {
   1890     IM.deleteNode(&Node);
   1891     eraseNode(IM.height);
   1892     // Update rootBranchStart if we erased begin().
   1893     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
   1894       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1895     return;
   1896   }
   1897 
   1898   // Erase current entry.
   1899   Node.erase(P.leafOffset(), P.leafSize());
   1900   unsigned NewSize = P.leafSize() - 1;
   1901   P.setSize(IM.height, NewSize);
   1902   // When we erase the last entry, update stop and move to a legal position.
   1903   if (P.leafOffset() == NewSize) {
   1904     setNodeStop(IM.height, Node.stop(NewSize - 1));
   1905     P.moveRight(IM.height);
   1906   } else if (UpdateRoot && P.atBegin())
   1907     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1908 }
   1909 
   1910 /// eraseNode - Erase the current node at Level from its parent and move path to
   1911 /// the first entry of the next sibling node.
   1912 /// The node must be deallocated by the caller.
   1913 /// @param Level 1..height, the root node cannot be erased.
   1914 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1915 void IntervalMap<KeyT, ValT, N, Traits>::
   1916 iterator::eraseNode(unsigned Level) {
   1917   assert(Level && "Cannot erase root node");
   1918   IntervalMap &IM = *this->map;
   1919   IntervalMapImpl::Path &P = this->path;
   1920 
   1921   if (--Level == 0) {
   1922     IM.rootBranch().erase(P.offset(0), IM.rootSize);
   1923     P.setSize(0, --IM.rootSize);
   1924     // If this cleared the root, switch to height=0.
   1925     if (IM.empty()) {
   1926       IM.switchRootToLeaf();
   1927       this->setRoot(0);
   1928       return;
   1929     }
   1930   } else {
   1931     // Remove node ref from branch node at Level.
   1932     Branch &Parent = P.node<Branch>(Level);
   1933     if (P.size(Level) == 1) {
   1934       // Branch node became empty, remove it recursively.
   1935       IM.deleteNode(&Parent);
   1936       eraseNode(Level);
   1937     } else {
   1938       // Branch node won't become empty.
   1939       Parent.erase(P.offset(Level), P.size(Level));
   1940       unsigned NewSize = P.size(Level) - 1;
   1941       P.setSize(Level, NewSize);
   1942       // If we removed the last branch, update stop and move to a legal pos.
   1943       if (P.offset(Level) == NewSize) {
   1944         setNodeStop(Level, Parent.stop(NewSize - 1));
   1945         P.moveRight(Level);
   1946       }
   1947     }
   1948   }
   1949   // Update path cache for the new right sibling position.
   1950   if (P.valid()) {
   1951     P.reset(Level + 1);
   1952     P.offset(Level + 1) = 0;
   1953   }
   1954 }
   1955 
   1956 /// overflow - Distribute entries of the current node evenly among
   1957 /// its siblings and ensure that the current node is not full.
   1958 /// This may require allocating a new node.
   1959 /// @tparam NodeT The type of node at Level (Leaf or Branch).
   1960 /// @param Level path index of the overflowing node.
   1961 /// @return True when the tree height was changed.
   1962 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1963 template <typename NodeT>
   1964 bool IntervalMap<KeyT, ValT, N, Traits>::
   1965 iterator::overflow(unsigned Level) {
   1966   using namespace IntervalMapImpl;
   1967   Path &P = this->path;
   1968   unsigned CurSize[4];
   1969   NodeT *Node[4];
   1970   unsigned Nodes = 0;
   1971   unsigned Elements = 0;
   1972   unsigned Offset = P.offset(Level);
   1973 
   1974   // Do we have a left sibling?
   1975   NodeRef LeftSib = P.getLeftSibling(Level);
   1976   if (LeftSib) {
   1977     Offset += Elements = CurSize[Nodes] = LeftSib.size();
   1978     Node[Nodes++] = &LeftSib.get<NodeT>();
   1979   }
   1980 
   1981   // Current node.
   1982   Elements += CurSize[Nodes] = P.size(Level);
   1983   Node[Nodes++] = &P.node<NodeT>(Level);
   1984 
   1985   // Do we have a right sibling?
   1986   NodeRef RightSib = P.getRightSibling(Level);
   1987   if (RightSib) {
   1988     Elements += CurSize[Nodes] = RightSib.size();
   1989     Node[Nodes++] = &RightSib.get<NodeT>();
   1990   }
   1991 
   1992   // Do we need to allocate a new node?
   1993   unsigned NewNode = 0;
   1994   if (Elements + 1 > Nodes * NodeT::Capacity) {
   1995     // Insert NewNode at the penultimate position, or after a single node.
   1996     NewNode = Nodes == 1 ? 1 : Nodes - 1;
   1997     CurSize[Nodes] = CurSize[NewNode];
   1998     Node[Nodes] = Node[NewNode];
   1999     CurSize[NewNode] = 0;
   2000     Node[NewNode] = this->map->template newNode<NodeT>();
   2001     ++Nodes;
   2002   }
   2003 
   2004   // Compute the new element distribution.
   2005   unsigned NewSize[4];
   2006   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
   2007                                  CurSize, NewSize, Offset, true);
   2008   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
   2009 
   2010   // Move current location to the leftmost node.
   2011   if (LeftSib)
   2012     P.moveLeft(Level);
   2013 
   2014   // Elements have been rearranged, now update node sizes and stops.
   2015   bool SplitRoot = false;
   2016   unsigned Pos = 0;
   2017   for (;;) {
   2018     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
   2019     if (NewNode && Pos == NewNode) {
   2020       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
   2021       Level += SplitRoot;
   2022     } else {
   2023       P.setSize(Level, NewSize[Pos]);
   2024       setNodeStop(Level, Stop);
   2025     }
   2026     if (Pos + 1 == Nodes)
   2027       break;
   2028     P.moveRight(Level);
   2029     ++Pos;
   2030   }
   2031 
   2032   // Where was I? Find NewOffset.
   2033   while(Pos != NewOffset.first) {
   2034     P.moveLeft(Level);
   2035     --Pos;
   2036   }
   2037   P.offset(Level) = NewOffset.second;
   2038   return SplitRoot;
   2039 }
   2040 
   2041 //===----------------------------------------------------------------------===//
   2042 //---                       IntervalMapOverlaps                           ----//
   2043 //===----------------------------------------------------------------------===//
   2044 
   2045 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
   2046 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
   2047 /// should be the same.
   2048 ///
   2049 /// Typical uses:
   2050 ///
   2051 /// 1. Test for overlap:
   2052 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
   2053 ///
   2054 /// 2. Enumerate overlaps:
   2055 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
   2056 ///
   2057 template <typename MapA, typename MapB>
   2058 class IntervalMapOverlaps {
   2059   typedef typename MapA::KeyType KeyType;
   2060   typedef typename MapA::KeyTraits Traits;
   2061   typename MapA::const_iterator posA;
   2062   typename MapB::const_iterator posB;
   2063 
   2064   /// advance - Move posA and posB forward until reaching an overlap, or until
   2065   /// either meets end.
   2066   /// Don't move the iterators if they are already overlapping.
   2067   void advance() {
   2068     if (!valid())
   2069       return;
   2070 
   2071     if (Traits::stopLess(posA.stop(), posB.start())) {
   2072       // A ends before B begins. Catch up.
   2073       posA.advanceTo(posB.start());
   2074       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2075         return;
   2076     } else if (Traits::stopLess(posB.stop(), posA.start())) {
   2077       // B ends before A begins. Catch up.
   2078       posB.advanceTo(posA.start());
   2079       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2080         return;
   2081     } else
   2082       // Already overlapping.
   2083       return;
   2084 
   2085     for (;;) {
   2086       // Make a.end > b.start.
   2087       posA.advanceTo(posB.start());
   2088       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2089         return;
   2090       // Make b.end > a.start.
   2091       posB.advanceTo(posA.start());
   2092       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2093         return;
   2094     }
   2095   }
   2096 
   2097 public:
   2098   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
   2099   IntervalMapOverlaps(const MapA &a, const MapB &b)
   2100     : posA(b.empty() ? a.end() : a.find(b.start())),
   2101       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
   2102 
   2103   /// valid - Return true if iterator is at an overlap.
   2104   bool valid() const {
   2105     return posA.valid() && posB.valid();
   2106   }
   2107 
   2108   /// a - access the left hand side in the overlap.
   2109   const typename MapA::const_iterator &a() const { return posA; }
   2110 
   2111   /// b - access the right hand side in the overlap.
   2112   const typename MapB::const_iterator &b() const { return posB; }
   2113 
   2114   /// start - Beginning of the overlapping interval.
   2115   KeyType start() const {
   2116     KeyType ak = a().start();
   2117     KeyType bk = b().start();
   2118     return Traits::startLess(ak, bk) ? bk : ak;
   2119   }
   2120 
   2121   /// stop - End of the overlapping interval.
   2122   KeyType stop() const {
   2123     KeyType ak = a().stop();
   2124     KeyType bk = b().stop();
   2125     return Traits::startLess(ak, bk) ? ak : bk;
   2126   }
   2127 
   2128   /// skipA - Move to the next overlap that doesn't involve a().
   2129   void skipA() {
   2130     ++posA;
   2131     advance();
   2132   }
   2133 
   2134   /// skipB - Move to the next overlap that doesn't involve b().
   2135   void skipB() {
   2136     ++posB;
   2137     advance();
   2138   }
   2139 
   2140   /// Preincrement - Move to the next overlap.
   2141   IntervalMapOverlaps &operator++() {
   2142     // Bump the iterator that ends first. The other one may have more overlaps.
   2143     if (Traits::startLess(posB.stop(), posA.stop()))
   2144       skipB();
   2145     else
   2146       skipA();
   2147     return *this;
   2148   }
   2149 
   2150   /// advanceTo - Move to the first overlapping interval with
   2151   /// stopLess(x, stop()).
   2152   void advanceTo(KeyType x) {
   2153     if (!valid())
   2154       return;
   2155     // Make sure advanceTo sees monotonic keys.
   2156     if (Traits::stopLess(posA.stop(), x))
   2157       posA.advanceTo(x);
   2158     if (Traits::stopLess(posB.stop(), x))
   2159       posB.advanceTo(x);
   2160     advance();
   2161   }
   2162 };
   2163 
   2164 } // namespace llvm
   2165 
   2166 #endif
   2167