Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some functions that are useful for math stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
     15 #define LLVM_SUPPORT_MATHEXTRAS_H
     16 
     17 #include "llvm/Support/Compiler.h"
     18 #include "llvm/Support/SwapByteOrder.h"
     19 #include <cassert>
     20 #include <cstring>
     21 #include <type_traits>
     22 
     23 #ifdef _MSC_VER
     24 #include <intrin.h>
     25 #include <limits>
     26 #endif
     27 
     28 namespace llvm {
     29 /// \brief The behavior an operation has on an input of 0.
     30 enum ZeroBehavior {
     31   /// \brief The returned value is undefined.
     32   ZB_Undefined,
     33   /// \brief The returned value is numeric_limits<T>::max()
     34   ZB_Max,
     35   /// \brief The returned value is numeric_limits<T>::digits
     36   ZB_Width
     37 };
     38 
     39 /// \brief Count number of 0's from the least significant bit to the most
     40 ///   stopping at the first 1.
     41 ///
     42 /// Only unsigned integral types are allowed.
     43 ///
     44 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
     45 ///   valid arguments.
     46 template <typename T>
     47 typename std::enable_if<std::numeric_limits<T>::is_integer &&
     48                         !std::numeric_limits<T>::is_signed, std::size_t>::type
     49 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
     50   (void)ZB;
     51 
     52   if (!Val)
     53     return std::numeric_limits<T>::digits;
     54   if (Val & 0x1)
     55     return 0;
     56 
     57   // Bisection method.
     58   std::size_t ZeroBits = 0;
     59   T Shift = std::numeric_limits<T>::digits >> 1;
     60   T Mask = std::numeric_limits<T>::max() >> Shift;
     61   while (Shift) {
     62     if ((Val & Mask) == 0) {
     63       Val >>= Shift;
     64       ZeroBits |= Shift;
     65     }
     66     Shift >>= 1;
     67     Mask >>= Shift;
     68   }
     69   return ZeroBits;
     70 }
     71 
     72 // Disable signed.
     73 template <typename T>
     74 typename std::enable_if<std::numeric_limits<T>::is_integer &&
     75                         std::numeric_limits<T>::is_signed, std::size_t>::type
     76 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
     77 
     78 #if __GNUC__ >= 4 || _MSC_VER
     79 template <>
     80 inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
     81   if (ZB != ZB_Undefined && Val == 0)
     82     return 32;
     83 
     84 #if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0)
     85   return __builtin_ctz(Val);
     86 #elif _MSC_VER
     87   unsigned long Index;
     88   _BitScanForward(&Index, Val);
     89   return Index;
     90 #endif
     91 }
     92 
     93 #if !defined(_MSC_VER) || defined(_M_X64)
     94 template <>
     95 inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
     96   if (ZB != ZB_Undefined && Val == 0)
     97     return 64;
     98 
     99 #if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0)
    100   return __builtin_ctzll(Val);
    101 #elif _MSC_VER
    102   unsigned long Index;
    103   _BitScanForward64(&Index, Val);
    104   return Index;
    105 #endif
    106 }
    107 #endif
    108 #endif
    109 
    110 /// \brief Count number of 0's from the most significant bit to the least
    111 ///   stopping at the first 1.
    112 ///
    113 /// Only unsigned integral types are allowed.
    114 ///
    115 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    116 ///   valid arguments.
    117 template <typename T>
    118 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    119                         !std::numeric_limits<T>::is_signed, std::size_t>::type
    120 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    121   (void)ZB;
    122 
    123   if (!Val)
    124     return std::numeric_limits<T>::digits;
    125 
    126   // Bisection method.
    127   std::size_t ZeroBits = 0;
    128   for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
    129     T Tmp = Val >> Shift;
    130     if (Tmp)
    131       Val = Tmp;
    132     else
    133       ZeroBits |= Shift;
    134   }
    135   return ZeroBits;
    136 }
    137 
    138 // Disable signed.
    139 template <typename T>
    140 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    141                         std::numeric_limits<T>::is_signed, std::size_t>::type
    142 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
    143 
    144 #if __GNUC__ >= 4 || _MSC_VER
    145 template <>
    146 inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
    147   if (ZB != ZB_Undefined && Val == 0)
    148     return 32;
    149 
    150 #if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0)
    151   return __builtin_clz(Val);
    152 #elif _MSC_VER
    153   unsigned long Index;
    154   _BitScanReverse(&Index, Val);
    155   return Index ^ 31;
    156 #endif
    157 }
    158 
    159 #if !defined(_MSC_VER) || defined(_M_X64)
    160 template <>
    161 inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
    162   if (ZB != ZB_Undefined && Val == 0)
    163     return 64;
    164 
    165 #if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0)
    166   return __builtin_clzll(Val);
    167 #elif _MSC_VER
    168   unsigned long Index;
    169   _BitScanReverse64(&Index, Val);
    170   return Index ^ 63;
    171 #endif
    172 }
    173 #endif
    174 #endif
    175 
    176 /// \brief Get the index of the first set bit starting from the least
    177 ///   significant bit.
    178 ///
    179 /// Only unsigned integral types are allowed.
    180 ///
    181 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    182 ///   valid arguments.
    183 template <typename T>
    184 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    185                        !std::numeric_limits<T>::is_signed, T>::type
    186 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
    187   if (ZB == ZB_Max && Val == 0)
    188     return std::numeric_limits<T>::max();
    189 
    190   return countTrailingZeros(Val, ZB_Undefined);
    191 }
    192 
    193 // Disable signed.
    194 template <typename T>
    195 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    196                         std::numeric_limits<T>::is_signed, T>::type
    197 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
    198 
    199 /// \brief Get the index of the last set bit starting from the least
    200 ///   significant bit.
    201 ///
    202 /// Only unsigned integral types are allowed.
    203 ///
    204 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    205 ///   valid arguments.
    206 template <typename T>
    207 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    208                         !std::numeric_limits<T>::is_signed, T>::type
    209 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
    210   if (ZB == ZB_Max && Val == 0)
    211     return std::numeric_limits<T>::max();
    212 
    213   // Use ^ instead of - because both gcc and llvm can remove the associated ^
    214   // in the __builtin_clz intrinsic on x86.
    215   return countLeadingZeros(Val, ZB_Undefined) ^
    216          (std::numeric_limits<T>::digits - 1);
    217 }
    218 
    219 // Disable signed.
    220 template <typename T>
    221 typename std::enable_if<std::numeric_limits<T>::is_integer &&
    222                         std::numeric_limits<T>::is_signed, T>::type
    223 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
    224 
    225 /// \brief Macro compressed bit reversal table for 256 bits.
    226 ///
    227 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
    228 static const unsigned char BitReverseTable256[256] = {
    229 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
    230 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
    231 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
    232   R6(0), R6(2), R6(1), R6(3)
    233 #undef R2
    234 #undef R4
    235 #undef R6
    236 };
    237 
    238 /// \brief Reverse the bits in \p Val.
    239 template <typename T>
    240 T reverseBits(T Val) {
    241   unsigned char in[sizeof(Val)];
    242   unsigned char out[sizeof(Val)];
    243   std::memcpy(in, &Val, sizeof(Val));
    244   for (unsigned i = 0; i < sizeof(Val); ++i)
    245     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
    246   std::memcpy(&Val, out, sizeof(Val));
    247   return Val;
    248 }
    249 
    250 // NOTE: The following support functions use the _32/_64 extensions instead of
    251 // type overloading so that signed and unsigned integers can be used without
    252 // ambiguity.
    253 
    254 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
    255 inline uint32_t Hi_32(uint64_t Value) {
    256   return static_cast<uint32_t>(Value >> 32);
    257 }
    258 
    259 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
    260 inline uint32_t Lo_32(uint64_t Value) {
    261   return static_cast<uint32_t>(Value);
    262 }
    263 
    264 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
    265 ///           32-bit integers.
    266 inline uint64_t Make_64(uint32_t High, uint32_t Low) {
    267   return ((uint64_t)High << 32) | (uint64_t)Low;
    268 }
    269 
    270 /// isInt - Checks if an integer fits into the given bit width.
    271 template<unsigned N>
    272 inline bool isInt(int64_t x) {
    273   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    274 }
    275 // Template specializations to get better code for common cases.
    276 template<>
    277 inline bool isInt<8>(int64_t x) {
    278   return static_cast<int8_t>(x) == x;
    279 }
    280 template<>
    281 inline bool isInt<16>(int64_t x) {
    282   return static_cast<int16_t>(x) == x;
    283 }
    284 template<>
    285 inline bool isInt<32>(int64_t x) {
    286   return static_cast<int32_t>(x) == x;
    287 }
    288 
    289 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
    290 ///                     left by S.
    291 template<unsigned N, unsigned S>
    292 inline bool isShiftedInt(int64_t x) {
    293   return isInt<N+S>(x) && (x % (1<<S) == 0);
    294 }
    295 
    296 /// isUInt - Checks if an unsigned integer fits into the given bit width.
    297 template<unsigned N>
    298 inline bool isUInt(uint64_t x) {
    299   return N >= 64 || x < (UINT64_C(1)<<(N));
    300 }
    301 // Template specializations to get better code for common cases.
    302 template<>
    303 inline bool isUInt<8>(uint64_t x) {
    304   return static_cast<uint8_t>(x) == x;
    305 }
    306 template<>
    307 inline bool isUInt<16>(uint64_t x) {
    308   return static_cast<uint16_t>(x) == x;
    309 }
    310 template<>
    311 inline bool isUInt<32>(uint64_t x) {
    312   return static_cast<uint32_t>(x) == x;
    313 }
    314 
    315 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
    316 ///                     left by S.
    317 template<unsigned N, unsigned S>
    318 inline bool isShiftedUInt(uint64_t x) {
    319   return isUInt<N+S>(x) && (x % (1<<S) == 0);
    320 }
    321 
    322 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
    323 /// bit width.
    324 inline bool isUIntN(unsigned N, uint64_t x) {
    325   return x == (x & (~0ULL >> (64 - N)));
    326 }
    327 
    328 /// isIntN - Checks if an signed integer fits into the given (dynamic)
    329 /// bit width.
    330 inline bool isIntN(unsigned N, int64_t x) {
    331   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    332 }
    333 
    334 /// isMask_32 - This function returns true if the argument is a sequence of ones
    335 /// starting at the least significant bit with the remainder zero (32 bit
    336 /// version).   Ex. isMask_32(0x0000FFFFU) == true.
    337 inline bool isMask_32(uint32_t Value) {
    338   return Value && ((Value + 1) & Value) == 0;
    339 }
    340 
    341 /// isMask_64 - This function returns true if the argument is a sequence of ones
    342 /// starting at the least significant bit with the remainder zero (64 bit
    343 /// version).
    344 inline bool isMask_64(uint64_t Value) {
    345   return Value && ((Value + 1) & Value) == 0;
    346 }
    347 
    348 /// isShiftedMask_32 - This function returns true if the argument contains a
    349 /// sequence of ones with the remainder zero (32 bit version.)
    350 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
    351 inline bool isShiftedMask_32(uint32_t Value) {
    352   return isMask_32((Value - 1) | Value);
    353 }
    354 
    355 /// isShiftedMask_64 - This function returns true if the argument contains a
    356 /// sequence of ones with the remainder zero (64 bit version.)
    357 inline bool isShiftedMask_64(uint64_t Value) {
    358   return isMask_64((Value - 1) | Value);
    359 }
    360 
    361 /// isPowerOf2_32 - This function returns true if the argument is a power of
    362 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
    363 inline bool isPowerOf2_32(uint32_t Value) {
    364   return Value && !(Value & (Value - 1));
    365 }
    366 
    367 /// isPowerOf2_64 - This function returns true if the argument is a power of two
    368 /// > 0 (64 bit edition.)
    369 inline bool isPowerOf2_64(uint64_t Value) {
    370   return Value && !(Value & (Value - int64_t(1L)));
    371 }
    372 
    373 /// ByteSwap_16 - This function returns a byte-swapped representation of the
    374 /// 16-bit argument, Value.
    375 inline uint16_t ByteSwap_16(uint16_t Value) {
    376   return sys::SwapByteOrder_16(Value);
    377 }
    378 
    379 /// ByteSwap_32 - This function returns a byte-swapped representation of the
    380 /// 32-bit argument, Value.
    381 inline uint32_t ByteSwap_32(uint32_t Value) {
    382   return sys::SwapByteOrder_32(Value);
    383 }
    384 
    385 /// ByteSwap_64 - This function returns a byte-swapped representation of the
    386 /// 64-bit argument, Value.
    387 inline uint64_t ByteSwap_64(uint64_t Value) {
    388   return sys::SwapByteOrder_64(Value);
    389 }
    390 
    391 /// CountLeadingOnes_32 - this function performs the operation of
    392 /// counting the number of ones from the most significant bit to the first zero
    393 /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
    394 /// Returns 32 if the word is all ones.
    395 inline unsigned CountLeadingOnes_32(uint32_t Value) {
    396   return countLeadingZeros(~Value);
    397 }
    398 
    399 /// CountLeadingOnes_64 - This function performs the operation
    400 /// of counting the number of ones from the most significant bit to the first
    401 /// zero bit (64 bit edition.)
    402 /// Returns 64 if the word is all ones.
    403 inline unsigned CountLeadingOnes_64(uint64_t Value) {
    404   return countLeadingZeros(~Value);
    405 }
    406 
    407 /// CountTrailingOnes_32 - this function performs the operation of
    408 /// counting the number of ones from the least significant bit to the first zero
    409 /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
    410 /// Returns 32 if the word is all ones.
    411 inline unsigned CountTrailingOnes_32(uint32_t Value) {
    412   return countTrailingZeros(~Value);
    413 }
    414 
    415 /// CountTrailingOnes_64 - This function performs the operation
    416 /// of counting the number of ones from the least significant bit to the first
    417 /// zero bit (64 bit edition.)
    418 /// Returns 64 if the word is all ones.
    419 inline unsigned CountTrailingOnes_64(uint64_t Value) {
    420   return countTrailingZeros(~Value);
    421 }
    422 
    423 /// CountPopulation_32 - this function counts the number of set bits in a value.
    424 /// Ex. CountPopulation(0xF000F000) = 8
    425 /// Returns 0 if the word is zero.
    426 inline unsigned CountPopulation_32(uint32_t Value) {
    427 #if __GNUC__ >= 4
    428   return __builtin_popcount(Value);
    429 #else
    430   uint32_t v = Value - ((Value >> 1) & 0x55555555);
    431   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
    432   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    433 #endif
    434 }
    435 
    436 /// CountPopulation_64 - this function counts the number of set bits in a value,
    437 /// (64 bit edition.)
    438 inline unsigned CountPopulation_64(uint64_t Value) {
    439 #if __GNUC__ >= 4
    440   return __builtin_popcountll(Value);
    441 #else
    442   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
    443   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
    444   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    445   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
    446 #endif
    447 }
    448 
    449 /// Log2_32 - This function returns the floor log base 2 of the specified value,
    450 /// -1 if the value is zero. (32 bit edition.)
    451 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
    452 inline unsigned Log2_32(uint32_t Value) {
    453   return 31 - countLeadingZeros(Value);
    454 }
    455 
    456 /// Log2_64 - This function returns the floor log base 2 of the specified value,
    457 /// -1 if the value is zero. (64 bit edition.)
    458 inline unsigned Log2_64(uint64_t Value) {
    459   return 63 - countLeadingZeros(Value);
    460 }
    461 
    462 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
    463 /// value, 32 if the value is zero. (32 bit edition).
    464 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
    465 inline unsigned Log2_32_Ceil(uint32_t Value) {
    466   return 32 - countLeadingZeros(Value - 1);
    467 }
    468 
    469 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
    470 /// value, 64 if the value is zero. (64 bit edition.)
    471 inline unsigned Log2_64_Ceil(uint64_t Value) {
    472   return 64 - countLeadingZeros(Value - 1);
    473 }
    474 
    475 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
    476 /// values using Euclid's algorithm.
    477 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
    478   while (B) {
    479     uint64_t T = B;
    480     B = A % B;
    481     A = T;
    482   }
    483   return A;
    484 }
    485 
    486 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
    487 /// equivalent double.
    488 inline double BitsToDouble(uint64_t Bits) {
    489   union {
    490     uint64_t L;
    491     double D;
    492   } T;
    493   T.L = Bits;
    494   return T.D;
    495 }
    496 
    497 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
    498 /// equivalent float.
    499 inline float BitsToFloat(uint32_t Bits) {
    500   union {
    501     uint32_t I;
    502     float F;
    503   } T;
    504   T.I = Bits;
    505   return T.F;
    506 }
    507 
    508 /// DoubleToBits - This function takes a double and returns the bit
    509 /// equivalent 64-bit integer.  Note that copying doubles around
    510 /// changes the bits of NaNs on some hosts, notably x86, so this
    511 /// routine cannot be used if these bits are needed.
    512 inline uint64_t DoubleToBits(double Double) {
    513   union {
    514     uint64_t L;
    515     double D;
    516   } T;
    517   T.D = Double;
    518   return T.L;
    519 }
    520 
    521 /// FloatToBits - This function takes a float and returns the bit
    522 /// equivalent 32-bit integer.  Note that copying floats around
    523 /// changes the bits of NaNs on some hosts, notably x86, so this
    524 /// routine cannot be used if these bits are needed.
    525 inline uint32_t FloatToBits(float Float) {
    526   union {
    527     uint32_t I;
    528     float F;
    529   } T;
    530   T.F = Float;
    531   return T.I;
    532 }
    533 
    534 /// Platform-independent wrappers for the C99 isnan() function.
    535 int IsNAN(float f);
    536 int IsNAN(double d);
    537 
    538 /// Platform-independent wrappers for the C99 isinf() function.
    539 int IsInf(float f);
    540 int IsInf(double d);
    541 
    542 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
    543 /// alignment that may be assumed after adding the two together.
    544 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
    545   // The largest power of 2 that divides both A and B.
    546   //
    547   // Replace "-Value" by "1+~Value" in the following commented code to avoid
    548   // MSVC warning C4146
    549   //    return (A | B) & -(A | B);
    550   return (A | B) & (1 + ~(A | B));
    551 }
    552 
    553 /// \brief Aligns \c Ptr to \c Alignment bytes, rounding up.
    554 ///
    555 /// Alignment should be a power of two.  This method rounds up, so
    556 /// AlignPtr(7, 4) == 8 and AlignPtr(8, 4) == 8.
    557 inline char *alignPtr(char *Ptr, size_t Alignment) {
    558   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
    559          "Alignment is not a power of two!");
    560 
    561   return (char *)(((uintptr_t)Ptr + Alignment - 1) &
    562                   ~(uintptr_t)(Alignment - 1));
    563 }
    564 
    565 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
    566 /// that is strictly greater than A.  Returns zero on overflow.
    567 inline uint64_t NextPowerOf2(uint64_t A) {
    568   A |= (A >> 1);
    569   A |= (A >> 2);
    570   A |= (A >> 4);
    571   A |= (A >> 8);
    572   A |= (A >> 16);
    573   A |= (A >> 32);
    574   return A + 1;
    575 }
    576 
    577 /// Returns the power of two which is less than or equal to the given value.
    578 /// Essentially, it is a floor operation across the domain of powers of two.
    579 inline uint64_t PowerOf2Floor(uint64_t A) {
    580   if (!A) return 0;
    581   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
    582 }
    583 
    584 /// Returns the next integer (mod 2**64) that is greater than or equal to
    585 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
    586 ///
    587 /// Examples:
    588 /// \code
    589 ///   RoundUpToAlignment(5, 8) = 8
    590 ///   RoundUpToAlignment(17, 8) = 24
    591 ///   RoundUpToAlignment(~0LL, 8) = 0
    592 /// \endcode
    593 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
    594   return ((Value + Align - 1) / Align) * Align;
    595 }
    596 
    597 /// Returns the offset to the next integer (mod 2**64) that is greater than
    598 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
    599 /// non-zero.
    600 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
    601   return RoundUpToAlignment(Value, Align) - Value;
    602 }
    603 
    604 /// abs64 - absolute value of a 64-bit int.  Not all environments support
    605 /// "abs" on whatever their name for the 64-bit int type is.  The absolute
    606 /// value of the largest negative number is undefined, as with "abs".
    607 inline int64_t abs64(int64_t x) {
    608   return (x < 0) ? -x : x;
    609 }
    610 
    611 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
    612 /// Usage int32_t r = SignExtend32<5>(x);
    613 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
    614   return int32_t(x << (32 - B)) >> (32 - B);
    615 }
    616 
    617 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
    618 /// Requires 0 < B <= 32.
    619 inline int32_t SignExtend32(uint32_t X, unsigned B) {
    620   return int32_t(X << (32 - B)) >> (32 - B);
    621 }
    622 
    623 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
    624 /// Usage int64_t r = SignExtend64<5>(x);
    625 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
    626   return int64_t(x << (64 - B)) >> (64 - B);
    627 }
    628 
    629 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
    630 /// Requires 0 < B <= 64.
    631 inline int64_t SignExtend64(uint64_t X, unsigned B) {
    632   return int64_t(X << (64 - B)) >> (64 - B);
    633 }
    634 
    635 #if defined(_MSC_VER)
    636   // Visual Studio defines the HUGE_VAL class of macros using purposeful
    637   // constant arithmetic overflow, which it then warns on when encountered.
    638   const float huge_valf = std::numeric_limits<float>::infinity();
    639 #else
    640   const float huge_valf = HUGE_VALF;
    641 #endif
    642 } // End llvm namespace
    643 
    644 #endif
    645