Home | History | Annotate | Download | only in massif
      1 //--------------------------------------------------------------------*/
      2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
      3 //--------------------------------------------------------------------*/
      4 
      5 /*
      6    This file is part of Massif, a Valgrind tool for profiling memory
      7    usage of programs.
      8 
      9    Copyright (C) 2003-2013 Nicholas Nethercote
     10       njn (at) valgrind.org
     11 
     12    This program is free software; you can redistribute it and/or
     13    modify it under the terms of the GNU General Public License as
     14    published by the Free Software Foundation; either version 2 of the
     15    License, or (at your option) any later version.
     16 
     17    This program is distributed in the hope that it will be useful, but
     18    WITHOUT ANY WARRANTY; without even the implied warranty of
     19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     20    General Public License for more details.
     21 
     22    You should have received a copy of the GNU General Public License
     23    along with this program; if not, write to the Free Software
     24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
     25    02111-1307, USA.
     26 
     27    The GNU General Public License is contained in the file COPYING.
     28 */
     29 
     30 //---------------------------------------------------------------------------
     31 // XXX:
     32 //---------------------------------------------------------------------------
     33 // Todo -- nice, but less critical:
     34 // - do a graph-drawing test
     35 // - make file format more generic.  Obstacles:
     36 //   - unit prefixes are not generic
     37 //   - preset column widths for stats are not generic
     38 //   - preset column headers are not generic
     39 //   - "Massif arguments:" line is not generic
     40 // - do snapshots on client requests
     41 //   - (Michael Meeks): have an interactive way to request a dump
     42 //     (callgrind_control-style)
     43 //     - "profile now"
     44 //     - "show me the extra allocations since the last snapshot"
     45 //     - "start/stop logging" (eg. quickly skip boring bits)
     46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
     47 //   Give each graph a title.  (try to do it generically!)
     48 // - allow truncation of long fnnames if the exact line number is
     49 //   identified?  [hmm, could make getting the name of alloc-fns more
     50 //   difficult] [could dump full names to file, truncate in ms_print]
     51 // - make --show-below-main=no work
     52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
     53 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
     54 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
     55 // - With --stack=yes, want to add a stack trace for detailed snapshots so
     56 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
     57 //   possibly useful even with --stack=no? (Andi Yin)
     58 //
     59 // Performance:
     60 // - To run the benchmarks:
     61 //
     62 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
     63 //     time valgrind --tool=massif --depth=100 konqueror
     64 //
     65 //   The other benchmarks don't do much allocation, and so give similar speeds
     66 //   to Nulgrind.
     67 //
     68 //   Timing results on 'nevermore' (njn's machine) as of r7013:
     69 //
     70 //     heap      0.53s  ma:12.4s (23.5x, -----)
     71 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
     72 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
     73 //     konqueror 29.6s real  0:21.0s user
     74 //
     75 //   [Introduction of --time-unit=i as the default slowed things down by
     76 //   roughly 0--20%.]
     77 //
     78 // - get_XCon accounts for about 9% of konqueror startup time.  Try
     79 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
     80 //   Requires factoring out binary search code from various places into a
     81 //   VG_(bsearch) function.
     82 //
     83 // Todo -- low priority:
     84 // - In each XPt, record both bytes and the number of allocations, and
     85 //   possibly the global number of allocations.
     86 // - (Andy Lin) Give a stack trace on detailed snapshots?
     87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
     88 //   than a certain size!  Because: "linux's malloc allows to set a
     89 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
     90 //   be handled directly by the kernel, and are guaranteed to be returned to
     91 //   the system when freed. So we needed to profile only blocks below this
     92 //   limit."
     93 //
     94 // File format working notes:
     95 
     96 #if 0
     97 desc: --heap-admin=foo
     98 cmd: date
     99 time_unit: ms
    100 #-----------
    101 snapshot=0
    102 #-----------
    103 time=0
    104 mem_heap_B=0
    105 mem_heap_admin_B=0
    106 mem_stacks_B=0
    107 heap_tree=empty
    108 #-----------
    109 snapshot=1
    110 #-----------
    111 time=353
    112 mem_heap_B=5
    113 mem_heap_admin_B=0
    114 mem_stacks_B=0
    115 heap_tree=detailed
    116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    117  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    118   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
    119    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
    120     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
    121      n1: 5 0x8049821: (within /bin/date)
    122       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
    123 
    124 
    125 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
    126 t_events: B
    127 n 0 0 0 0 0
    128 n 0 0 0 0 0
    129 t1: 5 <string...>
    130  t1: 6 <string...>
    131 
    132 Ideas:
    133 - each snapshot specifies an x-axis value and one or more y-axis values.
    134 - can display the y-axis values separately if you like
    135 - can completely separate connection between snapshots and trees.
    136 
    137 Challenges:
    138 - how to specify and scale/abbreviate units on axes?
    139 - how to combine multiple values into the y-axis?
    140 
    141 --------------------------------------------------------------------------------Command:            date
    142 Massif arguments:   --heap-admin=foo
    143 ms_print arguments: massif.out
    144 --------------------------------------------------------------------------------
    145     KB
    146 6.472^                                                       :#
    147      |                                                       :#  ::  .    .
    148      ...
    149      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
    150    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
    151 
    152 Number of snapshots: 50
    153  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
    154 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
    155 --------------------------------------------------------------------------------  0              0                0                0             0            0
    156   1            345                5                5             0            0
    157   2            353                5                5             0            0
    158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    160 #endif
    161 
    162 //---------------------------------------------------------------------------
    163 
    164 #include "pub_tool_basics.h"
    165 #include "pub_tool_vki.h"
    166 #include "pub_tool_aspacemgr.h"
    167 #include "pub_tool_debuginfo.h"
    168 #include "pub_tool_hashtable.h"
    169 #include "pub_tool_libcbase.h"
    170 #include "pub_tool_libcassert.h"
    171 #include "pub_tool_libcfile.h"
    172 #include "pub_tool_libcprint.h"
    173 #include "pub_tool_libcproc.h"
    174 #include "pub_tool_machine.h"
    175 #include "pub_tool_mallocfree.h"
    176 #include "pub_tool_options.h"
    177 #include "pub_tool_replacemalloc.h"
    178 #include "pub_tool_stacktrace.h"
    179 #include "pub_tool_threadstate.h"
    180 #include "pub_tool_tooliface.h"
    181 #include "pub_tool_xarray.h"
    182 #include "pub_tool_clientstate.h"
    183 #include "pub_tool_gdbserver.h"
    184 
    185 #include "pub_tool_clreq.h"           // For {MALLOC,FREE}LIKE_BLOCK
    186 
    187 //------------------------------------------------------------*/
    188 //--- Overview of operation                                ---*/
    189 //------------------------------------------------------------*/
    190 
    191 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
    192 // of detail, enough to tell how many bytes each line of code is responsible
    193 // for, more or less.  The main data structure is a tree representing the
    194 // call tree beneath all the allocation functions like malloc().
    195 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
    196 // the page level, and each page is treated much like a heap block.  We use
    197 // "heap" throughout below to cover this case because the concepts are all the
    198 // same.)
    199 //
    200 // "Snapshots" are recordings of the memory usage.  There are two basic
    201 // kinds:
    202 // - Normal:  these record the current time, total memory size, total heap
    203 //   size, heap admin size and stack size.
    204 // - Detailed: these record those things in a normal snapshot, plus a very
    205 //   detailed XTree (see below) indicating how the heap is structured.
    206 //
    207 // Snapshots are taken every so often.  There are two storage classes of
    208 // snapshots:
    209 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
    210 //   is to always have a certain number of temporary snapshots around.  So
    211 //   we take them frequently to begin with, but decreasingly often as the
    212 //   program continues to run.  Also, we remove some old ones after a while.
    213 //   Overall it's a kind of exponential decay thing.  Most of these are
    214 //   normal snapshots, a small fraction are detailed snapshots.
    215 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
    216 //   circumstances.  They are:
    217 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
    218 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
    219 //     in which case it will overwrite the peak snapshot.
    220 //   - User-requested snapshots:  These are done in response to client
    221 //     requests.  They are always kept.
    222 
    223 // Used for printing things when clo_verbosity > 1.
    224 #define VERB(verb, format, args...) \
    225    if (VG_(clo_verbosity) > verb) { \
    226       VG_(dmsg)("Massif: " format, ##args); \
    227    }
    228 
    229 //------------------------------------------------------------//
    230 //--- Statistics                                           ---//
    231 //------------------------------------------------------------//
    232 
    233 // Konqueror startup, to give an idea of the numbers involved with a biggish
    234 // program, with default depth:
    235 //
    236 //  depth=3                   depth=40
    237 //  - 310,000 allocations
    238 //  - 300,000 frees
    239 //  -  15,000 XPts            800,000 XPts
    240 //  -   1,800 top-XPts
    241 
    242 static UInt n_heap_allocs           = 0;
    243 static UInt n_heap_reallocs         = 0;
    244 static UInt n_heap_frees            = 0;
    245 static UInt n_ignored_heap_allocs   = 0;
    246 static UInt n_ignored_heap_frees    = 0;
    247 static UInt n_ignored_heap_reallocs = 0;
    248 static UInt n_stack_allocs          = 0;
    249 static UInt n_stack_frees           = 0;
    250 static UInt n_xpts                  = 0;
    251 static UInt n_xpt_init_expansions   = 0;
    252 static UInt n_xpt_later_expansions  = 0;
    253 static UInt n_sxpt_allocs           = 0;
    254 static UInt n_sxpt_frees            = 0;
    255 static UInt n_skipped_snapshots     = 0;
    256 static UInt n_real_snapshots        = 0;
    257 static UInt n_detailed_snapshots    = 0;
    258 static UInt n_peak_snapshots        = 0;
    259 static UInt n_cullings              = 0;
    260 static UInt n_XCon_redos            = 0;
    261 
    262 //------------------------------------------------------------//
    263 //--- Globals                                              ---//
    264 //------------------------------------------------------------//
    265 
    266 // Number of guest instructions executed so far.  Only used with
    267 // --time-unit=i.
    268 static Long guest_instrs_executed = 0;
    269 
    270 static SizeT heap_szB       = 0; // Live heap size
    271 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
    272 static SizeT stacks_szB     = 0; // Live stacks size
    273 
    274 // This is the total size from the current peak snapshot, or 0 if no peak
    275 // snapshot has been taken yet.
    276 static SizeT peak_snapshot_total_szB = 0;
    277 
    278 // Incremented every time memory is allocated/deallocated, by the
    279 // allocated/deallocated amount;  includes heap, heap-admin and stack
    280 // memory.  An alternative to milliseconds as a unit of program "time".
    281 static ULong total_allocs_deallocs_szB = 0;
    282 
    283 // When running with --heap=yes --pages-as-heap=no, we don't start taking
    284 // snapshots until the first basic block is executed, rather than doing it in
    285 // ms_post_clo_init (which is the obvious spot), for two reasons.
    286 // - It lets us ignore stack events prior to that, because they're not
    287 //   really proper ones and just would screw things up.
    288 // - Because there's still some core initialisation to do, and so there
    289 //   would be an artificial time gap between the first and second snapshots.
    290 //
    291 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
    292 // earlier due to new_mem_startup so this isn't relevant.
    293 //
    294 static Bool have_started_executing_code = False;
    295 
    296 //------------------------------------------------------------//
    297 //--- Alloc fns                                            ---//
    298 //------------------------------------------------------------//
    299 
    300 static XArray* alloc_fns;
    301 static XArray* ignore_fns;
    302 
    303 static void init_alloc_fns(void)
    304 {
    305    // Create the list, and add the default elements.
    306    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
    307                                        VG_(free), sizeof(HChar*));
    308    #define DO(x)  { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
    309 
    310    // Ordered roughly according to (presumed) frequency.
    311    // Nb: The C++ "operator new*" ones are overloadable.  We include them
    312    // always anyway, because even if they're overloaded, it would be a
    313    // prodigiously stupid overloading that caused them to not allocate
    314    // memory.
    315    //
    316    // XXX: because we don't look at the first stack entry (unless it's a
    317    // custom allocation) there's not much point to having all these alloc
    318    // functions here -- they should never appear anywhere (I think?) other
    319    // than the top stack entry.  The only exceptions are those that in
    320    // vg_replace_malloc.c are partly or fully implemented in terms of another
    321    // alloc function: realloc (which uses malloc);  valloc,
    322    // malloc_zone_valloc, posix_memalign and memalign_common (which use
    323    // memalign).
    324    //
    325    DO("malloc"                                              );
    326    DO("__builtin_new"                                       );
    327    DO("operator new(unsigned)"                              );
    328    DO("operator new(unsigned long)"                         );
    329    DO("__builtin_vec_new"                                   );
    330    DO("operator new[](unsigned)"                            );
    331    DO("operator new[](unsigned long)"                       );
    332    DO("calloc"                                              );
    333    DO("realloc"                                             );
    334    DO("memalign"                                            );
    335    DO("posix_memalign"                                      );
    336    DO("valloc"                                              );
    337    DO("operator new(unsigned, std::nothrow_t const&)"       );
    338    DO("operator new[](unsigned, std::nothrow_t const&)"     );
    339    DO("operator new(unsigned long, std::nothrow_t const&)"  );
    340    DO("operator new[](unsigned long, std::nothrow_t const&)");
    341 #if defined(VGO_darwin)
    342    DO("malloc_zone_malloc"                                  );
    343    DO("malloc_zone_calloc"                                  );
    344    DO("malloc_zone_realloc"                                 );
    345    DO("malloc_zone_memalign"                                );
    346    DO("malloc_zone_valloc"                                  );
    347 #endif
    348 }
    349 
    350 static void init_ignore_fns(void)
    351 {
    352    // Create the (empty) list.
    353    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
    354                                         VG_(free), sizeof(HChar*));
    355 }
    356 
    357 // Determines if the named function is a member of the XArray.
    358 static Bool is_member_fn(XArray* fns, const HChar* fnname)
    359 {
    360    HChar** fn_ptr;
    361    Int i;
    362 
    363    // Nb: It's a linear search through the list, because we're comparing
    364    // strings rather than pointers to strings.
    365    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
    366    // iterate through so it wasn't a good choice.
    367    for (i = 0; i < VG_(sizeXA)(fns); i++) {
    368       fn_ptr = VG_(indexXA)(fns, i);
    369       if (VG_STREQ(fnname, *fn_ptr))
    370          return True;
    371    }
    372    return False;
    373 }
    374 
    375 
    376 //------------------------------------------------------------//
    377 //--- Command line args                                    ---//
    378 //------------------------------------------------------------//
    379 
    380 #define MAX_DEPTH       200
    381 
    382 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
    383 
    384 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
    385 {
    386    switch (time_unit) {
    387    case TimeI:  return "i";
    388    case TimeMS: return "ms";
    389    case TimeB:  return "B";
    390    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
    391    }
    392 }
    393 
    394 static Bool   clo_heap            = True;
    395    // clo_heap_admin is deliberately a word-sized type.  At one point it was
    396    // a UInt, but this caused problems on 64-bit machines when it was
    397    // multiplied by a small negative number and then promoted to a
    398    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
    399 static SSizeT clo_heap_admin      = 8;
    400 static Bool   clo_pages_as_heap   = False;
    401 static Bool   clo_stacks          = False;
    402 static Int    clo_depth           = 30;
    403 static double clo_threshold       = 1.0;  // percentage
    404 static double clo_peak_inaccuracy = 1.0;  // percentage
    405 static Int    clo_time_unit       = TimeI;
    406 static Int    clo_detailed_freq   = 10;
    407 static Int    clo_max_snapshots   = 100;
    408 static const HChar* clo_massif_out_file = "massif.out.%p";
    409 
    410 static XArray* args_for_massif;
    411 
    412 static Bool ms_process_cmd_line_option(const HChar* arg)
    413 {
    414    const HChar* tmp_str;
    415 
    416    // Remember the arg for later use.
    417    VG_(addToXA)(args_for_massif, &arg);
    418 
    419         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
    420    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
    421 
    422    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
    423 
    424    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
    425 
    426    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
    427 
    428    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
    429       VG_(addToXA)(alloc_fns, &tmp_str);
    430    }
    431    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
    432       VG_(addToXA)(ignore_fns, &tmp_str);
    433    }
    434 
    435    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
    436       if (clo_threshold < 0 || clo_threshold > 100) {
    437          VG_(fmsg_bad_option)(arg,
    438             "--threshold must be between 0.0 and 100.0\n");
    439       }
    440    }
    441 
    442    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
    443 
    444    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
    445    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
    446    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
    447 
    448    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
    449 
    450    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
    451 
    452    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
    453 
    454    else
    455       return VG_(replacement_malloc_process_cmd_line_option)(arg);
    456 
    457    return True;
    458 }
    459 
    460 static void ms_print_usage(void)
    461 {
    462    VG_(printf)(
    463 "    --heap=no|yes             profile heap blocks [yes]\n"
    464 "    --heap-admin=<size>       average admin bytes per heap block;\n"
    465 "                               ignored if --heap=no [8]\n"
    466 "    --stacks=no|yes           profile stack(s) [no]\n"
    467 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
    468 "    --depth=<number>          depth of contexts [30]\n"
    469 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
    470 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
    471 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
    472 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
    473 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
    474 "                              or heap bytes alloc'd/dealloc'd [i]\n"
    475 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
    476 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
    477 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
    478    );
    479 }
    480 
    481 static void ms_print_debug_usage(void)
    482 {
    483    VG_(printf)(
    484 "    (none)\n"
    485    );
    486 }
    487 
    488 
    489 //------------------------------------------------------------//
    490 //--- XPts, XTrees and XCons                               ---//
    491 //------------------------------------------------------------//
    492 
    493 // An XPt represents an "execution point", ie. a code address.  Each XPt is
    494 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
    495 // the heap are represented by a single XTree.
    496 //
    497 // The root of the tree is 'alloc_xpt', which represents all allocation
    498 // functions, eg:
    499 // - malloc/calloc/realloc/memalign/new/new[];
    500 // - user-specified allocation functions (using --alloc-fn);
    501 // - custom allocation (MALLOCLIKE) points
    502 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
    503 // it makes the code simpler.
    504 //
    505 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
    506 // of an XTree (leaf nodes) are "bottom-XPTs".
    507 //
    508 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
    509 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
    510 // stack sub-traces.)  The number of XCons in an XTree is equal to the
    511 // number of bottom-XPTs in that XTree.
    512 //
    513 //      alloc_xpt       XTrees are bi-directional.
    514 //        | ^
    515 //        v |
    516 //     > parent <       Example: if child1() calls parent() and child2()
    517 //    /    |     \      also calls parent(), and parent() calls malloc(),
    518 //   |    / \     |     the XTree will look like this.
    519 //   |   v   v    |
    520 //  child1   child2
    521 //
    522 // (Note that malformed stack traces can lead to difficulties.  See the
    523 // comment at the bottom of get_XCon.)
    524 //
    525 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
    526 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
    527 // it as an SXTree, which is similar but omits some things it does not need,
    528 // and aggregates up insignificant nodes.  This is important as an SXTree is
    529 // typically much smaller than an XTree.
    530 
    531 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
    532 // allocations per Pt.
    533 
    534 typedef struct _XPt XPt;
    535 struct _XPt {
    536    Addr  ip;              // code address
    537 
    538    // Bottom-XPts: space for the precise context.
    539    // Other XPts:  space of all the descendent bottom-XPts.
    540    // Nb: this value goes up and down as the program executes.
    541    SizeT szB;
    542 
    543    XPt*  parent;           // pointer to parent XPt
    544 
    545    // Children.
    546    // n_children and max_children are 32-bit integers.  16-bit integers
    547    // are too small -- a very big program might have more than 65536
    548    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
    549    UInt  n_children;       // number of children
    550    UInt  max_children;     // capacity of children array
    551    XPt** children;         // pointers to children XPts
    552 };
    553 
    554 typedef
    555    enum {
    556       SigSXPt,
    557       InsigSXPt
    558    }
    559    SXPtTag;
    560 
    561 typedef struct _SXPt SXPt;
    562 struct _SXPt {
    563    SXPtTag tag;
    564    SizeT szB;              // memory size for the node, be it Sig or Insig
    565    union {
    566       // An SXPt representing a single significant code location.  Much like
    567       // an XPt, minus the fields that aren't necessary.
    568       struct {
    569          Addr   ip;
    570          UInt   n_children;
    571          SXPt** children;
    572       }
    573       Sig;
    574 
    575       // An SXPt representing one or more code locations, all below the
    576       // significance threshold.
    577       struct {
    578          Int   n_xpts;     // number of aggregated XPts
    579       }
    580       Insig;
    581    };
    582 };
    583 
    584 // Fake XPt representing all allocation functions like malloc().  Acts as
    585 // parent node to all top-XPts.
    586 static XPt* alloc_xpt;
    587 
    588 static XPt* new_XPt(Addr ip, XPt* parent)
    589 {
    590    // XPts are never freed, so we can use VG_(perm_malloc) to allocate them.
    591    // Note that we cannot use VG_(perm_malloc) for the 'children' array, because
    592    // that needs to be resizable.
    593    XPt* xpt    = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt));
    594    xpt->ip     = ip;
    595    xpt->szB    = 0;
    596    xpt->parent = parent;
    597 
    598    // We don't initially allocate any space for children.  We let that
    599    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
    600    // children anyway.
    601    xpt->n_children   = 0;
    602    xpt->max_children = 0;
    603    xpt->children     = NULL;
    604 
    605    // Update statistics
    606    n_xpts++;
    607 
    608    return xpt;
    609 }
    610 
    611 static void add_child_xpt(XPt* parent, XPt* child)
    612 {
    613    // Expand 'children' if necessary.
    614    tl_assert(parent->n_children <= parent->max_children);
    615    if (parent->n_children == parent->max_children) {
    616       if (0 == parent->max_children) {
    617          parent->max_children = 4;
    618          parent->children = VG_(malloc)( "ms.main.acx.1",
    619                                          parent->max_children * sizeof(XPt*) );
    620          n_xpt_init_expansions++;
    621       } else {
    622          parent->max_children *= 2;    // Double size
    623          parent->children = VG_(realloc)( "ms.main.acx.2",
    624                                           parent->children,
    625                                           parent->max_children * sizeof(XPt*) );
    626          n_xpt_later_expansions++;
    627       }
    628    }
    629 
    630    // Insert new child XPt in parent's children list.
    631    parent->children[ parent->n_children++ ] = child;
    632 }
    633 
    634 // Reverse comparison for a reverse sort -- biggest to smallest.
    635 static Int SXPt_revcmp_szB(const void* n1, const void* n2)
    636 {
    637    const SXPt* sxpt1 = *(const SXPt *const *)n1;
    638    const SXPt* sxpt2 = *(const SXPt *const *)n2;
    639    return ( sxpt1->szB < sxpt2->szB ?  1
    640           : sxpt1->szB > sxpt2->szB ? -1
    641           :                            0);
    642 }
    643 
    644 //------------------------------------------------------------//
    645 //--- XTree Operations                                     ---//
    646 //------------------------------------------------------------//
    647 
    648 // Duplicates an XTree as an SXTree.
    649 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
    650 {
    651    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
    652    SizeT sig_child_threshold_szB;
    653    SXPt* sxpt;
    654 
    655    // Number of XPt children  Action for SXPT
    656    // ------------------      ---------------
    657    // 0 sig, 0 insig          alloc 0 children
    658    // N sig, 0 insig          alloc N children, dup all
    659    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
    660    // 0 sig, M insig          alloc 1, aggregate M
    661 
    662    // Work out how big a child must be to be significant.  If the current
    663    // total_szB is zero, then we set it to 1, which means everything will be
    664    // judged insignificant -- this is sensible, as there's no point showing
    665    // any detail for this case.  Unless they used --threshold=0, in which
    666    // case we show them everything because that's what they asked for.
    667    //
    668    // Nb: We do this once now, rather than once per child, because if we do
    669    // that the cost of all the divisions adds up to something significant.
    670    if (0 == total_szB && 0 != clo_threshold) {
    671       sig_child_threshold_szB = 1;
    672    } else {
    673       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
    674    }
    675 
    676    // How many children are significant?  And do we need an aggregate SXPt?
    677    n_sig_children = 0;
    678    for (i = 0; i < xpt->n_children; i++) {
    679       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    680          n_sig_children++;
    681       }
    682    }
    683    n_insig_children = xpt->n_children - n_sig_children;
    684    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
    685 
    686    // Duplicate the XPt.
    687    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
    688    n_sxpt_allocs++;
    689    sxpt->tag            = SigSXPt;
    690    sxpt->szB            = xpt->szB;
    691    sxpt->Sig.ip         = xpt->ip;
    692    sxpt->Sig.n_children = n_child_sxpts;
    693 
    694    // Create the SXPt's children.
    695    if (n_child_sxpts > 0) {
    696       Int j;
    697       SizeT sig_children_szB = 0, insig_children_szB = 0;
    698       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
    699                                        n_child_sxpts * sizeof(SXPt*));
    700 
    701       // Duplicate the significant children.  (Nb: sig_children_szB +
    702       // insig_children_szB doesn't necessarily equal xpt->szB.)
    703       j = 0;
    704       for (i = 0; i < xpt->n_children; i++) {
    705          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    706             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
    707             sig_children_szB   += xpt->children[i]->szB;
    708          } else {
    709             insig_children_szB += xpt->children[i]->szB;
    710          }
    711       }
    712 
    713       // Create the SXPt for the insignificant children, if any, and put it
    714       // in the last child entry.
    715       if (n_insig_children > 0) {
    716          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
    717          // doesn't involve a call to dup_XTree().
    718          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
    719          n_sxpt_allocs++;
    720          insig_sxpt->tag = InsigSXPt;
    721          insig_sxpt->szB = insig_children_szB;
    722          insig_sxpt->Insig.n_xpts = n_insig_children;
    723          sxpt->Sig.children[n_sig_children] = insig_sxpt;
    724       }
    725    } else {
    726       sxpt->Sig.children = NULL;
    727    }
    728 
    729    return sxpt;
    730 }
    731 
    732 static void free_SXTree(SXPt* sxpt)
    733 {
    734    Int  i;
    735    tl_assert(sxpt != NULL);
    736 
    737    switch (sxpt->tag) {
    738     case SigSXPt:
    739       // Free all children SXPts, then the children array.
    740       for (i = 0; i < sxpt->Sig.n_children; i++) {
    741          free_SXTree(sxpt->Sig.children[i]);
    742          sxpt->Sig.children[i] = NULL;
    743       }
    744       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
    745       break;
    746 
    747     case InsigSXPt:
    748       break;
    749 
    750     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
    751    }
    752 
    753    // Free the SXPt itself.
    754    VG_(free)(sxpt);     sxpt = NULL;
    755    n_sxpt_frees++;
    756 }
    757 
    758 // Sanity checking:  we periodically check the heap XTree with
    759 // ms_expensive_sanity_check.
    760 static void sanity_check_XTree(XPt* xpt, XPt* parent)
    761 {
    762    tl_assert(xpt != NULL);
    763 
    764    // Check back-pointer.
    765    tl_assert2(xpt->parent == parent,
    766       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
    767 
    768    // Check children counts look sane.
    769    tl_assert(xpt->n_children <= xpt->max_children);
    770 
    771    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
    772    // children's sizes.  See comment at the bottom of get_XCon.
    773 }
    774 
    775 // Sanity checking:  we check SXTrees (which are in snapshots) after
    776 // snapshots are created, before they are deleted, and before they are
    777 // printed.
    778 static void sanity_check_SXTree(SXPt* sxpt)
    779 {
    780    Int i;
    781 
    782    tl_assert(sxpt != NULL);
    783 
    784    // Check the sum of any children szBs equals the SXPt's szB.  Check the
    785    // children at the same time.
    786    switch (sxpt->tag) {
    787     case SigSXPt: {
    788       if (sxpt->Sig.n_children > 0) {
    789          for (i = 0; i < sxpt->Sig.n_children; i++) {
    790             sanity_check_SXTree(sxpt->Sig.children[i]);
    791          }
    792       }
    793       break;
    794     }
    795     case InsigSXPt:
    796       break;         // do nothing
    797 
    798     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
    799    }
    800 }
    801 
    802 
    803 //------------------------------------------------------------//
    804 //--- XCon Operations                                      ---//
    805 //------------------------------------------------------------//
    806 
    807 // This is the limit on the number of removed alloc-fns that can be in a
    808 // single XCon.
    809 #define MAX_OVERESTIMATE   50
    810 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
    811 
    812 // This is used for various buffers which can hold function names/IP
    813 // description.  Some C++ names can get really long so 1024 isn't big
    814 // enough.
    815 #define BUF_LEN   2048
    816 
    817 // Determine if the given IP belongs to a function that should be ignored.
    818 static Bool fn_should_be_ignored(Addr ip)
    819 {
    820    static HChar buf[BUF_LEN];
    821    return
    822       ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
    823       ? True : False );
    824 }
    825 
    826 // Get the stack trace for an XCon, filtering out uninteresting entries:
    827 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
    828 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
    829 //   becomes:  a / b / main
    830 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
    831 // as an alloc-fn.  This is ok.
    832 static
    833 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
    834 {
    835    static HChar buf[BUF_LEN];
    836    Int n_ips, i, n_alloc_fns_removed;
    837    Int overestimate;
    838    Bool redo;
    839 
    840    // We ask for a few more IPs than clo_depth suggests we need.  Then we
    841    // remove every entry that is an alloc-fn.  Depending on the
    842    // circumstances, we may need to redo it all, asking for more IPs.
    843    // Details:
    844    // - If the original stack trace is smaller than asked-for, redo=False
    845    // - Else if after filtering we have >= clo_depth IPs,      redo=False
    846    // - Else redo=True
    847    // In other words, to redo, we'd have to get a stack trace as big as we
    848    // asked for and remove more than 'overestimate' alloc-fns.
    849 
    850    // Main loop.
    851    redo = True;      // Assume this to begin with.
    852    for (overestimate = 3; redo; overestimate += 6) {
    853       // This should never happen -- would require MAX_OVERESTIMATE
    854       // alloc-fns to be removed from the stack trace.
    855       if (overestimate > MAX_OVERESTIMATE)
    856          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
    857 
    858       // Ask for more IPs than clo_depth suggests we need.
    859       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
    860                                    NULL/*array to dump SP values in*/,
    861                                    NULL/*array to dump FP values in*/,
    862                                    0/*first_ip_delta*/ );
    863       tl_assert(n_ips > 0);
    864 
    865       // If the original stack trace is smaller than asked-for, redo=False.
    866       if (n_ips < clo_depth + overestimate) { redo = False; }
    867 
    868       // Filter out alloc fns.  If requested, we automatically remove the
    869       // first entry (which presumably will be something like malloc or
    870       // __builtin_new that we're sure to filter out) without looking at it,
    871       // because VG_(get_fnname) is expensive.
    872       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
    873       for (i = n_alloc_fns_removed; i < n_ips; i++) {
    874          if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
    875             if (is_member_fn(alloc_fns, buf)) {
    876                n_alloc_fns_removed++;
    877             } else {
    878                break;
    879             }
    880          }
    881       }
    882       // Remove the alloc fns by shuffling the rest down over them.
    883       n_ips -= n_alloc_fns_removed;
    884       for (i = 0; i < n_ips; i++) {
    885          ips[i] = ips[i + n_alloc_fns_removed];
    886       }
    887 
    888       // If after filtering we have >= clo_depth IPs, redo=False
    889       if (n_ips >= clo_depth) {
    890          redo = False;
    891          n_ips = clo_depth;      // Ignore any IPs below --depth.
    892       }
    893 
    894       if (redo) {
    895          n_XCon_redos++;
    896       }
    897    }
    898    return n_ips;
    899 }
    900 
    901 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
    902 // Unless the allocation should be ignored, in which case we return NULL.
    903 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
    904 {
    905    static Addr ips[MAX_IPS];
    906    Int i;
    907    XPt* xpt = alloc_xpt;
    908 
    909    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
    910    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
    911 
    912    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
    913    // 'main' is marked as an alloc-fn.)
    914    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
    915       return NULL;
    916    }
    917 
    918    // Now do the search/insertion of the XCon.
    919    for (i = 0; i < n_ips; i++) {
    920       Addr ip = ips[i];
    921       Int ch;
    922       // Look for IP in xpt's children.
    923       // Linear search, ugh -- about 10% of time for konqueror startup tried
    924       // caching last result, only hit about 4% for konqueror.
    925       // Nb:  this search hits about 98% of the time for konqueror
    926       for (ch = 0; True; ch++) {
    927          if (ch == xpt->n_children) {
    928             // IP not found in the children.
    929             // Create and add new child XPt, then stop.
    930             XPt* new_child_xpt = new_XPt(ip, xpt);
    931             add_child_xpt(xpt, new_child_xpt);
    932             xpt = new_child_xpt;
    933             break;
    934 
    935          } else if (ip == xpt->children[ch]->ip) {
    936             // Found the IP in the children, stop.
    937             xpt = xpt->children[ch];
    938             break;
    939          }
    940       }
    941    }
    942 
    943    // [Note: several comments refer to this comment.  Do not delete it
    944    // without updating them.]
    945    //
    946    // A complication... If all stack traces were well-formed, then the
    947    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
    948    // size would always be equal to the sum of its children's sizes, which
    949    // is an excellent sanity check.
    950    //
    951    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
    952    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
    953    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
    954    // nor can we do sanity check an XPt's size against its children's sizes.
    955    // This is annoying, but must be dealt with.  (Older versions of Massif
    956    // had this assertion in, and it was reported to fail by real users a
    957    // couple of times.)  Even more annoyingly, I can't come up with a simple
    958    // test case that exhibit such a malformed stack trace, so I can't
    959    // regression test it.  Sigh.
    960    //
    961    // However, we can print a warning, so that if it happens (unexpectedly)
    962    // in existing regression tests we'll know.  Also, it warns users that
    963    // the output snapshots may not add up the way they might expect.
    964    //
    965    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
    966    if (0 != xpt->n_children) {
    967       static Int n_moans = 0;
    968       if (n_moans < 3) {
    969          VG_(umsg)(
    970             "Warning: Malformed stack trace detected.  In Massif's output,\n");
    971          VG_(umsg)(
    972             "         the size of an entry's child entries may not sum up\n");
    973          VG_(umsg)(
    974             "         to the entry's size as they normally do.\n");
    975          n_moans++;
    976          if (3 == n_moans)
    977             VG_(umsg)(
    978             "         (And Massif now won't warn about this again.)\n");
    979       }
    980    }
    981    return xpt;
    982 }
    983 
    984 // Update 'szB' of every XPt in the XCon, by percolating upwards.
    985 static void update_XCon(XPt* xpt, SSizeT space_delta)
    986 {
    987    tl_assert(clo_heap);
    988    tl_assert(NULL != xpt);
    989 
    990    if (0 == space_delta)
    991       return;
    992 
    993    while (xpt != alloc_xpt) {
    994       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
    995       xpt->szB += space_delta;
    996       xpt = xpt->parent;
    997    }
    998    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
    999    alloc_xpt->szB += space_delta;
   1000 }
   1001 
   1002 
   1003 //------------------------------------------------------------//
   1004 //--- Snapshots                                            ---//
   1005 //------------------------------------------------------------//
   1006 
   1007 // Snapshots are done in a way so that we always have a reasonable number of
   1008 // them.  We start by taking them quickly.  Once we hit our limit, we cull
   1009 // some (eg. half), and start taking them more slowly.  Once we hit the
   1010 // limit again, we again cull and then take them even more slowly, and so
   1011 // on.
   1012 
   1013 // Time is measured either in i or ms or bytes, depending on the --time-unit
   1014 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
   1015 // because we need to allow negative values to represent unset times.
   1016 typedef Long Time;
   1017 
   1018 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
   1019 
   1020 typedef
   1021    enum {
   1022       Normal = 77,
   1023       Peak,
   1024       Unused
   1025    }
   1026    SnapshotKind;
   1027 
   1028 typedef
   1029    struct {
   1030       SnapshotKind kind;
   1031       Time  time;
   1032       SizeT heap_szB;
   1033       SizeT heap_extra_szB;// Heap slop + admin bytes.
   1034       SizeT stacks_szB;
   1035       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
   1036    }                       // otherwise NULL.
   1037    Snapshot;
   1038 
   1039 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
   1040 static Snapshot* snapshots;            // Array of snapshots.
   1041 
   1042 static Bool is_snapshot_in_use(Snapshot* snapshot)
   1043 {
   1044    if (Unused == snapshot->kind) {
   1045       // If snapshot is unused, check all the fields are unset.
   1046       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
   1047       tl_assert(snapshot->heap_extra_szB == 0);
   1048       tl_assert(snapshot->heap_szB       == 0);
   1049       tl_assert(snapshot->stacks_szB     == 0);
   1050       tl_assert(snapshot->alloc_sxpt     == NULL);
   1051       return False;
   1052    } else {
   1053       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
   1054       return True;
   1055    }
   1056 }
   1057 
   1058 static Bool is_detailed_snapshot(Snapshot* snapshot)
   1059 {
   1060    return (snapshot->alloc_sxpt ? True : False);
   1061 }
   1062 
   1063 static Bool is_uncullable_snapshot(Snapshot* snapshot)
   1064 {
   1065    return &snapshots[0] == snapshot                   // First snapshot
   1066        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
   1067        || snapshot->kind == Peak;                     // Peak snapshot
   1068 }
   1069 
   1070 static void sanity_check_snapshot(Snapshot* snapshot)
   1071 {
   1072    if (snapshot->alloc_sxpt) {
   1073       sanity_check_SXTree(snapshot->alloc_sxpt);
   1074    }
   1075 }
   1076 
   1077 // All the used entries should look used, all the unused ones should be clear.
   1078 static void sanity_check_snapshots_array(void)
   1079 {
   1080    Int i;
   1081    for (i = 0; i < next_snapshot_i; i++) {
   1082       tl_assert( is_snapshot_in_use( & snapshots[i] ));
   1083    }
   1084    for (    ; i < clo_max_snapshots; i++) {
   1085       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
   1086    }
   1087 }
   1088 
   1089 // This zeroes all the fields in the snapshot, but does not free the heap
   1090 // XTree if present.  It also does a sanity check unless asked not to;  we
   1091 // can't sanity check at startup when clearing the initial snapshots because
   1092 // they're full of junk.
   1093 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
   1094 {
   1095    if (do_sanity_check) sanity_check_snapshot(snapshot);
   1096    snapshot->kind           = Unused;
   1097    snapshot->time           = UNUSED_SNAPSHOT_TIME;
   1098    snapshot->heap_extra_szB = 0;
   1099    snapshot->heap_szB       = 0;
   1100    snapshot->stacks_szB     = 0;
   1101    snapshot->alloc_sxpt     = NULL;
   1102 }
   1103 
   1104 // This zeroes all the fields in the snapshot, and frees the heap XTree if
   1105 // present.
   1106 static void delete_snapshot(Snapshot* snapshot)
   1107 {
   1108    // Nb: if there's an XTree, we free it after calling clear_snapshot,
   1109    // because clear_snapshot does a sanity check which includes checking the
   1110    // XTree.
   1111    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
   1112    clear_snapshot(snapshot, /*do_sanity_check*/True);
   1113    if (tmp_sxpt) {
   1114       free_SXTree(tmp_sxpt);
   1115    }
   1116 }
   1117 
   1118 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
   1119 {
   1120    Snapshot* snapshot = &snapshots[i];
   1121    const HChar* suffix;
   1122    switch (snapshot->kind) {
   1123    case Peak:   suffix = "p";                                            break;
   1124    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
   1125    case Unused: suffix = "u";                                            break;
   1126    default:
   1127       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
   1128    }
   1129    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
   1130       prefix, suffix, i,
   1131       snapshot->time,
   1132       snapshot->heap_szB,
   1133       snapshot->heap_extra_szB,
   1134       snapshot->stacks_szB
   1135    );
   1136 }
   1137 
   1138 // Cull half the snapshots;  we choose those that represent the smallest
   1139 // time-spans, because that gives us the most even distribution of snapshots
   1140 // over time.  (It's possible to lose interesting spikes, however.)
   1141 //
   1142 // Algorithm for N snapshots:  We find the snapshot representing the smallest
   1143 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
   1144 // We have to do this one snapshot at a time, rather than finding the (N/2)
   1145 // smallest snapshots in one hit, because when a snapshot is removed, its
   1146 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
   1147 // small, and it's not done very often.
   1148 //
   1149 // Once we're done, we return the new smallest interval between snapshots.
   1150 // That becomes our minimum time interval.
   1151 static UInt cull_snapshots(void)
   1152 {
   1153    Int  i, jp, j, jn, min_timespan_i;
   1154    Int  n_deleted = 0;
   1155    Time min_timespan;
   1156 
   1157    n_cullings++;
   1158 
   1159    // Sets j to the index of the first not-yet-removed snapshot at or after i
   1160    #define FIND_SNAPSHOT(i, j) \
   1161       for (j = i; \
   1162            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
   1163            j++) { }
   1164 
   1165    VERB(2, "Culling...\n");
   1166 
   1167    // First we remove enough snapshots by clearing them in-place.  Once
   1168    // that's done, we can slide the remaining ones down.
   1169    for (i = 0; i < clo_max_snapshots/2; i++) {
   1170       // Find the snapshot representing the smallest timespan.  The timespan
   1171       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
   1172       // snapshot A and B.  We don't consider the first and last snapshots for
   1173       // removal.
   1174       Snapshot* min_snapshot;
   1175       Int min_j;
   1176 
   1177       // Initial triple: (prev, curr, next) == (jp, j, jn)
   1178       // Initial min_timespan is the first one.
   1179       jp = 0;
   1180       FIND_SNAPSHOT(1,   j);
   1181       FIND_SNAPSHOT(j+1, jn);
   1182       min_timespan = 0x7fffffffffffffffLL;
   1183       min_j        = -1;
   1184       while (jn < clo_max_snapshots) {
   1185          Time timespan = snapshots[jn].time - snapshots[jp].time;
   1186          tl_assert(timespan >= 0);
   1187          // Nb: We never cull the peak snapshot.
   1188          if (Peak != snapshots[j].kind && timespan < min_timespan) {
   1189             min_timespan = timespan;
   1190             min_j        = j;
   1191          }
   1192          // Move on to next triple
   1193          jp = j;
   1194          j  = jn;
   1195          FIND_SNAPSHOT(jn+1, jn);
   1196       }
   1197       // We've found the least important snapshot, now delete it.  First
   1198       // print it if necessary.
   1199       tl_assert(-1 != min_j);    // Check we found a minimum.
   1200       min_snapshot = & snapshots[ min_j ];
   1201       if (VG_(clo_verbosity) > 1) {
   1202          HChar buf[64];
   1203          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
   1204          VERB_snapshot(2, buf, min_j);
   1205       }
   1206       delete_snapshot(min_snapshot);
   1207       n_deleted++;
   1208    }
   1209 
   1210    // Slide down the remaining snapshots over the removed ones.  First set i
   1211    // to point to the first empty slot, and j to the first full slot after
   1212    // i.  Then slide everything down.
   1213    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
   1214    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
   1215    for (  ; j < clo_max_snapshots; j++) {
   1216       if (is_snapshot_in_use( &snapshots[j] )) {
   1217          snapshots[i++] = snapshots[j];
   1218          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
   1219       }
   1220    }
   1221    next_snapshot_i = i;
   1222 
   1223    // Check snapshots array looks ok after changes.
   1224    sanity_check_snapshots_array();
   1225 
   1226    // Find the minimum timespan remaining;  that will be our new minimum
   1227    // time interval.  Note that above we were finding timespans by measuring
   1228    // two intervals around a snapshot that was under consideration for
   1229    // deletion.  Here we only measure single intervals because all the
   1230    // deletions have occurred.
   1231    //
   1232    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
   1233    // peak snapshot) are uncullable.  If two uncullable snapshots end up
   1234    // next to each other, they'll never be culled (assuming the peak doesn't
   1235    // change), and the time gap between them will not change.  However, the
   1236    // time between the remaining cullable snapshots will grow ever larger.
   1237    // This means that the min_timespan found will always be that between the
   1238    // two uncullable snapshots, and it will be much smaller than it should
   1239    // be.  To avoid this problem, when computing the minimum timespan, we
   1240    // ignore any timespans between two uncullable snapshots.
   1241    tl_assert(next_snapshot_i > 1);
   1242    min_timespan = 0x7fffffffffffffffLL;
   1243    min_timespan_i = -1;
   1244    for (i = 1; i < next_snapshot_i; i++) {
   1245       if (is_uncullable_snapshot(&snapshots[i]) &&
   1246           is_uncullable_snapshot(&snapshots[i-1]))
   1247       {
   1248          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
   1249       } else {
   1250          Time timespan = snapshots[i].time - snapshots[i-1].time;
   1251          tl_assert(timespan >= 0);
   1252          if (timespan < min_timespan) {
   1253             min_timespan = timespan;
   1254             min_timespan_i = i;
   1255          }
   1256       }
   1257    }
   1258    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
   1259 
   1260    // Print remaining snapshots, if necessary.
   1261    if (VG_(clo_verbosity) > 1) {
   1262       VERB(2, "Finished culling (%3d of %3d deleted)\n",
   1263          n_deleted, clo_max_snapshots);
   1264       for (i = 0; i < next_snapshot_i; i++) {
   1265          VERB_snapshot(2, "  post-cull", i);
   1266       }
   1267       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
   1268          min_timespan, min_timespan_i-1, min_timespan_i);
   1269    }
   1270 
   1271    return min_timespan;
   1272 }
   1273 
   1274 static Time get_time(void)
   1275 {
   1276    // Get current time, in whatever time unit we're using.
   1277    if (clo_time_unit == TimeI) {
   1278       return guest_instrs_executed;
   1279    } else if (clo_time_unit == TimeMS) {
   1280       // Some stuff happens between the millisecond timer being initialised
   1281       // to zero and us taking our first snapshot.  We determine that time
   1282       // gap so we can subtract it from all subsequent times so that our
   1283       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
   1284       // bunch of symbols get read after the first snapshot is taken but
   1285       // before the second one (which is triggered by the first allocation),
   1286       // so when the time-unit is 'ms' we always have a big gap between the
   1287       // first two snapshots.  But at least users won't have to wonder why
   1288       // the first snapshot isn't at t=0.
   1289       static Bool is_first_get_time = True;
   1290       static Time start_time_ms;
   1291       if (is_first_get_time) {
   1292          start_time_ms = VG_(read_millisecond_timer)();
   1293          is_first_get_time = False;
   1294          return 0;
   1295       } else {
   1296          return VG_(read_millisecond_timer)() - start_time_ms;
   1297       }
   1298    } else if (clo_time_unit == TimeB) {
   1299       return total_allocs_deallocs_szB;
   1300    } else {
   1301       tl_assert2(0, "bad --time-unit value");
   1302    }
   1303 }
   1304 
   1305 // Take a snapshot, and only that -- decisions on whether to take a
   1306 // snapshot, or what kind of snapshot, are made elsewhere.
   1307 // Nb: we call the arg "my_time" because "time" shadows a global declaration
   1308 // in /usr/include/time.h on Darwin.
   1309 static void
   1310 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
   1311               Bool is_detailed)
   1312 {
   1313    tl_assert(!is_snapshot_in_use(snapshot));
   1314    if (!clo_pages_as_heap) {
   1315       tl_assert(have_started_executing_code);
   1316    }
   1317 
   1318    // Heap and heap admin.
   1319    if (clo_heap) {
   1320       snapshot->heap_szB = heap_szB;
   1321       if (is_detailed) {
   1322          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1323          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
   1324          tl_assert(           alloc_xpt->szB == heap_szB);
   1325          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
   1326       }
   1327       snapshot->heap_extra_szB = heap_extra_szB;
   1328    }
   1329 
   1330    // Stack(s).
   1331    if (clo_stacks) {
   1332       snapshot->stacks_szB = stacks_szB;
   1333    }
   1334 
   1335    // Rest of snapshot.
   1336    snapshot->kind = kind;
   1337    snapshot->time = my_time;
   1338    sanity_check_snapshot(snapshot);
   1339 
   1340    // Update stats.
   1341    if (Peak == kind) n_peak_snapshots++;
   1342    if (is_detailed)  n_detailed_snapshots++;
   1343    n_real_snapshots++;
   1344 }
   1345 
   1346 
   1347 // Take a snapshot, if it's time, or if we've hit a peak.
   1348 static void
   1349 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
   1350 {
   1351    // 'min_time_interval' is the minimum time interval between snapshots.
   1352    // If we try to take a snapshot and less than this much time has passed,
   1353    // we don't take it.  It gets larger as the program runs longer.  It's
   1354    // initialised to zero so that we begin by taking snapshots as quickly as
   1355    // possible.
   1356    static Time min_time_interval = 0;
   1357    // Zero allows startup snapshot.
   1358    static Time earliest_possible_time_of_next_snapshot = 0;
   1359    static Int  n_snapshots_since_last_detailed         = 0;
   1360    static Int  n_skipped_snapshots_since_last_snapshot = 0;
   1361 
   1362    Snapshot* snapshot;
   1363    Bool      is_detailed;
   1364    // Nb: we call this variable "my_time" because "time" shadows a global
   1365    // declaration in /usr/include/time.h on Darwin.
   1366    Time      my_time = get_time();
   1367 
   1368    switch (kind) {
   1369     case Normal:
   1370       // Only do a snapshot if it's time.
   1371       if (my_time < earliest_possible_time_of_next_snapshot) {
   1372          n_skipped_snapshots++;
   1373          n_skipped_snapshots_since_last_snapshot++;
   1374          return;
   1375       }
   1376       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
   1377       break;
   1378 
   1379     case Peak: {
   1380       // Because we're about to do a deallocation, we're coming down from a
   1381       // local peak.  If it is (a) actually a global peak, and (b) a certain
   1382       // amount bigger than the previous peak, then we take a peak snapshot.
   1383       // By not taking a snapshot for every peak, we save a lot of effort --
   1384       // because many peaks remain peak only for a short time.
   1385       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1386       SizeT excess_szB_for_new_peak =
   1387          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
   1388       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
   1389          return;
   1390       }
   1391       is_detailed = True;
   1392       break;
   1393     }
   1394 
   1395     default:
   1396       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
   1397    }
   1398 
   1399    // Take the snapshot.
   1400    snapshot = & snapshots[next_snapshot_i];
   1401    take_snapshot(snapshot, kind, my_time, is_detailed);
   1402 
   1403    // Record if it was detailed.
   1404    if (is_detailed) {
   1405       n_snapshots_since_last_detailed = 0;
   1406    } else {
   1407       n_snapshots_since_last_detailed++;
   1408    }
   1409 
   1410    // Update peak data, if it's a Peak snapshot.
   1411    if (Peak == kind) {
   1412       Int i, number_of_peaks_snapshots_found = 0;
   1413 
   1414       // Sanity check the size, then update our recorded peak.
   1415       SizeT snapshot_total_szB =
   1416          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   1417       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
   1418          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
   1419       peak_snapshot_total_szB = snapshot_total_szB;
   1420 
   1421       // Find the old peak snapshot, if it exists, and mark it as normal.
   1422       for (i = 0; i < next_snapshot_i; i++) {
   1423          if (Peak == snapshots[i].kind) {
   1424             snapshots[i].kind = Normal;
   1425             number_of_peaks_snapshots_found++;
   1426          }
   1427       }
   1428       tl_assert(number_of_peaks_snapshots_found <= 1);
   1429    }
   1430 
   1431    // Finish up verbosity and stats stuff.
   1432    if (n_skipped_snapshots_since_last_snapshot > 0) {
   1433       VERB(2, "  (skipped %d snapshot%s)\n",
   1434          n_skipped_snapshots_since_last_snapshot,
   1435          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
   1436    }
   1437    VERB_snapshot(2, what, next_snapshot_i);
   1438    n_skipped_snapshots_since_last_snapshot = 0;
   1439 
   1440    // Cull the entries, if our snapshot table is full.
   1441    next_snapshot_i++;
   1442    if (clo_max_snapshots == next_snapshot_i) {
   1443       min_time_interval = cull_snapshots();
   1444    }
   1445 
   1446    // Work out the earliest time when the next snapshot can happen.
   1447    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
   1448 }
   1449 
   1450 
   1451 //------------------------------------------------------------//
   1452 //--- Sanity checking                                      ---//
   1453 //------------------------------------------------------------//
   1454 
   1455 static Bool ms_cheap_sanity_check ( void )
   1456 {
   1457    return True;   // Nothing useful we can cheaply check.
   1458 }
   1459 
   1460 static Bool ms_expensive_sanity_check ( void )
   1461 {
   1462    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
   1463    sanity_check_snapshots_array();
   1464    return True;
   1465 }
   1466 
   1467 
   1468 //------------------------------------------------------------//
   1469 //--- Heap management                                      ---//
   1470 //------------------------------------------------------------//
   1471 
   1472 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
   1473 // which is a foothold into the XCon at which it was allocated.  From
   1474 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
   1475 // decremented (at deallocation).
   1476 //
   1477 // Nb: first two fields must match core's VgHashNode.
   1478 typedef
   1479    struct _HP_Chunk {
   1480       struct _HP_Chunk* next;
   1481       Addr              data;       // Ptr to actual block
   1482       SizeT             req_szB;    // Size requested
   1483       SizeT             slop_szB;   // Extra bytes given above those requested
   1484       XPt*              where;      // Where allocated; bottom-XPt
   1485    }
   1486    HP_Chunk;
   1487 
   1488 static VgHashTable malloc_list  = NULL;   // HP_Chunks
   1489 
   1490 static void update_alloc_stats(SSizeT szB_delta)
   1491 {
   1492    // Update total_allocs_deallocs_szB.
   1493    if (szB_delta < 0) szB_delta = -szB_delta;
   1494    total_allocs_deallocs_szB += szB_delta;
   1495 }
   1496 
   1497 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
   1498 {
   1499    if (heap_szB_delta < 0)
   1500       tl_assert(heap_szB >= -heap_szB_delta);
   1501    if (heap_extra_szB_delta < 0)
   1502       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
   1503 
   1504    heap_extra_szB += heap_extra_szB_delta;
   1505    heap_szB       += heap_szB_delta;
   1506 
   1507    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
   1508 }
   1509 
   1510 static
   1511 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
   1512                     Bool exclude_first_entry, Bool maybe_snapshot )
   1513 {
   1514    // Make new HP_Chunk node, add to malloc_list
   1515    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
   1516    hc->req_szB  = req_szB;
   1517    hc->slop_szB = slop_szB;
   1518    hc->data     = (Addr)p;
   1519    hc->where    = NULL;
   1520    VG_(HT_add_node)(malloc_list, hc);
   1521 
   1522    if (clo_heap) {
   1523       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
   1524 
   1525       hc->where = get_XCon( tid, exclude_first_entry );
   1526 
   1527       if (hc->where) {
   1528          // Update statistics.
   1529          n_heap_allocs++;
   1530 
   1531          // Update heap stats.
   1532          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
   1533 
   1534          // Update XTree.
   1535          update_XCon(hc->where, req_szB);
   1536 
   1537          // Maybe take a snapshot.
   1538          if (maybe_snapshot) {
   1539             maybe_take_snapshot(Normal, "  alloc");
   1540          }
   1541 
   1542       } else {
   1543          // Ignored allocation.
   1544          n_ignored_heap_allocs++;
   1545 
   1546          VERB(3, "(ignored)\n");
   1547       }
   1548 
   1549       VERB(3, ">>>\n");
   1550    }
   1551 
   1552    return p;
   1553 }
   1554 
   1555 static __inline__
   1556 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
   1557                                Bool is_zeroed )
   1558 {
   1559    SizeT actual_szB, slop_szB;
   1560    void* p;
   1561 
   1562    if ((SSizeT)req_szB < 0) return NULL;
   1563 
   1564    // Allocate and zero if necessary.
   1565    p = VG_(cli_malloc)( req_alignB, req_szB );
   1566    if (!p) {
   1567       return NULL;
   1568    }
   1569    if (is_zeroed) VG_(memset)(p, 0, req_szB);
   1570    actual_szB = VG_(malloc_usable_size)(p);
   1571    tl_assert(actual_szB >= req_szB);
   1572    slop_szB = actual_szB - req_szB;
   1573 
   1574    // Record block.
   1575    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
   1576                 /*maybe_snapshot*/True);
   1577 
   1578    return p;
   1579 }
   1580 
   1581 static __inline__
   1582 void unrecord_block ( void* p, Bool maybe_snapshot )
   1583 {
   1584    // Remove HP_Chunk from malloc_list
   1585    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
   1586    if (NULL == hc) {
   1587       return;   // must have been a bogus free()
   1588    }
   1589 
   1590    if (clo_heap) {
   1591       VERB(3, "<<< unrecord_block\n");
   1592 
   1593       if (hc->where) {
   1594          // Update statistics.
   1595          n_heap_frees++;
   1596 
   1597          // Maybe take a peak snapshot, since it's a deallocation.
   1598          if (maybe_snapshot) {
   1599             maybe_take_snapshot(Peak, "de-PEAK");
   1600          }
   1601 
   1602          // Update heap stats.
   1603          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
   1604 
   1605          // Update XTree.
   1606          update_XCon(hc->where, -hc->req_szB);
   1607 
   1608          // Maybe take a snapshot.
   1609          if (maybe_snapshot) {
   1610             maybe_take_snapshot(Normal, "dealloc");
   1611          }
   1612 
   1613       } else {
   1614          n_ignored_heap_frees++;
   1615 
   1616          VERB(3, "(ignored)\n");
   1617       }
   1618 
   1619       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
   1620    }
   1621 
   1622    // Actually free the chunk, and the heap block (if necessary)
   1623    VG_(free)( hc );  hc = NULL;
   1624 }
   1625 
   1626 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
   1627 // ignored, but the realloc is not requested to be ignored, and we are
   1628 // shrinking the block, then we have to ignore the realloc -- otherwise we
   1629 // could end up with negative heap sizes.  This isn't a danger if we are
   1630 // growing such a block, but for consistency (it also simplifies things) we
   1631 // ignore such reallocs as well.
   1632 static __inline__
   1633 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
   1634 {
   1635    HP_Chunk* hc;
   1636    void*     p_new;
   1637    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
   1638    XPt      *old_where, *new_where;
   1639    Bool      is_ignored = False;
   1640 
   1641    // Remove the old block
   1642    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
   1643    if (hc == NULL) {
   1644       return NULL;   // must have been a bogus realloc()
   1645    }
   1646 
   1647    old_req_szB  = hc->req_szB;
   1648    old_slop_szB = hc->slop_szB;
   1649 
   1650    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
   1651    if (clo_heap) {
   1652       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
   1653 
   1654       if (hc->where) {
   1655          // Update statistics.
   1656          n_heap_reallocs++;
   1657 
   1658          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
   1659          if (new_req_szB < old_req_szB) {
   1660             maybe_take_snapshot(Peak, "re-PEAK");
   1661          }
   1662       } else {
   1663          // The original malloc was ignored, so we have to ignore the
   1664          // realloc as well.
   1665          is_ignored = True;
   1666       }
   1667    }
   1668 
   1669    // Actually do the allocation, if necessary.
   1670    if (new_req_szB <= old_req_szB + old_slop_szB) {
   1671       // New size is smaller or same;  block not moved.
   1672       p_new = p_old;
   1673       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
   1674 
   1675    } else {
   1676       // New size is bigger;  make new block, copy shared contents, free old.
   1677       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
   1678       if (!p_new) {
   1679          // Nb: if realloc fails, NULL is returned but the old block is not
   1680          // touched.  What an awful function.
   1681          return NULL;
   1682       }
   1683       VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
   1684       VG_(cli_free)(p_old);
   1685       new_actual_szB = VG_(malloc_usable_size)(p_new);
   1686       tl_assert(new_actual_szB >= new_req_szB);
   1687       new_slop_szB = new_actual_szB - new_req_szB;
   1688    }
   1689 
   1690    if (p_new) {
   1691       // Update HP_Chunk.
   1692       hc->data     = (Addr)p_new;
   1693       hc->req_szB  = new_req_szB;
   1694       hc->slop_szB = new_slop_szB;
   1695       old_where    = hc->where;
   1696       hc->where    = NULL;
   1697 
   1698       // Update XTree.
   1699       if (clo_heap) {
   1700          new_where = get_XCon( tid, /*exclude_first_entry*/True);
   1701          if (!is_ignored && new_where) {
   1702             hc->where = new_where;
   1703             update_XCon(old_where, -old_req_szB);
   1704             update_XCon(new_where,  new_req_szB);
   1705          } else {
   1706             // The realloc itself is ignored.
   1707             is_ignored = True;
   1708 
   1709             // Update statistics.
   1710             n_ignored_heap_reallocs++;
   1711          }
   1712       }
   1713    }
   1714 
   1715    // Now insert the new hc (with a possibly new 'data' field) into
   1716    // malloc_list.  If this realloc() did not increase the memory size, we
   1717    // will have removed and then re-added hc unnecessarily.  But that's ok
   1718    // because shrinking a block with realloc() is (presumably) much rarer
   1719    // than growing it, and this way simplifies the growing case.
   1720    VG_(HT_add_node)(malloc_list, hc);
   1721 
   1722    if (clo_heap) {
   1723       if (!is_ignored) {
   1724          // Update heap stats.
   1725          update_heap_stats(new_req_szB - old_req_szB,
   1726                           new_slop_szB - old_slop_szB);
   1727 
   1728          // Maybe take a snapshot.
   1729          maybe_take_snapshot(Normal, "realloc");
   1730       } else {
   1731 
   1732          VERB(3, "(ignored)\n");
   1733       }
   1734 
   1735       VERB(3, ">>> (%ld, %ld)\n",
   1736          new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
   1737    }
   1738 
   1739    return p_new;
   1740 }
   1741 
   1742 
   1743 //------------------------------------------------------------//
   1744 //--- malloc() et al replacement wrappers                  ---//
   1745 //------------------------------------------------------------//
   1746 
   1747 static void* ms_malloc ( ThreadId tid, SizeT szB )
   1748 {
   1749    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1750 }
   1751 
   1752 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
   1753 {
   1754    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1755 }
   1756 
   1757 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
   1758 {
   1759    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1760 }
   1761 
   1762 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
   1763 {
   1764    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
   1765 }
   1766 
   1767 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
   1768 {
   1769    return alloc_and_record_block( tid, szB, alignB, False );
   1770 }
   1771 
   1772 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
   1773 {
   1774    unrecord_block(p, /*maybe_snapshot*/True);
   1775    VG_(cli_free)(p);
   1776 }
   1777 
   1778 static void ms___builtin_delete ( ThreadId tid, void* p )
   1779 {
   1780    unrecord_block(p, /*maybe_snapshot*/True);
   1781    VG_(cli_free)(p);
   1782 }
   1783 
   1784 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
   1785 {
   1786    unrecord_block(p, /*maybe_snapshot*/True);
   1787    VG_(cli_free)(p);
   1788 }
   1789 
   1790 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
   1791 {
   1792    return realloc_block(tid, p_old, new_szB);
   1793 }
   1794 
   1795 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
   1796 {
   1797    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
   1798 
   1799    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
   1800 }
   1801 
   1802 //------------------------------------------------------------//
   1803 //--- Page handling                                        ---//
   1804 //------------------------------------------------------------//
   1805 
   1806 static
   1807 void ms_record_page_mem ( Addr a, SizeT len )
   1808 {
   1809    ThreadId tid = VG_(get_running_tid)();
   1810    Addr end;
   1811    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1812    tl_assert(len >= VKI_PAGE_SIZE);
   1813    // Record the first N-1 pages as blocks, but don't do any snapshots.
   1814    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1815       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1816                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
   1817    }
   1818    // Record the last page as a block, and maybe do a snapshot afterwards.
   1819    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1820                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
   1821 }
   1822 
   1823 static
   1824 void ms_unrecord_page_mem( Addr a, SizeT len )
   1825 {
   1826    Addr end;
   1827    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1828    tl_assert(len >= VKI_PAGE_SIZE);
   1829    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1830       unrecord_block((void*)a, /*maybe_snapshot*/False);
   1831    }
   1832    unrecord_block((void*)a, /*maybe_snapshot*/True);
   1833 }
   1834 
   1835 //------------------------------------------------------------//
   1836 
   1837 static
   1838 void ms_new_mem_mmap ( Addr a, SizeT len,
   1839                        Bool rr, Bool ww, Bool xx, ULong di_handle )
   1840 {
   1841    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1842    ms_record_page_mem(a, len);
   1843 }
   1844 
   1845 static
   1846 void ms_new_mem_startup( Addr a, SizeT len,
   1847                          Bool rr, Bool ww, Bool xx, ULong di_handle )
   1848 {
   1849    // startup maps are always be page-sized, except the trampoline page is
   1850    // marked by the core as only being the size of the trampoline itself,
   1851    // which is something like 57 bytes.  Round it up to page size.
   1852    len = VG_PGROUNDUP(len);
   1853    ms_record_page_mem(a, len);
   1854 }
   1855 
   1856 static
   1857 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
   1858 {
   1859    // brk limit is not necessarily aligned on a page boundary.
   1860    // If new memory being brk-ed implies to allocate a new page,
   1861    // then call ms_record_page_mem with page aligned parameters
   1862    // otherwise just ignore.
   1863    Addr old_bottom_page = VG_PGROUNDDN(a - 1);
   1864    Addr new_top_page = VG_PGROUNDDN(a + len - 1);
   1865    if (old_bottom_page != new_top_page)
   1866       ms_record_page_mem(VG_PGROUNDDN(a),
   1867                          (new_top_page - old_bottom_page));
   1868 }
   1869 
   1870 static
   1871 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
   1872 {
   1873    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1874    ms_unrecord_page_mem(from, len);
   1875    ms_record_page_mem(to, len);
   1876 }
   1877 
   1878 static
   1879 void ms_die_mem_munmap( Addr a, SizeT len )
   1880 {
   1881    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1882    ms_unrecord_page_mem(a, len);
   1883 }
   1884 
   1885 static
   1886 void ms_die_mem_brk( Addr a, SizeT len )
   1887 {
   1888    // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
   1889    // See ms_new_mem_brk for more details.
   1890    Addr new_bottom_page = VG_PGROUNDDN(a - 1);
   1891    Addr old_top_page = VG_PGROUNDDN(a + len - 1);
   1892    if (old_top_page != new_bottom_page)
   1893       ms_unrecord_page_mem(VG_PGROUNDDN(a),
   1894                            (old_top_page - new_bottom_page));
   1895 
   1896 }
   1897 
   1898 //------------------------------------------------------------//
   1899 //--- Stacks                                               ---//
   1900 //------------------------------------------------------------//
   1901 
   1902 // We really want the inlining to occur...
   1903 #define INLINE    inline __attribute__((always_inline))
   1904 
   1905 static void update_stack_stats(SSizeT stack_szB_delta)
   1906 {
   1907    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
   1908    stacks_szB += stack_szB_delta;
   1909 
   1910    update_alloc_stats(stack_szB_delta);
   1911 }
   1912 
   1913 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
   1914 {
   1915    if (have_started_executing_code) {
   1916       VERB(3, "<<< new_mem_stack (%ld)\n", len);
   1917       n_stack_allocs++;
   1918       update_stack_stats(len);
   1919       maybe_take_snapshot(Normal, what);
   1920       VERB(3, ">>>\n");
   1921    }
   1922 }
   1923 
   1924 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
   1925 {
   1926    if (have_started_executing_code) {
   1927       VERB(3, "<<< die_mem_stack (%ld)\n", -len);
   1928       n_stack_frees++;
   1929       maybe_take_snapshot(Peak,   "stkPEAK");
   1930       update_stack_stats(-len);
   1931       maybe_take_snapshot(Normal, what);
   1932       VERB(3, ">>>\n");
   1933    }
   1934 }
   1935 
   1936 static void new_mem_stack(Addr a, SizeT len)
   1937 {
   1938    new_mem_stack_2(len, "stk-new");
   1939 }
   1940 
   1941 static void die_mem_stack(Addr a, SizeT len)
   1942 {
   1943    die_mem_stack_2(len, "stk-die");
   1944 }
   1945 
   1946 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
   1947 {
   1948    new_mem_stack_2(len, "sig-new");
   1949 }
   1950 
   1951 static void die_mem_stack_signal(Addr a, SizeT len)
   1952 {
   1953    die_mem_stack_2(len, "sig-die");
   1954 }
   1955 
   1956 
   1957 //------------------------------------------------------------//
   1958 //--- Client Requests                                      ---//
   1959 //------------------------------------------------------------//
   1960 
   1961 static void print_monitor_help ( void )
   1962 {
   1963    VG_(gdb_printf) ("\n");
   1964    VG_(gdb_printf) ("massif monitor commands:\n");
   1965    VG_(gdb_printf) ("  snapshot [<filename>]\n");
   1966    VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
   1967    VG_(gdb_printf) ("       takes a snapshot (or a detailed snapshot)\n");
   1968    VG_(gdb_printf) ("       and saves it in <filename>\n");
   1969    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
   1970    VG_(gdb_printf) ("\n");
   1971 }
   1972 
   1973 
   1974 /* Forward declaration.
   1975    return True if request recognised, False otherwise */
   1976 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
   1977 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
   1978 {
   1979    switch (argv[0]) {
   1980    case VG_USERREQ__MALLOCLIKE_BLOCK: {
   1981       void* p   = (void*)argv[1];
   1982       SizeT szB =        argv[2];
   1983       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
   1984                     /*maybe_snapshot*/True );
   1985       *ret = 0;
   1986       return True;
   1987    }
   1988    case VG_USERREQ__RESIZEINPLACE_BLOCK: {
   1989       void* p        = (void*)argv[1];
   1990       SizeT newSizeB =       argv[3];
   1991 
   1992       unrecord_block(p, /*maybe_snapshot*/True);
   1993       record_block(tid, p, newSizeB, /*slop_szB*/0,
   1994                    /*exclude_first_entry*/False, /*maybe_snapshot*/True);
   1995       return True;
   1996    }
   1997    case VG_USERREQ__FREELIKE_BLOCK: {
   1998       void* p = (void*)argv[1];
   1999       unrecord_block(p, /*maybe_snapshot*/True);
   2000       *ret = 0;
   2001       return True;
   2002    }
   2003    case VG_USERREQ__GDB_MONITOR_COMMAND: {
   2004      Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
   2005      if (handled)
   2006        *ret = 1;
   2007      else
   2008        *ret = 0;
   2009      return handled;
   2010    }
   2011 
   2012    default:
   2013       *ret = 0;
   2014       return False;
   2015    }
   2016 }
   2017 
   2018 //------------------------------------------------------------//
   2019 //--- Instrumentation                                      ---//
   2020 //------------------------------------------------------------//
   2021 
   2022 static void add_counter_update(IRSB* sbOut, Int n)
   2023 {
   2024    #if defined(VG_BIGENDIAN)
   2025    # define END Iend_BE
   2026    #elif defined(VG_LITTLEENDIAN)
   2027    # define END Iend_LE
   2028    #else
   2029    # error "Unknown endianness"
   2030    #endif
   2031    // Add code to increment 'guest_instrs_executed' by 'n', like this:
   2032    //   WrTmp(t1, Load64(&guest_instrs_executed))
   2033    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
   2034    //   Store(&guest_instrs_executed, t2)
   2035    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
   2036    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
   2037    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
   2038 
   2039    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
   2040    IRStmt* st2 =
   2041       IRStmt_WrTmp(t2,
   2042                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
   2043                                            IRExpr_Const(IRConst_U64(n))));
   2044    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
   2045 
   2046    addStmtToIRSB( sbOut, st1 );
   2047    addStmtToIRSB( sbOut, st2 );
   2048    addStmtToIRSB( sbOut, st3 );
   2049 }
   2050 
   2051 static IRSB* ms_instrument2( IRSB* sbIn )
   2052 {
   2053    Int   i, n = 0;
   2054    IRSB* sbOut;
   2055 
   2056    // We increment the instruction count in two places:
   2057    // - just before any Ist_Exit statements;
   2058    // - just before the IRSB's end.
   2059    // In the former case, we zero 'n' and then continue instrumenting.
   2060 
   2061    sbOut = deepCopyIRSBExceptStmts(sbIn);
   2062 
   2063    for (i = 0; i < sbIn->stmts_used; i++) {
   2064       IRStmt* st = sbIn->stmts[i];
   2065 
   2066       if (!st || st->tag == Ist_NoOp) continue;
   2067 
   2068       if (st->tag == Ist_IMark) {
   2069          n++;
   2070       } else if (st->tag == Ist_Exit) {
   2071          if (n > 0) {
   2072             // Add an increment before the Exit statement, then reset 'n'.
   2073             add_counter_update(sbOut, n);
   2074             n = 0;
   2075          }
   2076       }
   2077       addStmtToIRSB( sbOut, st );
   2078    }
   2079 
   2080    if (n > 0) {
   2081       // Add an increment before the SB end.
   2082       add_counter_update(sbOut, n);
   2083    }
   2084    return sbOut;
   2085 }
   2086 
   2087 static
   2088 IRSB* ms_instrument ( VgCallbackClosure* closure,
   2089                       IRSB* sbIn,
   2090                       VexGuestLayout* layout,
   2091                       VexGuestExtents* vge,
   2092                       VexArchInfo* archinfo_host,
   2093                       IRType gWordTy, IRType hWordTy )
   2094 {
   2095    if (! have_started_executing_code) {
   2096       // Do an initial sample to guarantee that we have at least one.
   2097       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
   2098       // 'maybe_take_snapshot's internal static variables are initialised.
   2099       have_started_executing_code = True;
   2100       maybe_take_snapshot(Normal, "startup");
   2101    }
   2102 
   2103    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
   2104    else if (clo_time_unit == TimeMS) { return sbIn; }
   2105    else if (clo_time_unit == TimeB)  { return sbIn; }
   2106    else                              { tl_assert2(0, "bad --time-unit value"); }
   2107 }
   2108 
   2109 
   2110 //------------------------------------------------------------//
   2111 //--- Writing snapshots                                    ---//
   2112 //------------------------------------------------------------//
   2113 
   2114 HChar FP_buf[BUF_LEN];
   2115 
   2116 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
   2117 // Then change Cachegrind to use it too.
   2118 #define FP(format, args...) ({ \
   2119    VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
   2120    FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
   2121    VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
   2122 })
   2123 
   2124 // Nb: uses a static buffer, each call trashes the last string returned.
   2125 static const HChar* make_perc(double x)
   2126 {
   2127    static HChar mbuf[32];
   2128 
   2129    VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
   2130    // XXX: this is bogus if the denominator was zero -- resulting string is
   2131    // something like "0 --%")
   2132    if (' ' == mbuf[0]) mbuf[0] = '0';
   2133    return mbuf;
   2134 }
   2135 
   2136 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, HChar* depth_str,
   2137                             Int depth_str_len,
   2138                             SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
   2139 {
   2140    Int   i, j, n_insig_children_sxpts;
   2141    SXPt* child = NULL;
   2142 
   2143    // Used for printing function names.  Is made static to keep it out
   2144    // of the stack frame -- this function is recursive.  Obviously this
   2145    // now means its contents are trashed across the recursive call.
   2146    static HChar ip_desc_array[BUF_LEN];
   2147    const HChar* ip_desc = ip_desc_array;
   2148 
   2149    switch (sxpt->tag) {
   2150     case SigSXPt:
   2151       // Print the SXPt itself.
   2152       if (0 == depth) {
   2153          if (clo_heap) {
   2154             ip_desc =
   2155                ( clo_pages_as_heap
   2156                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
   2157                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
   2158                );
   2159          } else {
   2160             // XXX: --alloc-fns?
   2161 
   2162             // Nick thinks this case cannot happen. ip_desc_array would be
   2163             // conceptually uninitialised here. Therefore:
   2164             tl_assert2(0, "pp_snapshot_SXPt: unexpected");
   2165          }
   2166       } else {
   2167          // If it's main-or-below-main, we (if appropriate) ignore everything
   2168          // below it by pretending it has no children.
   2169          if ( ! VG_(clo_show_below_main) ) {
   2170             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
   2171             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
   2172                sxpt->Sig.n_children = 0;
   2173             }
   2174          }
   2175 
   2176          // We need the -1 to get the line number right, But I'm not sure why.
   2177          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc_array, BUF_LEN);
   2178       }
   2179 
   2180       // Do the non-ip_desc part first...
   2181       FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
   2182 
   2183       // For ip_descs beginning with "0xABCD...:" addresses, we first
   2184       // measure the length of the "0xabcd: " address at the start of the
   2185       // ip_desc.
   2186       j = 0;
   2187       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
   2188          j = 2;
   2189          while (True) {
   2190             if (ip_desc[j]) {
   2191                if (':' == ip_desc[j]) break;
   2192                j++;
   2193             } else {
   2194                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
   2195             }
   2196          }
   2197       }
   2198       // Nb: We treat this specially (ie. we don't use FP) so that if the
   2199       // ip_desc is too long (eg. due to a long C++ function name), it'll
   2200       // get truncated, but the '\n' is still there so its a valid file.
   2201       // (At one point we were truncating without adding the '\n', which
   2202       // caused bug #155929.)
   2203       //
   2204       // Also, we account for the length of the address in ip_desc when
   2205       // truncating.  (The longest address we could have is 18 chars:  "0x"
   2206       // plus 16 address digits.)  This ensures that the truncated function
   2207       // name always has the same length, which makes truncation
   2208       // deterministic and thus makes testing easier.
   2209       tl_assert(j <= 18);
   2210       VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
   2211       FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
   2212       FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
   2213       FP_buf[BUF_LEN-18+j-3] = '.';
   2214       FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
   2215       FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
   2216       VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
   2217 
   2218       // Indent.
   2219       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
   2220       depth_str[depth+0] = ' ';
   2221       depth_str[depth+1] = '\0';
   2222 
   2223       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
   2224       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
   2225       // two reasons.  First, if we do it during dup_XTree, it can get
   2226       // expensive (eg. 15% of execution time for konqueror
   2227       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
   2228       // is present) in its sorted position, not at the end.
   2229       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
   2230                  SXPt_revcmp_szB);
   2231 
   2232       // Print the SXPt's children.  They should already be in sorted order.
   2233       n_insig_children_sxpts = 0;
   2234       for (i = 0; i < sxpt->Sig.n_children; i++) {
   2235          child = sxpt->Sig.children[i];
   2236 
   2237          if (InsigSXPt == child->tag)
   2238             n_insig_children_sxpts++;
   2239 
   2240          // Ok, print the child.  NB: contents of ip_desc_array will be
   2241          // trashed by this recursive call.  Doesn't matter currently,
   2242          // but worth noting.
   2243          pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
   2244             snapshot_heap_szB, snapshot_total_szB);
   2245       }
   2246 
   2247       // Unindent.
   2248       depth_str[depth+0] = '\0';
   2249       depth_str[depth+1] = '\0';
   2250 
   2251       // There should be 0 or 1 Insig children SXPts.
   2252       tl_assert(n_insig_children_sxpts <= 1);
   2253       break;
   2254 
   2255     case InsigSXPt: {
   2256       const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
   2257       FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
   2258          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
   2259          make_perc(clo_threshold));
   2260       break;
   2261     }
   2262 
   2263     default:
   2264       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
   2265    }
   2266 }
   2267 
   2268 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
   2269 {
   2270    sanity_check_snapshot(snapshot);
   2271 
   2272    FP("#-----------\n");
   2273    FP("snapshot=%d\n", snapshot_n);
   2274    FP("#-----------\n");
   2275    FP("time=%lld\n",            snapshot->time);
   2276    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
   2277    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
   2278    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
   2279 
   2280    if (is_detailed_snapshot(snapshot)) {
   2281       // Detailed snapshot -- print heap tree.
   2282       Int   depth_str_len = clo_depth + 3;
   2283       HChar* depth_str = VG_(malloc)("ms.main.pps.1",
   2284                                      sizeof(HChar) * depth_str_len);
   2285       SizeT snapshot_total_szB =
   2286          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   2287       depth_str[0] = '\0';   // Initialise depth_str to "".
   2288 
   2289       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
   2290       pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
   2291                        depth_str_len, snapshot->heap_szB,
   2292                        snapshot_total_szB);
   2293 
   2294       VG_(free)(depth_str);
   2295 
   2296    } else {
   2297       FP("heap_tree=empty\n");
   2298    }
   2299 }
   2300 
   2301 static void write_snapshots_to_file(const HChar* massif_out_file,
   2302                                     Snapshot snapshots_array[],
   2303                                     Int nr_elements)
   2304 {
   2305    Int i, fd;
   2306    SysRes sres;
   2307 
   2308    sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
   2309                                      VKI_S_IRUSR|VKI_S_IWUSR);
   2310    if (sr_isError(sres)) {
   2311       // If the file can't be opened for whatever reason (conflict
   2312       // between multiple cachegrinded processes?), give up now.
   2313       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
   2314       VG_(umsg)("       ... so profiling results will be missing.\n");
   2315       return;
   2316    } else {
   2317       fd = sr_Res(sres);
   2318    }
   2319 
   2320    // Print massif-specific options that were used.
   2321    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
   2322    // -- this file format isn't as generic as Cachegrind's, so the
   2323    // implied genericity of "desc:" is bogus.
   2324    FP("desc:");
   2325    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
   2326       HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i);
   2327       FP(" %s", arg);
   2328    }
   2329    if (0 == i) FP(" (none)");
   2330    FP("\n");
   2331 
   2332    // Print "cmd:" line.
   2333    FP("cmd: ");
   2334    if (VG_(args_the_exename)) {
   2335       FP("%s", VG_(args_the_exename));
   2336       for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
   2337          HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
   2338          if (arg)
   2339             FP(" %s", arg);
   2340       }
   2341    } else {
   2342       FP(" ???");
   2343    }
   2344    FP("\n");
   2345 
   2346    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
   2347 
   2348    for (i = 0; i < nr_elements; i++) {
   2349       Snapshot* snapshot = & snapshots_array[i];
   2350       pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
   2351    }
   2352    VG_(close) (fd);
   2353 }
   2354 
   2355 static void write_snapshots_array_to_file(void)
   2356 {
   2357    // Setup output filename.  Nb: it's important to do this now, ie. as late
   2358    // as possible.  If we do it at start-up and the program forks and the
   2359    // output file format string contains a %p (pid) specifier, both the
   2360    // parent and child will incorrectly write to the same file;  this
   2361    // happened in 3.3.0.
   2362    HChar* massif_out_file =
   2363       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
   2364    write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
   2365    VG_(free)(massif_out_file);
   2366 }
   2367 
   2368 static void handle_snapshot_monitor_command (const HChar *filename,
   2369                                              Bool detailed)
   2370 {
   2371    Snapshot snapshot;
   2372 
   2373    if (!clo_pages_as_heap && !have_started_executing_code) {
   2374       // See comments of variable have_started_executing_code.
   2375       VG_(gdb_printf)
   2376          ("error: cannot take snapshot before execution has started\n");
   2377       return;
   2378    }
   2379 
   2380    clear_snapshot(&snapshot, /* do_sanity_check */ False);
   2381    take_snapshot(&snapshot, Normal, get_time(), detailed);
   2382    write_snapshots_to_file ((filename == NULL) ?
   2383                             "massif.vgdb.out" : filename,
   2384                             &snapshot,
   2385                             1);
   2386    delete_snapshot(&snapshot);
   2387 }
   2388 
   2389 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
   2390 {
   2391    HChar* wcmd;
   2392    HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */
   2393    HChar *ssaveptr;
   2394 
   2395    VG_(strcpy) (s, req);
   2396 
   2397    wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
   2398    switch (VG_(keyword_id) ("help snapshot detailed_snapshot",
   2399                             wcmd, kwd_report_duplicated_matches)) {
   2400    case -2: /* multiple matches */
   2401       return True;
   2402    case -1: /* not found */
   2403       return False;
   2404    case  0: /* help */
   2405       print_monitor_help();
   2406       return True;
   2407    case  1: { /* snapshot */
   2408       HChar* filename;
   2409       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
   2410       handle_snapshot_monitor_command (filename, False /* detailed */);
   2411       return True;
   2412    }
   2413    case  2: { /* detailed_snapshot */
   2414       HChar* filename;
   2415       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
   2416       handle_snapshot_monitor_command (filename, True /* detailed */);
   2417       return True;
   2418    }
   2419    default:
   2420       tl_assert(0);
   2421       return False;
   2422    }
   2423 }
   2424 
   2425 static void ms_print_stats (void)
   2426 {
   2427 #define STATS(format, args...) \
   2428       VG_(dmsg)("Massif: " format, ##args)
   2429 
   2430    STATS("heap allocs:           %u\n", n_heap_allocs);
   2431    STATS("heap reallocs:         %u\n", n_heap_reallocs);
   2432    STATS("heap frees:            %u\n", n_heap_frees);
   2433    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
   2434    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
   2435    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
   2436    STATS("stack allocs:          %u\n", n_stack_allocs);
   2437    STATS("stack frees:           %u\n", n_stack_frees);
   2438    STATS("XPts:                  %u\n", n_xpts);
   2439    STATS("top-XPts:              %u (%d%%)\n",
   2440       alloc_xpt->n_children,
   2441       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
   2442    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
   2443    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
   2444    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
   2445    STATS("SXPt frees:            %u\n", n_sxpt_frees);
   2446    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
   2447    STATS("real snapshots:        %u\n", n_real_snapshots);
   2448    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
   2449    STATS("peak snapshots:        %u\n", n_peak_snapshots);
   2450    STATS("cullings:              %u\n", n_cullings);
   2451    STATS("XCon redos:            %u\n", n_XCon_redos);
   2452 #undef STATS
   2453 }
   2454 
   2455 //------------------------------------------------------------//
   2456 //--- Finalisation                                         ---//
   2457 //------------------------------------------------------------//
   2458 
   2459 static void ms_fini(Int exit_status)
   2460 {
   2461    // Output.
   2462    write_snapshots_array_to_file();
   2463 
   2464    // Stats
   2465    tl_assert(n_xpts > 0);  // always have alloc_xpt
   2466 
   2467    if (VG_(clo_stats))
   2468       ms_print_stats();
   2469 }
   2470 
   2471 
   2472 //------------------------------------------------------------//
   2473 //--- Initialisation                                       ---//
   2474 //------------------------------------------------------------//
   2475 
   2476 static void ms_post_clo_init(void)
   2477 {
   2478    Int i;
   2479    HChar* LD_PRELOAD_val;
   2480    HChar* s;
   2481    HChar* s2;
   2482 
   2483    // Check options.
   2484    if (clo_pages_as_heap) {
   2485       if (clo_stacks) {
   2486          VG_(fmsg_bad_option)(
   2487             "--pages-as-heap=yes together with --stacks=yes", "");
   2488       }
   2489    }
   2490    if (!clo_heap) {
   2491       clo_pages_as_heap = False;
   2492    }
   2493 
   2494    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
   2495    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
   2496    // platform-equivalent).  We replace it entirely with spaces because then
   2497    // the linker doesn't complain (it does complain if we just change the name
   2498    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
   2499    // before tool initialisation, so this seems the best way to do it.
   2500    if (clo_pages_as_heap) {
   2501       clo_heap_admin = 0;     // No heap admin on pages.
   2502 
   2503       LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
   2504       tl_assert(LD_PRELOAD_val);
   2505 
   2506       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
   2507       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
   2508       tl_assert(s2);
   2509 
   2510       // Now find the vgpreload_massif-$PLATFORM entry.
   2511       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
   2512       tl_assert(s2);
   2513 
   2514       // Blank out everything to the previous ':', which must be there because
   2515       // of the preceding vgpreload_core-$PLATFORM entry.
   2516       for (s = s2; *s != ':'; s--) {
   2517          *s = ' ';
   2518       }
   2519 
   2520       // Blank out everything to the end of the entry, which will be '\0' if
   2521       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
   2522       for (s = s2; *s != ':' && *s != '\0'; s++) {
   2523          *s = ' ';
   2524       }
   2525    }
   2526 
   2527    // Print alloc-fns and ignore-fns, if necessary.
   2528    if (VG_(clo_verbosity) > 1) {
   2529       VERB(1, "alloc-fns:\n");
   2530       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
   2531          HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
   2532          VERB(1, "  %s\n", *fn_ptr);
   2533       }
   2534 
   2535       VERB(1, "ignore-fns:\n");
   2536       if (0 == VG_(sizeXA)(ignore_fns)) {
   2537          VERB(1, "  <empty>\n");
   2538       }
   2539       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
   2540          HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
   2541          VERB(1, "  %d: %s\n", i, *fn_ptr);
   2542       }
   2543    }
   2544 
   2545    // Events to track.
   2546    if (clo_stacks) {
   2547       VG_(track_new_mem_stack)        ( new_mem_stack        );
   2548       VG_(track_die_mem_stack)        ( die_mem_stack        );
   2549       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
   2550       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
   2551    }
   2552 
   2553    if (clo_pages_as_heap) {
   2554       VG_(track_new_mem_startup) ( ms_new_mem_startup );
   2555       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
   2556       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
   2557 
   2558       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
   2559 
   2560       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
   2561       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
   2562    }
   2563 
   2564    // Initialise snapshot array, and sanity-check it.
   2565    snapshots = VG_(malloc)("ms.main.mpoci.1",
   2566                            sizeof(Snapshot) * clo_max_snapshots);
   2567    // We don't want to do snapshot sanity checks here, because they're
   2568    // currently uninitialised.
   2569    for (i = 0; i < clo_max_snapshots; i++) {
   2570       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
   2571    }
   2572    sanity_check_snapshots_array();
   2573 }
   2574 
   2575 static void ms_pre_clo_init(void)
   2576 {
   2577    VG_(details_name)            ("Massif");
   2578    VG_(details_version)         (NULL);
   2579    VG_(details_description)     ("a heap profiler");
   2580    VG_(details_copyright_author)(
   2581       "Copyright (C) 2003-2013, and GNU GPL'd, by Nicholas Nethercote");
   2582    VG_(details_bug_reports_to)  (VG_BUGS_TO);
   2583 
   2584    VG_(details_avg_translation_sizeB) ( 330 );
   2585 
   2586    VG_(clo_vex_control).iropt_register_updates
   2587       = VexRegUpdSpAtMemAccess; // overridable by the user.
   2588 
   2589    // Basic functions.
   2590    VG_(basic_tool_funcs)          (ms_post_clo_init,
   2591                                    ms_instrument,
   2592                                    ms_fini);
   2593 
   2594    // Needs.
   2595    VG_(needs_libc_freeres)();
   2596    VG_(needs_command_line_options)(ms_process_cmd_line_option,
   2597                                    ms_print_usage,
   2598                                    ms_print_debug_usage);
   2599    VG_(needs_client_requests)     (ms_handle_client_request);
   2600    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
   2601                                    ms_expensive_sanity_check);
   2602    VG_(needs_print_stats)         (ms_print_stats);
   2603    VG_(needs_malloc_replacement)  (ms_malloc,
   2604                                    ms___builtin_new,
   2605                                    ms___builtin_vec_new,
   2606                                    ms_memalign,
   2607                                    ms_calloc,
   2608                                    ms_free,
   2609                                    ms___builtin_delete,
   2610                                    ms___builtin_vec_delete,
   2611                                    ms_realloc,
   2612                                    ms_malloc_usable_size,
   2613                                    0 );
   2614 
   2615    // HP_Chunks.
   2616    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
   2617 
   2618    // Dummy node at top of the context structure.
   2619    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
   2620 
   2621    // Initialise alloc_fns and ignore_fns.
   2622    init_alloc_fns();
   2623    init_ignore_fns();
   2624 
   2625    // Initialise args_for_massif.
   2626    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
   2627                                 VG_(free), sizeof(HChar*));
   2628 }
   2629 
   2630 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
   2631 
   2632 //--------------------------------------------------------------------//
   2633 //--- end                                                          ---//
   2634 //--------------------------------------------------------------------//
   2635