Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     17 
     18 #include "llvm-c/ExecutionEngine.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/IR/ValueHandle.h"
     22 #include "llvm/IR/ValueMap.h"
     23 #include "llvm/MC/MCCodeGenInfo.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/Mutex.h"
     26 #include "llvm/Target/TargetMachine.h"
     27 #include "llvm/Target/TargetOptions.h"
     28 #include <map>
     29 #include <string>
     30 #include <vector>
     31 
     32 namespace llvm {
     33 
     34 struct GenericValue;
     35 class Constant;
     36 class DataLayout;
     37 class ExecutionEngine;
     38 class Function;
     39 class GlobalVariable;
     40 class GlobalValue;
     41 class JITEventListener;
     42 class JITMemoryManager;
     43 class MachineCodeInfo;
     44 class Module;
     45 class MutexGuard;
     46 class ObjectCache;
     47 class RTDyldMemoryManager;
     48 class Triple;
     49 class Type;
     50 
     51 namespace object {
     52   class Archive;
     53   class ObjectFile;
     54 }
     55 
     56 /// \brief Helper class for helping synchronize access to the global address map
     57 /// table.  Access to this class should be serialized under a mutex.
     58 class ExecutionEngineState {
     59 public:
     60   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
     61     typedef ExecutionEngineState *ExtraData;
     62     static sys::Mutex *getMutex(ExecutionEngineState *EES);
     63     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
     64     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
     65                        const GlobalValue *);
     66   };
     67 
     68   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
     69       GlobalAddressMapTy;
     70 
     71 private:
     72   ExecutionEngine &EE;
     73 
     74   /// GlobalAddressMap - A mapping between LLVM global values and their
     75   /// actualized version...
     76   GlobalAddressMapTy GlobalAddressMap;
     77 
     78   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     79   /// used to convert raw addresses into the LLVM global value that is emitted
     80   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     81   /// is called at some point.
     82   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
     83 
     84 public:
     85   ExecutionEngineState(ExecutionEngine &EE);
     86 
     87   GlobalAddressMapTy &getGlobalAddressMap() {
     88     return GlobalAddressMap;
     89   }
     90 
     91   std::map<void*, AssertingVH<const GlobalValue> > &
     92   getGlobalAddressReverseMap() {
     93     return GlobalAddressReverseMap;
     94   }
     95 
     96   /// \brief Erase an entry from the mapping table.
     97   ///
     98   /// \returns The address that \p ToUnmap was happed to.
     99   void *RemoveMapping(const GlobalValue *ToUnmap);
    100 };
    101 
    102 /// \brief Abstract interface for implementation execution of LLVM modules,
    103 /// designed to support both interpreter and just-in-time (JIT) compiler
    104 /// implementations.
    105 class ExecutionEngine {
    106   /// The state object holding the global address mapping, which must be
    107   /// accessed synchronously.
    108   //
    109   // FIXME: There is no particular need the entire map needs to be
    110   // synchronized.  Wouldn't a reader-writer design be better here?
    111   ExecutionEngineState EEState;
    112 
    113   /// The target data for the platform for which execution is being performed.
    114   const DataLayout *DL;
    115 
    116   /// Whether lazy JIT compilation is enabled.
    117   bool CompilingLazily;
    118 
    119   /// Whether JIT compilation of external global variables is allowed.
    120   bool GVCompilationDisabled;
    121 
    122   /// Whether the JIT should perform lookups of external symbols (e.g.,
    123   /// using dlsym).
    124   bool SymbolSearchingDisabled;
    125 
    126   /// Whether the JIT should verify IR modules during compilation.
    127   bool VerifyModules;
    128 
    129   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    130 
    131 protected:
    132   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    133   /// optimize for the case where there is only one module.
    134   SmallVector<Module*, 1> Modules;
    135 
    136   void setDataLayout(const DataLayout *Val) { DL = Val; }
    137 
    138   /// getMemoryforGV - Allocate memory for a global variable.
    139   virtual char *getMemoryForGV(const GlobalVariable *GV);
    140 
    141   // To avoid having libexecutionengine depend on the JIT and interpreter
    142   // libraries, the execution engine implementations set these functions to ctor
    143   // pointers at startup time if they are linked in.
    144   static ExecutionEngine *(*JITCtor)(
    145     Module *M,
    146     std::string *ErrorStr,
    147     JITMemoryManager *JMM,
    148     bool GVsWithCode,
    149     TargetMachine *TM);
    150   static ExecutionEngine *(*MCJITCtor)(
    151     Module *M,
    152     std::string *ErrorStr,
    153     RTDyldMemoryManager *MCJMM,
    154     bool GVsWithCode,
    155     TargetMachine *TM);
    156   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
    157 
    158   /// LazyFunctionCreator - If an unknown function is needed, this function
    159   /// pointer is invoked to create it.  If this returns null, the JIT will
    160   /// abort.
    161   void *(*LazyFunctionCreator)(const std::string &);
    162 
    163 public:
    164   /// lock - This lock protects the ExecutionEngine, MCJIT, JIT, JITResolver and
    165   /// JITEmitter classes.  It must be held while changing the internal state of
    166   /// any of those classes.
    167   sys::Mutex lock;
    168 
    169   //===--------------------------------------------------------------------===//
    170   //  ExecutionEngine Startup
    171   //===--------------------------------------------------------------------===//
    172 
    173   virtual ~ExecutionEngine();
    174 
    175   /// create - This is the factory method for creating an execution engine which
    176   /// is appropriate for the current machine.  This takes ownership of the
    177   /// module.
    178   ///
    179   /// \param GVsWithCode - Allocating globals with code breaks
    180   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
    181   /// However, we have clients who depend on this behavior, so we must support
    182   /// it.  Eventually, when we're willing to break some backwards compatibility,
    183   /// this flag should be flipped to false, so that by default
    184   /// freeMachineCodeForFunction works.
    185   static ExecutionEngine *create(Module *M,
    186                                  bool ForceInterpreter = false,
    187                                  std::string *ErrorStr = nullptr,
    188                                  CodeGenOpt::Level OptLevel =
    189                                  CodeGenOpt::Default,
    190                                  bool GVsWithCode = true);
    191 
    192   /// createJIT - This is the factory method for creating a JIT for the current
    193   /// machine, it does not fall back to the interpreter.  This takes ownership
    194   /// of the Module and JITMemoryManager if successful.
    195   ///
    196   /// Clients should make sure to initialize targets prior to calling this
    197   /// function.
    198   static ExecutionEngine *createJIT(Module *M,
    199                                     std::string *ErrorStr = nullptr,
    200                                     JITMemoryManager *JMM = nullptr,
    201                                     CodeGenOpt::Level OptLevel =
    202                                     CodeGenOpt::Default,
    203                                     bool GVsWithCode = true,
    204                                     Reloc::Model RM = Reloc::Default,
    205                                     CodeModel::Model CMM =
    206                                     CodeModel::JITDefault);
    207 
    208   /// addModule - Add a Module to the list of modules that we can JIT from.
    209   /// Note that this takes ownership of the Module: when the ExecutionEngine is
    210   /// destroyed, it destroys the Module as well.
    211   virtual void addModule(Module *M) {
    212     Modules.push_back(M);
    213   }
    214 
    215   /// addObjectFile - Add an ObjectFile to the execution engine.
    216   ///
    217   /// This method is only supported by MCJIT.  MCJIT will immediately load the
    218   /// object into memory and adds its symbols to the list used to resolve
    219   /// external symbols while preparing other objects for execution.
    220   ///
    221   /// Objects added using this function will not be made executable until
    222   /// needed by another object.
    223   ///
    224   /// MCJIT will take ownership of the ObjectFile.
    225   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
    226 
    227   /// addArchive - Add an Archive to the execution engine.
    228   ///
    229   /// This method is only supported by MCJIT.  MCJIT will use the archive to
    230   /// resolve external symbols in objects it is loading.  If a symbol is found
    231   /// in the Archive the contained object file will be extracted (in memory)
    232   /// and loaded for possible execution.
    233   ///
    234   /// MCJIT will take ownership of the Archive.
    235   virtual void addArchive(object::Archive *A) {
    236     llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
    237   }
    238 
    239   //===--------------------------------------------------------------------===//
    240 
    241   const DataLayout *getDataLayout() const { return DL; }
    242 
    243   /// removeModule - Remove a Module from the list of modules.  Returns true if
    244   /// M is found.
    245   virtual bool removeModule(Module *M);
    246 
    247   /// FindFunctionNamed - Search all of the active modules to find the one that
    248   /// defines FnName.  This is very slow operation and shouldn't be used for
    249   /// general code.
    250   virtual Function *FindFunctionNamed(const char *FnName);
    251 
    252   /// runFunction - Execute the specified function with the specified arguments,
    253   /// and return the result.
    254   virtual GenericValue runFunction(Function *F,
    255                                 const std::vector<GenericValue> &ArgValues) = 0;
    256 
    257   /// getPointerToNamedFunction - This method returns the address of the
    258   /// specified function by using the dlsym function call.  As such it is only
    259   /// useful for resolving library symbols, not code generated symbols.
    260   ///
    261   /// If AbortOnFailure is false and no function with the given name is
    262   /// found, this function silently returns a null pointer. Otherwise,
    263   /// it prints a message to stderr and aborts.
    264   ///
    265   /// This function is deprecated for the MCJIT execution engine.
    266   ///
    267   /// FIXME: the JIT and MCJIT interfaces should be disentangled or united
    268   /// again, if possible.
    269   ///
    270   virtual void *getPointerToNamedFunction(const std::string &Name,
    271                                           bool AbortOnFailure = true) = 0;
    272 
    273   /// mapSectionAddress - map a section to its target address space value.
    274   /// Map the address of a JIT section as returned from the memory manager
    275   /// to the address in the target process as the running code will see it.
    276   /// This is the address which will be used for relocation resolution.
    277   virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) {
    278     llvm_unreachable("Re-mapping of section addresses not supported with this "
    279                      "EE!");
    280   }
    281 
    282   /// generateCodeForModule - Run code generationen for the specified module and
    283   /// load it into memory.
    284   ///
    285   /// When this function has completed, all code and data for the specified
    286   /// module, and any module on which this module depends, will be generated
    287   /// and loaded into memory, but relocations will not yet have been applied
    288   /// and all memory will be readable and writable but not executable.
    289   ///
    290   /// This function is primarily useful when generating code for an external
    291   /// target, allowing the client an opportunity to remap section addresses
    292   /// before relocations are applied.  Clients that intend to execute code
    293   /// locally can use the getFunctionAddress call, which will generate code
    294   /// and apply final preparations all in one step.
    295   ///
    296   /// This method has no effect for the legacy JIT engine or the interpeter.
    297   virtual void generateCodeForModule(Module *M) {}
    298 
    299   /// finalizeObject - ensure the module is fully processed and is usable.
    300   ///
    301   /// It is the user-level function for completing the process of making the
    302   /// object usable for execution.  It should be called after sections within an
    303   /// object have been relocated using mapSectionAddress.  When this method is
    304   /// called the MCJIT execution engine will reapply relocations for a loaded
    305   /// object.  This method has no effect for the legacy JIT engine or the
    306   /// interpeter.
    307   virtual void finalizeObject() {}
    308 
    309   /// runStaticConstructorsDestructors - This method is used to execute all of
    310   /// the static constructors or destructors for a program.
    311   ///
    312   /// \param isDtors - Run the destructors instead of constructors.
    313   virtual void runStaticConstructorsDestructors(bool isDtors);
    314 
    315   /// runStaticConstructorsDestructors - This method is used to execute all of
    316   /// the static constructors or destructors for a particular module.
    317   ///
    318   /// \param isDtors - Run the destructors instead of constructors.
    319   void runStaticConstructorsDestructors(Module *module, bool isDtors);
    320 
    321 
    322   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    323   /// handle the common task of starting up main with the specified argc, argv,
    324   /// and envp parameters.
    325   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    326                         const char * const * envp);
    327 
    328 
    329   /// addGlobalMapping - Tell the execution engine that the specified global is
    330   /// at the specified location.  This is used internally as functions are JIT'd
    331   /// and as global variables are laid out in memory.  It can and should also be
    332   /// used by clients of the EE that want to have an LLVM global overlay
    333   /// existing data in memory.  Mappings are automatically removed when their
    334   /// GlobalValue is destroyed.
    335   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    336 
    337   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    338   /// for use in dynamic compilation scenarios to move globals.
    339   void clearAllGlobalMappings();
    340 
    341   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    342   /// particular module, because it has been removed from the JIT.
    343   void clearGlobalMappingsFromModule(Module *M);
    344 
    345   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    346   /// address.  This updates both maps as required.  If "Addr" is null, the
    347   /// entry for the global is removed from the mappings.  This returns the old
    348   /// value of the pointer, or null if it was not in the map.
    349   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
    350 
    351   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    352   /// global value if it is has already been codegen'd, otherwise it returns
    353   /// null.
    354   ///
    355   /// This function is deprecated for the MCJIT execution engine.  It doesn't
    356   /// seem to be needed in that case, but an equivalent can be added if it is.
    357   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    358 
    359   /// getPointerToGlobal - This returns the address of the specified global
    360   /// value. This may involve code generation if it's a function.
    361   ///
    362   /// This function is deprecated for the MCJIT execution engine.  Use
    363   /// getGlobalValueAddress instead.
    364   void *getPointerToGlobal(const GlobalValue *GV);
    365 
    366   /// getPointerToFunction - The different EE's represent function bodies in
    367   /// different ways.  They should each implement this to say what a function
    368   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    369   /// remove its global mapping and free any machine code.  Be sure no threads
    370   /// are running inside F when that happens.
    371   ///
    372   /// This function is deprecated for the MCJIT execution engine.  Use
    373   /// getFunctionAddress instead.
    374   virtual void *getPointerToFunction(Function *F) = 0;
    375 
    376   /// getPointerToBasicBlock - The different EE's represent basic blocks in
    377   /// different ways.  Return the representation for a blockaddress of the
    378   /// specified block.
    379   ///
    380   /// This function will not be implemented for the MCJIT execution engine.
    381   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
    382 
    383   /// getPointerToFunctionOrStub - If the specified function has been
    384   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    385   /// a stub to implement lazy compilation if available.  See
    386   /// getPointerToFunction for the requirements on destroying F.
    387   ///
    388   /// This function is deprecated for the MCJIT execution engine.  Use
    389   /// getFunctionAddress instead.
    390   virtual void *getPointerToFunctionOrStub(Function *F) {
    391     // Default implementation, just codegen the function.
    392     return getPointerToFunction(F);
    393   }
    394 
    395   /// getGlobalValueAddress - Return the address of the specified global
    396   /// value. This may involve code generation.
    397   ///
    398   /// This function should not be called with the JIT or interpreter engines.
    399   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
    400     // Default implementation for JIT and interpreter.  MCJIT will override this.
    401     // JIT and interpreter clients should use getPointerToGlobal instead.
    402     return 0;
    403   }
    404 
    405   /// getFunctionAddress - Return the address of the specified function.
    406   /// This may involve code generation.
    407   virtual uint64_t getFunctionAddress(const std::string &Name) {
    408     // Default implementation for JIT and interpreter.  MCJIT will override this.
    409     // JIT and interpreter clients should use getPointerToFunction instead.
    410     return 0;
    411   }
    412 
    413   // The JIT overrides a version that actually does this.
    414   virtual void runJITOnFunction(Function *, MachineCodeInfo * = nullptr) { }
    415 
    416   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    417   /// at the specified address.
    418   ///
    419   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    420 
    421   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    422   /// Ptr is the address of the memory at which to store Val, cast to
    423   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    424   /// address at which to store Val.
    425   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    426                           Type *Ty);
    427 
    428   void InitializeMemory(const Constant *Init, void *Addr);
    429 
    430   /// recompileAndRelinkFunction - This method is used to force a function which
    431   /// has already been compiled to be compiled again, possibly after it has been
    432   /// modified.  Then the entry to the old copy is overwritten with a branch to
    433   /// the new copy.  If there was no old copy, this acts just like
    434   /// VM::getPointerToFunction().
    435   virtual void *recompileAndRelinkFunction(Function *F) = 0;
    436 
    437   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
    438   /// corresponding to the machine code emitted to execute this function, useful
    439   /// for garbage-collecting generated code.
    440   virtual void freeMachineCodeForFunction(Function *F) = 0;
    441 
    442   /// getOrEmitGlobalVariable - Return the address of the specified global
    443   /// variable, possibly emitting it to memory if needed.  This is used by the
    444   /// Emitter.
    445   ///
    446   /// This function is deprecated for the MCJIT execution engine.  Use
    447   /// getGlobalValueAddress instead.
    448   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    449     return getPointerToGlobal((const GlobalValue *)GV);
    450   }
    451 
    452   /// Registers a listener to be called back on various events within
    453   /// the JIT.  See JITEventListener.h for more details.  Does not
    454   /// take ownership of the argument.  The argument may be NULL, in
    455   /// which case these functions do nothing.
    456   virtual void RegisterJITEventListener(JITEventListener *) {}
    457   virtual void UnregisterJITEventListener(JITEventListener *) {}
    458 
    459   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
    460   /// not changed.  Supported by MCJIT but not JIT.
    461   virtual void setObjectCache(ObjectCache *) {
    462     llvm_unreachable("No support for an object cache");
    463   }
    464 
    465   /// setProcessAllSections (MCJIT Only): By default, only sections that are
    466   /// "required for execution" are passed to the RTDyldMemoryManager, and other
    467   /// sections are discarded. Passing 'true' to this method will cause
    468   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
    469   /// of whether they are "required to execute" in the usual sense.
    470   ///
    471   /// Rationale: Some MCJIT clients want to be able to inspect metadata
    472   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
    473   /// performance. Passing these sections to the memory manager allows the
    474   /// client to make policy about the relevant sections, rather than having
    475   /// MCJIT do it.
    476   virtual void setProcessAllSections(bool ProcessAllSections) {
    477     llvm_unreachable("No support for ProcessAllSections option");
    478   }
    479 
    480   /// Return the target machine (if available).
    481   virtual TargetMachine *getTargetMachine() { return nullptr; }
    482 
    483   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    484   /// JIT will eagerly compile every function reachable from the argument to
    485   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    486   /// compile the one function and emit stubs to compile the rest when they're
    487   /// first called.  If lazy compilation is turned off again while some lazy
    488   /// stubs are still around, and one of those stubs is called, the program will
    489   /// abort.
    490   ///
    491   /// In order to safely compile lazily in a threaded program, the user must
    492   /// ensure that 1) only one thread at a time can call any particular lazy
    493   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    494   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    495   /// lazy stub.  See http://llvm.org/PR5184 for details.
    496   void DisableLazyCompilation(bool Disabled = true) {
    497     CompilingLazily = !Disabled;
    498   }
    499   bool isCompilingLazily() const {
    500     return CompilingLazily;
    501   }
    502   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
    503   // Remove this in LLVM 2.8.
    504   bool isLazyCompilationDisabled() const {
    505     return !CompilingLazily;
    506   }
    507 
    508   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    509   /// allocate space and populate a GlobalVariable that is not internal to
    510   /// the module.
    511   void DisableGVCompilation(bool Disabled = true) {
    512     GVCompilationDisabled = Disabled;
    513   }
    514   bool isGVCompilationDisabled() const {
    515     return GVCompilationDisabled;
    516   }
    517 
    518   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    519   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    520   /// resolve symbols in a custom way.
    521   void DisableSymbolSearching(bool Disabled = true) {
    522     SymbolSearchingDisabled = Disabled;
    523   }
    524   bool isSymbolSearchingDisabled() const {
    525     return SymbolSearchingDisabled;
    526   }
    527 
    528   /// Enable/Disable IR module verification.
    529   ///
    530   /// Note: Module verification is enabled by default in Debug builds, and
    531   /// disabled by default in Release. Use this method to override the default.
    532   void setVerifyModules(bool Verify) {
    533     VerifyModules = Verify;
    534   }
    535   bool getVerifyModules() const {
    536     return VerifyModules;
    537   }
    538 
    539   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    540   /// specified function pointer is invoked to create it.  If it returns null,
    541   /// the JIT will abort.
    542   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
    543     LazyFunctionCreator = P;
    544   }
    545 
    546 protected:
    547   explicit ExecutionEngine(Module *M);
    548 
    549   void emitGlobals();
    550 
    551   void EmitGlobalVariable(const GlobalVariable *GV);
    552 
    553   GenericValue getConstantValue(const Constant *C);
    554   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    555                            Type *Ty);
    556 };
    557 
    558 namespace EngineKind {
    559   // These are actually bitmasks that get or-ed together.
    560   enum Kind {
    561     JIT         = 0x1,
    562     Interpreter = 0x2
    563   };
    564   const static Kind Either = (Kind)(JIT | Interpreter);
    565 }
    566 
    567 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
    568 /// stack-allocating a builder, chaining the various set* methods, and
    569 /// terminating it with a .create() call.
    570 class EngineBuilder {
    571 private:
    572   Module *M;
    573   EngineKind::Kind WhichEngine;
    574   std::string *ErrorStr;
    575   CodeGenOpt::Level OptLevel;
    576   RTDyldMemoryManager *MCJMM;
    577   JITMemoryManager *JMM;
    578   bool AllocateGVsWithCode;
    579   TargetOptions Options;
    580   Reloc::Model RelocModel;
    581   CodeModel::Model CMModel;
    582   std::string MArch;
    583   std::string MCPU;
    584   SmallVector<std::string, 4> MAttrs;
    585   bool UseMCJIT;
    586   bool VerifyModules;
    587 
    588   /// InitEngine - Does the common initialization of default options.
    589   void InitEngine();
    590 
    591 public:
    592   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
    593   /// is successful, the created engine takes ownership of the module.
    594   EngineBuilder(Module *m) : M(m) {
    595     InitEngine();
    596   }
    597 
    598   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    599   /// or whichever engine works.  This option defaults to EngineKind::Either.
    600   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    601     WhichEngine = w;
    602     return *this;
    603   }
    604 
    605   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
    606   /// clients to customize their memory allocation policies for the MCJIT. This
    607   /// is only appropriate for the MCJIT; setting this and configuring the builder
    608   /// to create anything other than MCJIT will cause a runtime error. If create()
    609   /// is called and is successful, the created engine takes ownership of the
    610   /// memory manager. This option defaults to NULL. Using this option nullifies
    611   /// the setJITMemoryManager() option.
    612   EngineBuilder &setMCJITMemoryManager(RTDyldMemoryManager *mcjmm) {
    613     MCJMM = mcjmm;
    614     JMM = nullptr;
    615     return *this;
    616   }
    617 
    618   /// setJITMemoryManager - Sets the JIT memory manager to use.  This allows
    619   /// clients to customize their memory allocation policies.  This is only
    620   /// appropriate for either JIT or MCJIT; setting this and configuring the
    621   /// builder to create an interpreter will cause a runtime error. If create()
    622   /// is called and is successful, the created engine takes ownership of the
    623   /// memory manager.  This option defaults to NULL. This option overrides
    624   /// setMCJITMemoryManager() as well.
    625   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
    626     MCJMM = nullptr;
    627     JMM = jmm;
    628     return *this;
    629   }
    630 
    631   /// setErrorStr - Set the error string to write to on error.  This option
    632   /// defaults to NULL.
    633   EngineBuilder &setErrorStr(std::string *e) {
    634     ErrorStr = e;
    635     return *this;
    636   }
    637 
    638   /// setOptLevel - Set the optimization level for the JIT.  This option
    639   /// defaults to CodeGenOpt::Default.
    640   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    641     OptLevel = l;
    642     return *this;
    643   }
    644 
    645   /// setTargetOptions - Set the target options that the ExecutionEngine
    646   /// target is using. Defaults to TargetOptions().
    647   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
    648     Options = Opts;
    649     return *this;
    650   }
    651 
    652   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    653   /// target is using. Defaults to target specific default "Reloc::Default".
    654   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    655     RelocModel = RM;
    656     return *this;
    657   }
    658 
    659   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    660   /// data is using. Defaults to target specific default
    661   /// "CodeModel::JITDefault".
    662   EngineBuilder &setCodeModel(CodeModel::Model M) {
    663     CMModel = M;
    664     return *this;
    665   }
    666 
    667   /// setAllocateGVsWithCode - Sets whether global values should be allocated
    668   /// into the same buffer as code.  For most applications this should be set
    669   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
    670   /// and is probably unsafe and bad for performance.  However, we have clients
    671   /// who depend on this behavior, so we must support it.  This option defaults
    672   /// to false so that users of the new API can safely use the new memory
    673   /// manager and free machine code.
    674   EngineBuilder &setAllocateGVsWithCode(bool a) {
    675     AllocateGVsWithCode = a;
    676     return *this;
    677   }
    678 
    679   /// setMArch - Override the architecture set by the Module's triple.
    680   EngineBuilder &setMArch(StringRef march) {
    681     MArch.assign(march.begin(), march.end());
    682     return *this;
    683   }
    684 
    685   /// setMCPU - Target a specific cpu type.
    686   EngineBuilder &setMCPU(StringRef mcpu) {
    687     MCPU.assign(mcpu.begin(), mcpu.end());
    688     return *this;
    689   }
    690 
    691   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
    692   /// (experimental).
    693   EngineBuilder &setUseMCJIT(bool Value) {
    694     UseMCJIT = Value;
    695     return *this;
    696   }
    697 
    698   /// setVerifyModules - Set whether the JIT implementation should verify
    699   /// IR modules during compilation.
    700   EngineBuilder &setVerifyModules(bool Verify) {
    701     VerifyModules = Verify;
    702     return *this;
    703   }
    704 
    705   /// setMAttrs - Set cpu-specific attributes.
    706   template<typename StringSequence>
    707   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    708     MAttrs.clear();
    709     MAttrs.append(mattrs.begin(), mattrs.end());
    710     return *this;
    711   }
    712 
    713   TargetMachine *selectTarget();
    714 
    715   /// selectTarget - Pick a target either via -march or by guessing the native
    716   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    717   TargetMachine *selectTarget(const Triple &TargetTriple,
    718                               StringRef MArch,
    719                               StringRef MCPU,
    720                               const SmallVectorImpl<std::string>& MAttrs);
    721 
    722   ExecutionEngine *create() {
    723     return create(selectTarget());
    724   }
    725 
    726   ExecutionEngine *create(TargetMachine *TM);
    727 };
    728 
    729 // Create wrappers for C Binding types (see CBindingWrapping.h).
    730 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
    731 
    732 } // End llvm namespace
    733 
    734 #endif
    735