Home | History | Annotate | Download | only in arm
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been
     34 // modified significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/v8.h"
     38 
     39 #if V8_TARGET_ARCH_ARM
     40 
     41 #include "src/arm/assembler-arm-inl.h"
     42 #include "src/macro-assembler.h"
     43 #include "src/serialize.h"
     44 
     45 namespace v8 {
     46 namespace internal {
     47 
     48 // Get the CPU features enabled by the build. For cross compilation the
     49 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
     50 // can be defined to enable ARMv7 and VFPv3 instructions when building the
     51 // snapshot.
     52 static unsigned CpuFeaturesImpliedByCompiler() {
     53   unsigned answer = 0;
     54 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
     55   if (FLAG_enable_armv7) answer |= 1u << ARMv7;
     56 #endif  // CAN_USE_ARMV7_INSTRUCTIONS
     57 #ifdef CAN_USE_VFP3_INSTRUCTIONS
     58   if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
     59 #endif  // CAN_USE_VFP3_INSTRUCTIONS
     60 #ifdef CAN_USE_VFP32DREGS
     61   if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
     62 #endif  // CAN_USE_VFP32DREGS
     63 #ifdef CAN_USE_NEON
     64   if (FLAG_enable_neon) answer |= 1u << NEON;
     65 #endif  // CAN_USE_VFP32DREGS
     66   if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
     67     answer |= 1u << UNALIGNED_ACCESSES;
     68   }
     69 
     70   return answer;
     71 }
     72 
     73 
     74 void CpuFeatures::ProbeImpl(bool cross_compile) {
     75   supported_ |= CpuFeaturesImpliedByCompiler();
     76   cache_line_size_ = 64;
     77 
     78   // Only use statically determined features for cross compile (snapshot).
     79   if (cross_compile) return;
     80 
     81 #ifndef __arm__
     82   // For the simulator build, use whatever the flags specify.
     83   if (FLAG_enable_armv7) {
     84     supported_ |= 1u << ARMv7;
     85     if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
     86     if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
     87     if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
     88     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
     89     if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
     90   }
     91   if (FLAG_enable_mls) supported_ |= 1u << MLS;
     92   if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
     93 
     94 #else  // __arm__
     95   // Probe for additional features at runtime.
     96   CPU cpu;
     97   if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
     98     // This implementation also sets the VFP flags if runtime
     99     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
    100     // 0406B, page A1-6.
    101     supported_ |= 1u << VFP3 | 1u << ARMv7;
    102   }
    103 
    104   if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
    105   if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
    106   if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS;
    107 
    108   if (cpu.architecture() >= 7) {
    109     if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
    110     if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
    111     // Use movw/movt for QUALCOMM ARMv7 cores.
    112     if (FLAG_enable_movw_movt && cpu.implementer() == CPU::QUALCOMM) {
    113       supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
    114     }
    115   }
    116 
    117   // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
    118   if (cpu.implementer() == CPU::ARM && (cpu.part() == CPU::ARM_CORTEX_A5 ||
    119                                         cpu.part() == CPU::ARM_CORTEX_A9)) {
    120     cache_line_size_ = 32;
    121   }
    122 
    123   if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
    124 #endif
    125 
    126   ASSERT(!IsSupported(VFP3) || IsSupported(ARMv7));
    127 }
    128 
    129 
    130 void CpuFeatures::PrintTarget() {
    131   const char* arm_arch = NULL;
    132   const char* arm_test = "";
    133   const char* arm_fpu = "";
    134   const char* arm_thumb = "";
    135   const char* arm_float_abi = NULL;
    136 
    137 #if defined CAN_USE_ARMV7_INSTRUCTIONS
    138   arm_arch = "arm v7";
    139 #else
    140   arm_arch = "arm v6";
    141 #endif
    142 
    143 #ifdef __arm__
    144 
    145 # ifdef ARM_TEST
    146   arm_test = " test";
    147 # endif
    148 # if defined __ARM_NEON__
    149   arm_fpu = " neon";
    150 # elif defined CAN_USE_VFP3_INSTRUCTIONS
    151   arm_fpu = " vfp3";
    152 # else
    153   arm_fpu = " vfp2";
    154 # endif
    155 # if (defined __thumb__) || (defined __thumb2__)
    156   arm_thumb = " thumb";
    157 # endif
    158   arm_float_abi = OS::ArmUsingHardFloat() ? "hard" : "softfp";
    159 
    160 #else  // __arm__
    161 
    162   arm_test = " simulator";
    163 # if defined CAN_USE_VFP3_INSTRUCTIONS
    164 #  if defined CAN_USE_VFP32DREGS
    165   arm_fpu = " vfp3";
    166 #  else
    167   arm_fpu = " vfp3-d16";
    168 #  endif
    169 # else
    170   arm_fpu = " vfp2";
    171 # endif
    172 # if USE_EABI_HARDFLOAT == 1
    173   arm_float_abi = "hard";
    174 # else
    175   arm_float_abi = "softfp";
    176 # endif
    177 
    178 #endif  // __arm__
    179 
    180   printf("target%s %s%s%s %s\n",
    181          arm_test, arm_arch, arm_fpu, arm_thumb, arm_float_abi);
    182 }
    183 
    184 
    185 void CpuFeatures::PrintFeatures() {
    186   printf(
    187     "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
    188     "MOVW_MOVT_IMMEDIATE_LOADS=%d",
    189     CpuFeatures::IsSupported(ARMv7),
    190     CpuFeatures::IsSupported(VFP3),
    191     CpuFeatures::IsSupported(VFP32DREGS),
    192     CpuFeatures::IsSupported(NEON),
    193     CpuFeatures::IsSupported(SUDIV),
    194     CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
    195     CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
    196 #ifdef __arm__
    197   bool eabi_hardfloat = OS::ArmUsingHardFloat();
    198 #elif USE_EABI_HARDFLOAT
    199   bool eabi_hardfloat = true;
    200 #else
    201   bool eabi_hardfloat = false;
    202 #endif
    203     printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
    204 }
    205 
    206 
    207 // -----------------------------------------------------------------------------
    208 // Implementation of DwVfpRegister
    209 
    210 const char* DwVfpRegister::AllocationIndexToString(int index) {
    211   ASSERT(index >= 0 && index < NumAllocatableRegisters());
    212   ASSERT(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
    213          kNumReservedRegisters - 1);
    214   if (index >= kDoubleRegZero.code()) index += kNumReservedRegisters;
    215   return VFPRegisters::Name(index, true);
    216 }
    217 
    218 
    219 // -----------------------------------------------------------------------------
    220 // Implementation of RelocInfo
    221 
    222 const int RelocInfo::kApplyMask = 0;
    223 
    224 
    225 bool RelocInfo::IsCodedSpecially() {
    226   // The deserializer needs to know whether a pointer is specially coded. Being
    227   // specially coded on ARM means that it is a movw/movt instruction, or is an
    228   // out of line constant pool entry. These only occur if
    229   // FLAG_enable_ool_constant_pool is true.
    230   return FLAG_enable_ool_constant_pool;
    231 }
    232 
    233 
    234 bool RelocInfo::IsInConstantPool() {
    235   if (FLAG_enable_ool_constant_pool) {
    236     return Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc_));
    237   } else {
    238     return Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_));
    239   }
    240 }
    241 
    242 
    243 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
    244   // Patch the code at the current address with the supplied instructions.
    245   Instr* pc = reinterpret_cast<Instr*>(pc_);
    246   Instr* instr = reinterpret_cast<Instr*>(instructions);
    247   for (int i = 0; i < instruction_count; i++) {
    248     *(pc + i) = *(instr + i);
    249   }
    250 
    251   // Indicate that code has changed.
    252   CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
    253 }
    254 
    255 
    256 // Patch the code at the current PC with a call to the target address.
    257 // Additional guard instructions can be added if required.
    258 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
    259   // Patch the code at the current address with a call to the target.
    260   UNIMPLEMENTED();
    261 }
    262 
    263 
    264 // -----------------------------------------------------------------------------
    265 // Implementation of Operand and MemOperand
    266 // See assembler-arm-inl.h for inlined constructors
    267 
    268 Operand::Operand(Handle<Object> handle) {
    269   AllowDeferredHandleDereference using_raw_address;
    270   rm_ = no_reg;
    271   // Verify all Objects referred by code are NOT in new space.
    272   Object* obj = *handle;
    273   if (obj->IsHeapObject()) {
    274     ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    275     imm32_ = reinterpret_cast<intptr_t>(handle.location());
    276     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    277   } else {
    278     // no relocation needed
    279     imm32_ = reinterpret_cast<intptr_t>(obj);
    280     rmode_ = RelocInfo::NONE32;
    281   }
    282 }
    283 
    284 
    285 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
    286   ASSERT(is_uint5(shift_imm));
    287 
    288   rm_ = rm;
    289   rs_ = no_reg;
    290   shift_op_ = shift_op;
    291   shift_imm_ = shift_imm & 31;
    292 
    293   if ((shift_op == ROR) && (shift_imm == 0)) {
    294     // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
    295     // RRX as ROR #0 (See below).
    296     shift_op = LSL;
    297   } else if (shift_op == RRX) {
    298     // encoded as ROR with shift_imm == 0
    299     ASSERT(shift_imm == 0);
    300     shift_op_ = ROR;
    301     shift_imm_ = 0;
    302   }
    303 }
    304 
    305 
    306 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
    307   ASSERT(shift_op != RRX);
    308   rm_ = rm;
    309   rs_ = no_reg;
    310   shift_op_ = shift_op;
    311   rs_ = rs;
    312 }
    313 
    314 
    315 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
    316   rn_ = rn;
    317   rm_ = no_reg;
    318   offset_ = offset;
    319   am_ = am;
    320 }
    321 
    322 
    323 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
    324   rn_ = rn;
    325   rm_ = rm;
    326   shift_op_ = LSL;
    327   shift_imm_ = 0;
    328   am_ = am;
    329 }
    330 
    331 
    332 MemOperand::MemOperand(Register rn, Register rm,
    333                        ShiftOp shift_op, int shift_imm, AddrMode am) {
    334   ASSERT(is_uint5(shift_imm));
    335   rn_ = rn;
    336   rm_ = rm;
    337   shift_op_ = shift_op;
    338   shift_imm_ = shift_imm & 31;
    339   am_ = am;
    340 }
    341 
    342 
    343 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
    344   ASSERT((am == Offset) || (am == PostIndex));
    345   rn_ = rn;
    346   rm_ = (am == Offset) ? pc : sp;
    347   SetAlignment(align);
    348 }
    349 
    350 
    351 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
    352   rn_ = rn;
    353   rm_ = rm;
    354   SetAlignment(align);
    355 }
    356 
    357 
    358 void NeonMemOperand::SetAlignment(int align) {
    359   switch (align) {
    360     case 0:
    361       align_ = 0;
    362       break;
    363     case 64:
    364       align_ = 1;
    365       break;
    366     case 128:
    367       align_ = 2;
    368       break;
    369     case 256:
    370       align_ = 3;
    371       break;
    372     default:
    373       UNREACHABLE();
    374       align_ = 0;
    375       break;
    376   }
    377 }
    378 
    379 
    380 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
    381   base_ = base;
    382   switch (registers_count) {
    383     case 1:
    384       type_ = nlt_1;
    385       break;
    386     case 2:
    387       type_ = nlt_2;
    388       break;
    389     case 3:
    390       type_ = nlt_3;
    391       break;
    392     case 4:
    393       type_ = nlt_4;
    394       break;
    395     default:
    396       UNREACHABLE();
    397       type_ = nlt_1;
    398       break;
    399   }
    400 }
    401 
    402 
    403 // -----------------------------------------------------------------------------
    404 // Specific instructions, constants, and masks.
    405 
    406 // add(sp, sp, 4) instruction (aka Pop())
    407 const Instr kPopInstruction =
    408     al | PostIndex | 4 | LeaveCC | I | kRegister_sp_Code * B16 |
    409         kRegister_sp_Code * B12;
    410 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    411 // register r is not encoded.
    412 const Instr kPushRegPattern =
    413     al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
    414 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    415 // register r is not encoded.
    416 const Instr kPopRegPattern =
    417     al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
    418 // mov lr, pc
    419 const Instr kMovLrPc = al | MOV | kRegister_pc_Code | kRegister_lr_Code * B12;
    420 // ldr rd, [pc, #offset]
    421 const Instr kLdrPCMask = 15 * B24 | 7 * B20 | 15 * B16;
    422 const Instr kLdrPCPattern = 5 * B24 | L | kRegister_pc_Code * B16;
    423 // ldr rd, [pp, #offset]
    424 const Instr kLdrPpMask = 15 * B24 | 7 * B20 | 15 * B16;
    425 const Instr kLdrPpPattern = 5 * B24 | L | kRegister_r8_Code * B16;
    426 // vldr dd, [pc, #offset]
    427 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
    428 const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
    429 // vldr dd, [pp, #offset]
    430 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
    431 const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8;
    432 // blxcc rm
    433 const Instr kBlxRegMask =
    434     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
    435 const Instr kBlxRegPattern =
    436     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
    437 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
    438 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
    439 const Instr kMovMvnPattern = 0xd * B21;
    440 const Instr kMovMvnFlip = B22;
    441 const Instr kMovLeaveCCMask = 0xdff * B16;
    442 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
    443 const Instr kMovwMask = 0xff * B20;
    444 const Instr kMovwPattern = 0x30 * B20;
    445 const Instr kMovwLeaveCCFlip = 0x5 * B21;
    446 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
    447 const Instr kCmpCmnPattern = 0x15 * B20;
    448 const Instr kCmpCmnFlip = B21;
    449 const Instr kAddSubFlip = 0x6 * B21;
    450 const Instr kAndBicFlip = 0xe * B21;
    451 
    452 // A mask for the Rd register for push, pop, ldr, str instructions.
    453 const Instr kLdrRegFpOffsetPattern =
    454     al | B26 | L | Offset | kRegister_fp_Code * B16;
    455 const Instr kStrRegFpOffsetPattern =
    456     al | B26 | Offset | kRegister_fp_Code * B16;
    457 const Instr kLdrRegFpNegOffsetPattern =
    458     al | B26 | L | NegOffset | kRegister_fp_Code * B16;
    459 const Instr kStrRegFpNegOffsetPattern =
    460     al | B26 | NegOffset | kRegister_fp_Code * B16;
    461 const Instr kLdrStrInstrTypeMask = 0xffff0000;
    462 const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
    463 const Instr kLdrStrOffsetMask = 0x00000fff;
    464 
    465 
    466 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    467     : AssemblerBase(isolate, buffer, buffer_size),
    468       recorded_ast_id_(TypeFeedbackId::None()),
    469       constant_pool_builder_(),
    470       positions_recorder_(this) {
    471   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    472   num_pending_32_bit_reloc_info_ = 0;
    473   num_pending_64_bit_reloc_info_ = 0;
    474   next_buffer_check_ = 0;
    475   const_pool_blocked_nesting_ = 0;
    476   no_const_pool_before_ = 0;
    477   first_const_pool_32_use_ = -1;
    478   first_const_pool_64_use_ = -1;
    479   last_bound_pos_ = 0;
    480   constant_pool_available_ = !FLAG_enable_ool_constant_pool;
    481   constant_pool_full_ = false;
    482   ClearRecordedAstId();
    483 }
    484 
    485 
    486 Assembler::~Assembler() {
    487   ASSERT(const_pool_blocked_nesting_ == 0);
    488 }
    489 
    490 
    491 void Assembler::GetCode(CodeDesc* desc) {
    492   if (!FLAG_enable_ool_constant_pool) {
    493     // Emit constant pool if necessary.
    494     CheckConstPool(true, false);
    495     ASSERT(num_pending_32_bit_reloc_info_ == 0);
    496     ASSERT(num_pending_64_bit_reloc_info_ == 0);
    497   }
    498   // Set up code descriptor.
    499   desc->buffer = buffer_;
    500   desc->buffer_size = buffer_size_;
    501   desc->instr_size = pc_offset();
    502   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    503   desc->origin = this;
    504 }
    505 
    506 
    507 void Assembler::Align(int m) {
    508   ASSERT(m >= 4 && IsPowerOf2(m));
    509   while ((pc_offset() & (m - 1)) != 0) {
    510     nop();
    511   }
    512 }
    513 
    514 
    515 void Assembler::CodeTargetAlign() {
    516   // Preferred alignment of jump targets on some ARM chips.
    517   Align(8);
    518 }
    519 
    520 
    521 Condition Assembler::GetCondition(Instr instr) {
    522   return Instruction::ConditionField(instr);
    523 }
    524 
    525 
    526 bool Assembler::IsBranch(Instr instr) {
    527   return (instr & (B27 | B25)) == (B27 | B25);
    528 }
    529 
    530 
    531 int Assembler::GetBranchOffset(Instr instr) {
    532   ASSERT(IsBranch(instr));
    533   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
    534   // with 4 to get the offset in bytes.
    535   return ((instr & kImm24Mask) << 8) >> 6;
    536 }
    537 
    538 
    539 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
    540   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
    541 }
    542 
    543 
    544 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
    545   return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
    546 }
    547 
    548 
    549 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
    550   ASSERT(IsLdrRegisterImmediate(instr));
    551   bool positive = (instr & B23) == B23;
    552   int offset = instr & kOff12Mask;  // Zero extended offset.
    553   return positive ? offset : -offset;
    554 }
    555 
    556 
    557 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
    558   ASSERT(IsVldrDRegisterImmediate(instr));
    559   bool positive = (instr & B23) == B23;
    560   int offset = instr & kOff8Mask;  // Zero extended offset.
    561   offset <<= 2;
    562   return positive ? offset : -offset;
    563 }
    564 
    565 
    566 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
    567   ASSERT(IsLdrRegisterImmediate(instr));
    568   bool positive = offset >= 0;
    569   if (!positive) offset = -offset;
    570   ASSERT(is_uint12(offset));
    571   // Set bit indicating whether the offset should be added.
    572   instr = (instr & ~B23) | (positive ? B23 : 0);
    573   // Set the actual offset.
    574   return (instr & ~kOff12Mask) | offset;
    575 }
    576 
    577 
    578 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
    579   ASSERT(IsVldrDRegisterImmediate(instr));
    580   ASSERT((offset & ~3) == offset);  // Must be 64-bit aligned.
    581   bool positive = offset >= 0;
    582   if (!positive) offset = -offset;
    583   ASSERT(is_uint10(offset));
    584   // Set bit indicating whether the offset should be added.
    585   instr = (instr & ~B23) | (positive ? B23 : 0);
    586   // Set the actual offset. Its bottom 2 bits are zero.
    587   return (instr & ~kOff8Mask) | (offset >> 2);
    588 }
    589 
    590 
    591 bool Assembler::IsStrRegisterImmediate(Instr instr) {
    592   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
    593 }
    594 
    595 
    596 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
    597   ASSERT(IsStrRegisterImmediate(instr));
    598   bool positive = offset >= 0;
    599   if (!positive) offset = -offset;
    600   ASSERT(is_uint12(offset));
    601   // Set bit indicating whether the offset should be added.
    602   instr = (instr & ~B23) | (positive ? B23 : 0);
    603   // Set the actual offset.
    604   return (instr & ~kOff12Mask) | offset;
    605 }
    606 
    607 
    608 bool Assembler::IsAddRegisterImmediate(Instr instr) {
    609   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
    610 }
    611 
    612 
    613 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
    614   ASSERT(IsAddRegisterImmediate(instr));
    615   ASSERT(offset >= 0);
    616   ASSERT(is_uint12(offset));
    617   // Set the offset.
    618   return (instr & ~kOff12Mask) | offset;
    619 }
    620 
    621 
    622 Register Assembler::GetRd(Instr instr) {
    623   Register reg;
    624   reg.code_ = Instruction::RdValue(instr);
    625   return reg;
    626 }
    627 
    628 
    629 Register Assembler::GetRn(Instr instr) {
    630   Register reg;
    631   reg.code_ = Instruction::RnValue(instr);
    632   return reg;
    633 }
    634 
    635 
    636 Register Assembler::GetRm(Instr instr) {
    637   Register reg;
    638   reg.code_ = Instruction::RmValue(instr);
    639   return reg;
    640 }
    641 
    642 
    643 bool Assembler::IsPush(Instr instr) {
    644   return ((instr & ~kRdMask) == kPushRegPattern);
    645 }
    646 
    647 
    648 bool Assembler::IsPop(Instr instr) {
    649   return ((instr & ~kRdMask) == kPopRegPattern);
    650 }
    651 
    652 
    653 bool Assembler::IsStrRegFpOffset(Instr instr) {
    654   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
    655 }
    656 
    657 
    658 bool Assembler::IsLdrRegFpOffset(Instr instr) {
    659   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
    660 }
    661 
    662 
    663 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
    664   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
    665 }
    666 
    667 
    668 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
    669   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
    670 }
    671 
    672 
    673 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
    674   // Check the instruction is indeed a
    675   // ldr<cond> <Rd>, [pc +/- offset_12].
    676   return (instr & kLdrPCMask) == kLdrPCPattern;
    677 }
    678 
    679 
    680 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
    681   // Check the instruction is indeed a
    682   // ldr<cond> <Rd>, [pp +/- offset_12].
    683   return (instr & kLdrPpMask) == kLdrPpPattern;
    684 }
    685 
    686 
    687 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
    688   // Check the instruction is indeed a
    689   // vldr<cond> <Dd>, [pc +/- offset_10].
    690   return (instr & kVldrDPCMask) == kVldrDPCPattern;
    691 }
    692 
    693 
    694 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
    695   // Check the instruction is indeed a
    696   // vldr<cond> <Dd>, [pp +/- offset_10].
    697   return (instr & kVldrDPpMask) == kVldrDPpPattern;
    698 }
    699 
    700 
    701 bool Assembler::IsTstImmediate(Instr instr) {
    702   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    703       (I | TST | S);
    704 }
    705 
    706 
    707 bool Assembler::IsCmpRegister(Instr instr) {
    708   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
    709       (CMP | S);
    710 }
    711 
    712 
    713 bool Assembler::IsCmpImmediate(Instr instr) {
    714   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    715       (I | CMP | S);
    716 }
    717 
    718 
    719 Register Assembler::GetCmpImmediateRegister(Instr instr) {
    720   ASSERT(IsCmpImmediate(instr));
    721   return GetRn(instr);
    722 }
    723 
    724 
    725 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
    726   ASSERT(IsCmpImmediate(instr));
    727   return instr & kOff12Mask;
    728 }
    729 
    730 
    731 // Labels refer to positions in the (to be) generated code.
    732 // There are bound, linked, and unused labels.
    733 //
    734 // Bound labels refer to known positions in the already
    735 // generated code. pos() is the position the label refers to.
    736 //
    737 // Linked labels refer to unknown positions in the code
    738 // to be generated; pos() is the position of the last
    739 // instruction using the label.
    740 //
    741 // The linked labels form a link chain by making the branch offset
    742 // in the instruction steam to point to the previous branch
    743 // instruction using the same label.
    744 //
    745 // The link chain is terminated by a branch offset pointing to the
    746 // same position.
    747 
    748 
    749 int Assembler::target_at(int pos) {
    750   Instr instr = instr_at(pos);
    751   if (is_uint24(instr)) {
    752     // Emitted link to a label, not part of a branch.
    753     return instr;
    754   }
    755   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    756   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
    757   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
    758       ((instr & B24) != 0)) {
    759     // blx uses bit 24 to encode bit 2 of imm26
    760     imm26 += 2;
    761   }
    762   return pos + kPcLoadDelta + imm26;
    763 }
    764 
    765 
    766 void Assembler::target_at_put(int pos, int target_pos) {
    767   Instr instr = instr_at(pos);
    768   if (is_uint24(instr)) {
    769     ASSERT(target_pos == pos || target_pos >= 0);
    770     // Emitted link to a label, not part of a branch.
    771     // Load the position of the label relative to the generated code object
    772     // pointer in a register.
    773 
    774     // Here are the instructions we need to emit:
    775     //   For ARMv7: target24 => target16_1:target16_0
    776     //      movw dst, #target16_0
    777     //      movt dst, #target16_1
    778     //   For ARMv6: target24 => target8_2:target8_1:target8_0
    779     //      mov dst, #target8_0
    780     //      orr dst, dst, #target8_1 << 8
    781     //      orr dst, dst, #target8_2 << 16
    782 
    783     // We extract the destination register from the emitted nop instruction.
    784     Register dst = Register::from_code(
    785         Instruction::RmValue(instr_at(pos + kInstrSize)));
    786     ASSERT(IsNop(instr_at(pos + kInstrSize), dst.code()));
    787     uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
    788     ASSERT(is_uint24(target24));
    789     if (is_uint8(target24)) {
    790       // If the target fits in a byte then only patch with a mov
    791       // instruction.
    792       CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    793                           1,
    794                           CodePatcher::DONT_FLUSH);
    795       patcher.masm()->mov(dst, Operand(target24));
    796     } else {
    797       uint16_t target16_0 = target24 & kImm16Mask;
    798       uint16_t target16_1 = target24 >> 16;
    799       if (CpuFeatures::IsSupported(ARMv7)) {
    800         // Patch with movw/movt.
    801         if (target16_1 == 0) {
    802           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    803                               1,
    804                               CodePatcher::DONT_FLUSH);
    805           patcher.masm()->movw(dst, target16_0);
    806         } else {
    807           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    808                               2,
    809                               CodePatcher::DONT_FLUSH);
    810           patcher.masm()->movw(dst, target16_0);
    811           patcher.masm()->movt(dst, target16_1);
    812         }
    813       } else {
    814         // Patch with a sequence of mov/orr/orr instructions.
    815         uint8_t target8_0 = target16_0 & kImm8Mask;
    816         uint8_t target8_1 = target16_0 >> 8;
    817         uint8_t target8_2 = target16_1 & kImm8Mask;
    818         if (target8_2 == 0) {
    819           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    820                               2,
    821                               CodePatcher::DONT_FLUSH);
    822           patcher.masm()->mov(dst, Operand(target8_0));
    823           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    824         } else {
    825           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    826                               3,
    827                               CodePatcher::DONT_FLUSH);
    828           patcher.masm()->mov(dst, Operand(target8_0));
    829           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    830           patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
    831         }
    832       }
    833     }
    834     return;
    835   }
    836   int imm26 = target_pos - (pos + kPcLoadDelta);
    837   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    838   if (Instruction::ConditionField(instr) == kSpecialCondition) {
    839     // blx uses bit 24 to encode bit 2 of imm26
    840     ASSERT((imm26 & 1) == 0);
    841     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
    842   } else {
    843     ASSERT((imm26 & 3) == 0);
    844     instr &= ~kImm24Mask;
    845   }
    846   int imm24 = imm26 >> 2;
    847   ASSERT(is_int24(imm24));
    848   instr_at_put(pos, instr | (imm24 & kImm24Mask));
    849 }
    850 
    851 
    852 void Assembler::print(Label* L) {
    853   if (L->is_unused()) {
    854     PrintF("unused label\n");
    855   } else if (L->is_bound()) {
    856     PrintF("bound label to %d\n", L->pos());
    857   } else if (L->is_linked()) {
    858     Label l = *L;
    859     PrintF("unbound label");
    860     while (l.is_linked()) {
    861       PrintF("@ %d ", l.pos());
    862       Instr instr = instr_at(l.pos());
    863       if ((instr & ~kImm24Mask) == 0) {
    864         PrintF("value\n");
    865       } else {
    866         ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
    867         Condition cond = Instruction::ConditionField(instr);
    868         const char* b;
    869         const char* c;
    870         if (cond == kSpecialCondition) {
    871           b = "blx";
    872           c = "";
    873         } else {
    874           if ((instr & B24) != 0)
    875             b = "bl";
    876           else
    877             b = "b";
    878 
    879           switch (cond) {
    880             case eq: c = "eq"; break;
    881             case ne: c = "ne"; break;
    882             case hs: c = "hs"; break;
    883             case lo: c = "lo"; break;
    884             case mi: c = "mi"; break;
    885             case pl: c = "pl"; break;
    886             case vs: c = "vs"; break;
    887             case vc: c = "vc"; break;
    888             case hi: c = "hi"; break;
    889             case ls: c = "ls"; break;
    890             case ge: c = "ge"; break;
    891             case lt: c = "lt"; break;
    892             case gt: c = "gt"; break;
    893             case le: c = "le"; break;
    894             case al: c = ""; break;
    895             default:
    896               c = "";
    897               UNREACHABLE();
    898           }
    899         }
    900         PrintF("%s%s\n", b, c);
    901       }
    902       next(&l);
    903     }
    904   } else {
    905     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
    906   }
    907 }
    908 
    909 
    910 void Assembler::bind_to(Label* L, int pos) {
    911   ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
    912   while (L->is_linked()) {
    913     int fixup_pos = L->pos();
    914     next(L);  // call next before overwriting link with target at fixup_pos
    915     target_at_put(fixup_pos, pos);
    916   }
    917   L->bind_to(pos);
    918 
    919   // Keep track of the last bound label so we don't eliminate any instructions
    920   // before a bound label.
    921   if (pos > last_bound_pos_)
    922     last_bound_pos_ = pos;
    923 }
    924 
    925 
    926 void Assembler::bind(Label* L) {
    927   ASSERT(!L->is_bound());  // label can only be bound once
    928   bind_to(L, pc_offset());
    929 }
    930 
    931 
    932 void Assembler::next(Label* L) {
    933   ASSERT(L->is_linked());
    934   int link = target_at(L->pos());
    935   if (link == L->pos()) {
    936     // Branch target points to the same instuction. This is the end of the link
    937     // chain.
    938     L->Unuse();
    939   } else {
    940     ASSERT(link >= 0);
    941     L->link_to(link);
    942   }
    943 }
    944 
    945 
    946 // Low-level code emission routines depending on the addressing mode.
    947 // If this returns true then you have to use the rotate_imm and immed_8
    948 // that it returns, because it may have already changed the instruction
    949 // to match them!
    950 static bool fits_shifter(uint32_t imm32,
    951                          uint32_t* rotate_imm,
    952                          uint32_t* immed_8,
    953                          Instr* instr) {
    954   // imm32 must be unsigned.
    955   for (int rot = 0; rot < 16; rot++) {
    956     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    957     if ((imm8 <= 0xff)) {
    958       *rotate_imm = rot;
    959       *immed_8 = imm8;
    960       return true;
    961     }
    962   }
    963   // If the opcode is one with a complementary version and the complementary
    964   // immediate fits, change the opcode.
    965   if (instr != NULL) {
    966     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
    967       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    968         *instr ^= kMovMvnFlip;
    969         return true;
    970       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
    971         if (CpuFeatures::IsSupported(ARMv7)) {
    972           if (imm32 < 0x10000) {
    973             *instr ^= kMovwLeaveCCFlip;
    974             *instr |= EncodeMovwImmediate(imm32);
    975             *rotate_imm = *immed_8 = 0;  // Not used for movw.
    976             return true;
    977           }
    978         }
    979       }
    980     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
    981       if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
    982         *instr ^= kCmpCmnFlip;
    983         return true;
    984       }
    985     } else {
    986       Instr alu_insn = (*instr & kALUMask);
    987       if (alu_insn == ADD ||
    988           alu_insn == SUB) {
    989         if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
    990           *instr ^= kAddSubFlip;
    991           return true;
    992         }
    993       } else if (alu_insn == AND ||
    994                  alu_insn == BIC) {
    995         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    996           *instr ^= kAndBicFlip;
    997           return true;
    998         }
    999       }
   1000     }
   1001   }
   1002   return false;
   1003 }
   1004 
   1005 
   1006 // We have to use the temporary register for things that can be relocated even
   1007 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
   1008 // space.  There is no guarantee that the relocated location can be similarly
   1009 // encoded.
   1010 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
   1011   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
   1012     if (assembler != NULL && assembler->predictable_code_size()) return true;
   1013     return assembler->serializer_enabled();
   1014   } else if (RelocInfo::IsNone(rmode_)) {
   1015     return false;
   1016   }
   1017   return true;
   1018 }
   1019 
   1020 
   1021 static bool use_mov_immediate_load(const Operand& x,
   1022                                    const Assembler* assembler) {
   1023   if (assembler != NULL && !assembler->can_use_constant_pool()) {
   1024     // If there is no constant pool available, we must use an mov immediate.
   1025     // TODO(rmcilroy): enable ARMv6 support.
   1026     ASSERT(CpuFeatures::IsSupported(ARMv7));
   1027     return true;
   1028   } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
   1029              (assembler == NULL || !assembler->predictable_code_size())) {
   1030     // Prefer movw / movt to constant pool if it is more efficient on the CPU.
   1031     return true;
   1032   } else if (x.must_output_reloc_info(assembler)) {
   1033     // Prefer constant pool if data is likely to be patched.
   1034     return false;
   1035   } else {
   1036     // Otherwise, use immediate load if movw / movt is available.
   1037     return CpuFeatures::IsSupported(ARMv7);
   1038   }
   1039 }
   1040 
   1041 
   1042 bool Operand::is_single_instruction(const Assembler* assembler,
   1043                                     Instr instr) const {
   1044   if (rm_.is_valid()) return true;
   1045   uint32_t dummy1, dummy2;
   1046   if (must_output_reloc_info(assembler) ||
   1047       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
   1048     // The immediate operand cannot be encoded as a shifter operand, or use of
   1049     // constant pool is required. For a mov instruction not setting the
   1050     // condition code additional instruction conventions can be used.
   1051     if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
   1052       return !use_mov_immediate_load(*this, assembler);
   1053     } else {
   1054       // If this is not a mov or mvn instruction there will always an additional
   1055       // instructions - either mov or ldr. The mov might actually be two
   1056       // instructions mov or movw followed by movt so including the actual
   1057       // instruction two or three instructions will be generated.
   1058       return false;
   1059     }
   1060   } else {
   1061     // No use of constant pool and the immediate operand can be encoded as a
   1062     // shifter operand.
   1063     return true;
   1064   }
   1065 }
   1066 
   1067 
   1068 void Assembler::move_32_bit_immediate(Register rd,
   1069                                       const Operand& x,
   1070                                       Condition cond) {
   1071   RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL);
   1072   if (x.must_output_reloc_info(this)) {
   1073     RecordRelocInfo(rinfo);
   1074   }
   1075 
   1076   if (use_mov_immediate_load(x, this)) {
   1077     Register target = rd.code() == pc.code() ? ip : rd;
   1078     // TODO(rmcilroy): add ARMv6 support for immediate loads.
   1079     ASSERT(CpuFeatures::IsSupported(ARMv7));
   1080     if (!FLAG_enable_ool_constant_pool &&
   1081         x.must_output_reloc_info(this)) {
   1082       // Make sure the movw/movt doesn't get separated.
   1083       BlockConstPoolFor(2);
   1084     }
   1085     emit(cond | 0x30*B20 | target.code()*B12 |
   1086          EncodeMovwImmediate(x.imm32_ & 0xffff));
   1087     movt(target, static_cast<uint32_t>(x.imm32_) >> 16, cond);
   1088     if (target.code() != rd.code()) {
   1089       mov(rd, target, LeaveCC, cond);
   1090     }
   1091   } else {
   1092     ASSERT(can_use_constant_pool());
   1093     ConstantPoolAddEntry(rinfo);
   1094     ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond);
   1095   }
   1096 }
   1097 
   1098 
   1099 void Assembler::addrmod1(Instr instr,
   1100                          Register rn,
   1101                          Register rd,
   1102                          const Operand& x) {
   1103   CheckBuffer();
   1104   ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
   1105   if (!x.rm_.is_valid()) {
   1106     // Immediate.
   1107     uint32_t rotate_imm;
   1108     uint32_t immed_8;
   1109     if (x.must_output_reloc_info(this) ||
   1110         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
   1111       // The immediate operand cannot be encoded as a shifter operand, so load
   1112       // it first to register ip and change the original instruction to use ip.
   1113       // However, if the original instruction is a 'mov rd, x' (not setting the
   1114       // condition code), then replace it with a 'ldr rd, [pc]'.
   1115       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
   1116       Condition cond = Instruction::ConditionField(instr);
   1117       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
   1118         move_32_bit_immediate(rd, x, cond);
   1119       } else {
   1120         mov(ip, x, LeaveCC, cond);
   1121         addrmod1(instr, rn, rd, Operand(ip));
   1122       }
   1123       return;
   1124     }
   1125     instr |= I | rotate_imm*B8 | immed_8;
   1126   } else if (!x.rs_.is_valid()) {
   1127     // Immediate shift.
   1128     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1129   } else {
   1130     // Register shift.
   1131     ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
   1132     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
   1133   }
   1134   emit(instr | rn.code()*B16 | rd.code()*B12);
   1135   if (rn.is(pc) || x.rm_.is(pc)) {
   1136     // Block constant pool emission for one instruction after reading pc.
   1137     BlockConstPoolFor(1);
   1138   }
   1139 }
   1140 
   1141 
   1142 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
   1143   ASSERT((instr & ~(kCondMask | B | L)) == B26);
   1144   int am = x.am_;
   1145   if (!x.rm_.is_valid()) {
   1146     // Immediate offset.
   1147     int offset_12 = x.offset_;
   1148     if (offset_12 < 0) {
   1149       offset_12 = -offset_12;
   1150       am ^= U;
   1151     }
   1152     if (!is_uint12(offset_12)) {
   1153       // Immediate offset cannot be encoded, load it first to register ip
   1154       // rn (and rd in a load) should never be ip, or will be trashed.
   1155       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1156       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1157       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1158       return;
   1159     }
   1160     ASSERT(offset_12 >= 0);  // no masking needed
   1161     instr |= offset_12;
   1162   } else {
   1163     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
   1164     // register offset the constructors make sure than both shift_imm_
   1165     // and shift_op_ are initialized.
   1166     ASSERT(!x.rm_.is(pc));
   1167     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1168   }
   1169   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1170   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1171 }
   1172 
   1173 
   1174 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
   1175   ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
   1176   ASSERT(x.rn_.is_valid());
   1177   int am = x.am_;
   1178   if (!x.rm_.is_valid()) {
   1179     // Immediate offset.
   1180     int offset_8 = x.offset_;
   1181     if (offset_8 < 0) {
   1182       offset_8 = -offset_8;
   1183       am ^= U;
   1184     }
   1185     if (!is_uint8(offset_8)) {
   1186       // Immediate offset cannot be encoded, load it first to register ip
   1187       // rn (and rd in a load) should never be ip, or will be trashed.
   1188       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1189       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1190       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1191       return;
   1192     }
   1193     ASSERT(offset_8 >= 0);  // no masking needed
   1194     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
   1195   } else if (x.shift_imm_ != 0) {
   1196     // Scaled register offset not supported, load index first
   1197     // rn (and rd in a load) should never be ip, or will be trashed.
   1198     ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1199     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
   1200         Instruction::ConditionField(instr));
   1201     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1202     return;
   1203   } else {
   1204     // Register offset.
   1205     ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
   1206     instr |= x.rm_.code();
   1207   }
   1208   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1209   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1210 }
   1211 
   1212 
   1213 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
   1214   ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
   1215   ASSERT(rl != 0);
   1216   ASSERT(!rn.is(pc));
   1217   emit(instr | rn.code()*B16 | rl);
   1218 }
   1219 
   1220 
   1221 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
   1222   // Unindexed addressing is not encoded by this function.
   1223   ASSERT_EQ((B27 | B26),
   1224             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
   1225   ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
   1226   int am = x.am_;
   1227   int offset_8 = x.offset_;
   1228   ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
   1229   offset_8 >>= 2;
   1230   if (offset_8 < 0) {
   1231     offset_8 = -offset_8;
   1232     am ^= U;
   1233   }
   1234   ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
   1235   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1236 
   1237   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
   1238   if ((am & P) == 0)
   1239     am |= W;
   1240 
   1241   ASSERT(offset_8 >= 0);  // no masking needed
   1242   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
   1243 }
   1244 
   1245 
   1246 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
   1247   int target_pos;
   1248   if (L->is_bound()) {
   1249     target_pos = L->pos();
   1250   } else {
   1251     if (L->is_linked()) {
   1252       // Point to previous instruction that uses the link.
   1253       target_pos = L->pos();
   1254     } else {
   1255       // First entry of the link chain points to itself.
   1256       target_pos = pc_offset();
   1257     }
   1258     L->link_to(pc_offset());
   1259   }
   1260 
   1261   // Block the emission of the constant pool, since the branch instruction must
   1262   // be emitted at the pc offset recorded by the label.
   1263   BlockConstPoolFor(1);
   1264   return target_pos - (pc_offset() + kPcLoadDelta);
   1265 }
   1266 
   1267 
   1268 // Branch instructions.
   1269 void Assembler::b(int branch_offset, Condition cond) {
   1270   ASSERT((branch_offset & 3) == 0);
   1271   int imm24 = branch_offset >> 2;
   1272   ASSERT(is_int24(imm24));
   1273   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
   1274 
   1275   if (cond == al) {
   1276     // Dead code is a good location to emit the constant pool.
   1277     CheckConstPool(false, false);
   1278   }
   1279 }
   1280 
   1281 
   1282 void Assembler::bl(int branch_offset, Condition cond) {
   1283   positions_recorder()->WriteRecordedPositions();
   1284   ASSERT((branch_offset & 3) == 0);
   1285   int imm24 = branch_offset >> 2;
   1286   ASSERT(is_int24(imm24));
   1287   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
   1288 }
   1289 
   1290 
   1291 void Assembler::blx(int branch_offset) {  // v5 and above
   1292   positions_recorder()->WriteRecordedPositions();
   1293   ASSERT((branch_offset & 1) == 0);
   1294   int h = ((branch_offset & 2) >> 1)*B24;
   1295   int imm24 = branch_offset >> 2;
   1296   ASSERT(is_int24(imm24));
   1297   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
   1298 }
   1299 
   1300 
   1301 void Assembler::blx(Register target, Condition cond) {  // v5 and above
   1302   positions_recorder()->WriteRecordedPositions();
   1303   ASSERT(!target.is(pc));
   1304   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
   1305 }
   1306 
   1307 
   1308 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
   1309   positions_recorder()->WriteRecordedPositions();
   1310   ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
   1311   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
   1312 }
   1313 
   1314 
   1315 // Data-processing instructions.
   1316 
   1317 void Assembler::and_(Register dst, Register src1, const Operand& src2,
   1318                      SBit s, Condition cond) {
   1319   addrmod1(cond | AND | s, src1, dst, src2);
   1320 }
   1321 
   1322 
   1323 void Assembler::eor(Register dst, Register src1, const Operand& src2,
   1324                     SBit s, Condition cond) {
   1325   addrmod1(cond | EOR | s, src1, dst, src2);
   1326 }
   1327 
   1328 
   1329 void Assembler::sub(Register dst, Register src1, const Operand& src2,
   1330                     SBit s, Condition cond) {
   1331   addrmod1(cond | SUB | s, src1, dst, src2);
   1332 }
   1333 
   1334 
   1335 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
   1336                     SBit s, Condition cond) {
   1337   addrmod1(cond | RSB | s, src1, dst, src2);
   1338 }
   1339 
   1340 
   1341 void Assembler::add(Register dst, Register src1, const Operand& src2,
   1342                     SBit s, Condition cond) {
   1343   addrmod1(cond | ADD | s, src1, dst, src2);
   1344 }
   1345 
   1346 
   1347 void Assembler::adc(Register dst, Register src1, const Operand& src2,
   1348                     SBit s, Condition cond) {
   1349   addrmod1(cond | ADC | s, src1, dst, src2);
   1350 }
   1351 
   1352 
   1353 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
   1354                     SBit s, Condition cond) {
   1355   addrmod1(cond | SBC | s, src1, dst, src2);
   1356 }
   1357 
   1358 
   1359 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
   1360                     SBit s, Condition cond) {
   1361   addrmod1(cond | RSC | s, src1, dst, src2);
   1362 }
   1363 
   1364 
   1365 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
   1366   addrmod1(cond | TST | S, src1, r0, src2);
   1367 }
   1368 
   1369 
   1370 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
   1371   addrmod1(cond | TEQ | S, src1, r0, src2);
   1372 }
   1373 
   1374 
   1375 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
   1376   addrmod1(cond | CMP | S, src1, r0, src2);
   1377 }
   1378 
   1379 
   1380 void Assembler::cmp_raw_immediate(
   1381     Register src, int raw_immediate, Condition cond) {
   1382   ASSERT(is_uint12(raw_immediate));
   1383   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
   1384 }
   1385 
   1386 
   1387 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
   1388   addrmod1(cond | CMN | S, src1, r0, src2);
   1389 }
   1390 
   1391 
   1392 void Assembler::orr(Register dst, Register src1, const Operand& src2,
   1393                     SBit s, Condition cond) {
   1394   addrmod1(cond | ORR | s, src1, dst, src2);
   1395 }
   1396 
   1397 
   1398 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
   1399   if (dst.is(pc)) {
   1400     positions_recorder()->WriteRecordedPositions();
   1401   }
   1402   // Don't allow nop instructions in the form mov rn, rn to be generated using
   1403   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
   1404   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
   1405   ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
   1406   addrmod1(cond | MOV | s, r0, dst, src);
   1407 }
   1408 
   1409 
   1410 void Assembler::mov_label_offset(Register dst, Label* label) {
   1411   if (label->is_bound()) {
   1412     mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
   1413   } else {
   1414     // Emit the link to the label in the code stream followed by extra nop
   1415     // instructions.
   1416     // If the label is not linked, then start a new link chain by linking it to
   1417     // itself, emitting pc_offset().
   1418     int link = label->is_linked() ? label->pos() : pc_offset();
   1419     label->link_to(pc_offset());
   1420 
   1421     // When the label is bound, these instructions will be patched with a
   1422     // sequence of movw/movt or mov/orr/orr instructions. They will load the
   1423     // destination register with the position of the label from the beginning
   1424     // of the code.
   1425     //
   1426     // The link will be extracted from the first instruction and the destination
   1427     // register from the second.
   1428     //   For ARMv7:
   1429     //      link
   1430     //      mov dst, dst
   1431     //   For ARMv6:
   1432     //      link
   1433     //      mov dst, dst
   1434     //      mov dst, dst
   1435     //
   1436     // When the label gets bound: target_at extracts the link and target_at_put
   1437     // patches the instructions.
   1438     ASSERT(is_uint24(link));
   1439     BlockConstPoolScope block_const_pool(this);
   1440     emit(link);
   1441     nop(dst.code());
   1442     if (!CpuFeatures::IsSupported(ARMv7)) {
   1443       nop(dst.code());
   1444     }
   1445   }
   1446 }
   1447 
   1448 
   1449 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
   1450   ASSERT(immediate < 0x10000);
   1451   // May use movw if supported, but on unsupported platforms will try to use
   1452   // equivalent rotated immed_8 value and other tricks before falling back to a
   1453   // constant pool load.
   1454   mov(reg, Operand(immediate), LeaveCC, cond);
   1455 }
   1456 
   1457 
   1458 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
   1459   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1460 }
   1461 
   1462 
   1463 void Assembler::bic(Register dst, Register src1, const Operand& src2,
   1464                     SBit s, Condition cond) {
   1465   addrmod1(cond | BIC | s, src1, dst, src2);
   1466 }
   1467 
   1468 
   1469 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
   1470   addrmod1(cond | MVN | s, r0, dst, src);
   1471 }
   1472 
   1473 
   1474 // Multiply instructions.
   1475 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
   1476                     SBit s, Condition cond) {
   1477   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1478   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
   1479        src2.code()*B8 | B7 | B4 | src1.code());
   1480 }
   1481 
   1482 
   1483 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
   1484                     Condition cond) {
   1485   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1486   ASSERT(IsEnabled(MLS));
   1487   emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
   1488        src2.code()*B8 | B7 | B4 | src1.code());
   1489 }
   1490 
   1491 
   1492 void Assembler::sdiv(Register dst, Register src1, Register src2,
   1493                      Condition cond) {
   1494   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1495   ASSERT(IsEnabled(SUDIV));
   1496   emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
   1497        src2.code()*B8 | B4 | src1.code());
   1498 }
   1499 
   1500 
   1501 void Assembler::mul(Register dst, Register src1, Register src2,
   1502                     SBit s, Condition cond) {
   1503   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1504   // dst goes in bits 16-19 for this instruction!
   1505   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
   1506 }
   1507 
   1508 
   1509 void Assembler::smlal(Register dstL,
   1510                       Register dstH,
   1511                       Register src1,
   1512                       Register src2,
   1513                       SBit s,
   1514                       Condition cond) {
   1515   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1516   ASSERT(!dstL.is(dstH));
   1517   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1518        src2.code()*B8 | B7 | B4 | src1.code());
   1519 }
   1520 
   1521 
   1522 void Assembler::smull(Register dstL,
   1523                       Register dstH,
   1524                       Register src1,
   1525                       Register src2,
   1526                       SBit s,
   1527                       Condition cond) {
   1528   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1529   ASSERT(!dstL.is(dstH));
   1530   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
   1531        src2.code()*B8 | B7 | B4 | src1.code());
   1532 }
   1533 
   1534 
   1535 void Assembler::umlal(Register dstL,
   1536                       Register dstH,
   1537                       Register src1,
   1538                       Register src2,
   1539                       SBit s,
   1540                       Condition cond) {
   1541   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1542   ASSERT(!dstL.is(dstH));
   1543   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1544        src2.code()*B8 | B7 | B4 | src1.code());
   1545 }
   1546 
   1547 
   1548 void Assembler::umull(Register dstL,
   1549                       Register dstH,
   1550                       Register src1,
   1551                       Register src2,
   1552                       SBit s,
   1553                       Condition cond) {
   1554   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1555   ASSERT(!dstL.is(dstH));
   1556   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
   1557        src2.code()*B8 | B7 | B4 | src1.code());
   1558 }
   1559 
   1560 
   1561 // Miscellaneous arithmetic instructions.
   1562 void Assembler::clz(Register dst, Register src, Condition cond) {
   1563   // v5 and above.
   1564   ASSERT(!dst.is(pc) && !src.is(pc));
   1565   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
   1566        15*B8 | CLZ | src.code());
   1567 }
   1568 
   1569 
   1570 // Saturating instructions.
   1571 
   1572 // Unsigned saturate.
   1573 void Assembler::usat(Register dst,
   1574                      int satpos,
   1575                      const Operand& src,
   1576                      Condition cond) {
   1577   // v6 and above.
   1578   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1579   ASSERT(!dst.is(pc) && !src.rm_.is(pc));
   1580   ASSERT((satpos >= 0) && (satpos <= 31));
   1581   ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
   1582   ASSERT(src.rs_.is(no_reg));
   1583 
   1584   int sh = 0;
   1585   if (src.shift_op_ == ASR) {
   1586       sh = 1;
   1587   }
   1588 
   1589   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
   1590        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
   1591 }
   1592 
   1593 
   1594 // Bitfield manipulation instructions.
   1595 
   1596 // Unsigned bit field extract.
   1597 // Extracts #width adjacent bits from position #lsb in a register, and
   1598 // writes them to the low bits of a destination register.
   1599 //   ubfx dst, src, #lsb, #width
   1600 void Assembler::ubfx(Register dst,
   1601                      Register src,
   1602                      int lsb,
   1603                      int width,
   1604                      Condition cond) {
   1605   // v7 and above.
   1606   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1607   ASSERT(!dst.is(pc) && !src.is(pc));
   1608   ASSERT((lsb >= 0) && (lsb <= 31));
   1609   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1610   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1611        lsb*B7 | B6 | B4 | src.code());
   1612 }
   1613 
   1614 
   1615 // Signed bit field extract.
   1616 // Extracts #width adjacent bits from position #lsb in a register, and
   1617 // writes them to the low bits of a destination register. The extracted
   1618 // value is sign extended to fill the destination register.
   1619 //   sbfx dst, src, #lsb, #width
   1620 void Assembler::sbfx(Register dst,
   1621                      Register src,
   1622                      int lsb,
   1623                      int width,
   1624                      Condition cond) {
   1625   // v7 and above.
   1626   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1627   ASSERT(!dst.is(pc) && !src.is(pc));
   1628   ASSERT((lsb >= 0) && (lsb <= 31));
   1629   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1630   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1631        lsb*B7 | B6 | B4 | src.code());
   1632 }
   1633 
   1634 
   1635 // Bit field clear.
   1636 // Sets #width adjacent bits at position #lsb in the destination register
   1637 // to zero, preserving the value of the other bits.
   1638 //   bfc dst, #lsb, #width
   1639 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
   1640   // v7 and above.
   1641   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1642   ASSERT(!dst.is(pc));
   1643   ASSERT((lsb >= 0) && (lsb <= 31));
   1644   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1645   int msb = lsb + width - 1;
   1646   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
   1647 }
   1648 
   1649 
   1650 // Bit field insert.
   1651 // Inserts #width adjacent bits from the low bits of the source register
   1652 // into position #lsb of the destination register.
   1653 //   bfi dst, src, #lsb, #width
   1654 void Assembler::bfi(Register dst,
   1655                     Register src,
   1656                     int lsb,
   1657                     int width,
   1658                     Condition cond) {
   1659   // v7 and above.
   1660   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1661   ASSERT(!dst.is(pc) && !src.is(pc));
   1662   ASSERT((lsb >= 0) && (lsb <= 31));
   1663   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1664   int msb = lsb + width - 1;
   1665   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
   1666        src.code());
   1667 }
   1668 
   1669 
   1670 void Assembler::pkhbt(Register dst,
   1671                       Register src1,
   1672                       const Operand& src2,
   1673                       Condition cond ) {
   1674   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1675   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1676   // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
   1677   ASSERT(!dst.is(pc));
   1678   ASSERT(!src1.is(pc));
   1679   ASSERT(!src2.rm().is(pc));
   1680   ASSERT(!src2.rm().is(no_reg));
   1681   ASSERT(src2.rs().is(no_reg));
   1682   ASSERT((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
   1683   ASSERT(src2.shift_op() == LSL);
   1684   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1685        src2.shift_imm_*B7 | B4 | src2.rm().code());
   1686 }
   1687 
   1688 
   1689 void Assembler::pkhtb(Register dst,
   1690                       Register src1,
   1691                       const Operand& src2,
   1692                       Condition cond) {
   1693   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1694   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1695   // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
   1696   ASSERT(!dst.is(pc));
   1697   ASSERT(!src1.is(pc));
   1698   ASSERT(!src2.rm().is(pc));
   1699   ASSERT(!src2.rm().is(no_reg));
   1700   ASSERT(src2.rs().is(no_reg));
   1701   ASSERT((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
   1702   ASSERT(src2.shift_op() == ASR);
   1703   int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
   1704   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1705        asr*B7 | B6 | B4 | src2.rm().code());
   1706 }
   1707 
   1708 
   1709 void Assembler::uxtb(Register dst,
   1710                      const Operand& src,
   1711                      Condition cond) {
   1712   // Instruction details available in ARM DDI 0406C.b, A8.8.274.
   1713   // cond(31-28) | 01101110(27-20) | 1111(19-16) |
   1714   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1715   ASSERT(!dst.is(pc));
   1716   ASSERT(!src.rm().is(pc));
   1717   ASSERT(!src.rm().is(no_reg));
   1718   ASSERT(src.rs().is(no_reg));
   1719   ASSERT((src.shift_imm_ == 0) ||
   1720          (src.shift_imm_ == 8) ||
   1721          (src.shift_imm_ == 16) ||
   1722          (src.shift_imm_ == 24));
   1723   // Operand maps ROR #0 to LSL #0.
   1724   ASSERT((src.shift_op() == ROR) ||
   1725          ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
   1726   emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
   1727        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
   1728 }
   1729 
   1730 
   1731 void Assembler::uxtab(Register dst,
   1732                       Register src1,
   1733                       const Operand& src2,
   1734                       Condition cond) {
   1735   // Instruction details available in ARM DDI 0406C.b, A8.8.271.
   1736   // cond(31-28) | 01101110(27-20) | Rn(19-16) |
   1737   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1738   ASSERT(!dst.is(pc));
   1739   ASSERT(!src1.is(pc));
   1740   ASSERT(!src2.rm().is(pc));
   1741   ASSERT(!src2.rm().is(no_reg));
   1742   ASSERT(src2.rs().is(no_reg));
   1743   ASSERT((src2.shift_imm_ == 0) ||
   1744          (src2.shift_imm_ == 8) ||
   1745          (src2.shift_imm_ == 16) ||
   1746          (src2.shift_imm_ == 24));
   1747   // Operand maps ROR #0 to LSL #0.
   1748   ASSERT((src2.shift_op() == ROR) ||
   1749          ((src2.shift_op() == LSL) && (src2.shift_imm_ == 0)));
   1750   emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
   1751        ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
   1752 }
   1753 
   1754 
   1755 void Assembler::uxtb16(Register dst,
   1756                        const Operand& src,
   1757                        Condition cond) {
   1758   // Instruction details available in ARM DDI 0406C.b, A8.8.275.
   1759   // cond(31-28) | 01101100(27-20) | 1111(19-16) |
   1760   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1761   ASSERT(!dst.is(pc));
   1762   ASSERT(!src.rm().is(pc));
   1763   ASSERT(!src.rm().is(no_reg));
   1764   ASSERT(src.rs().is(no_reg));
   1765   ASSERT((src.shift_imm_ == 0) ||
   1766          (src.shift_imm_ == 8) ||
   1767          (src.shift_imm_ == 16) ||
   1768          (src.shift_imm_ == 24));
   1769   // Operand maps ROR #0 to LSL #0.
   1770   ASSERT((src.shift_op() == ROR) ||
   1771          ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
   1772   emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
   1773        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
   1774 }
   1775 
   1776 
   1777 // Status register access instructions.
   1778 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
   1779   ASSERT(!dst.is(pc));
   1780   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
   1781 }
   1782 
   1783 
   1784 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
   1785                     Condition cond) {
   1786   ASSERT(fields >= B16 && fields < B20);  // at least one field set
   1787   Instr instr;
   1788   if (!src.rm_.is_valid()) {
   1789     // Immediate.
   1790     uint32_t rotate_imm;
   1791     uint32_t immed_8;
   1792     if (src.must_output_reloc_info(this) ||
   1793         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
   1794       // Immediate operand cannot be encoded, load it first to register ip.
   1795       move_32_bit_immediate(ip, src);
   1796       msr(fields, Operand(ip), cond);
   1797       return;
   1798     }
   1799     instr = I | rotate_imm*B8 | immed_8;
   1800   } else {
   1801     ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
   1802     instr = src.rm_.code();
   1803   }
   1804   emit(cond | instr | B24 | B21 | fields | 15*B12);
   1805 }
   1806 
   1807 
   1808 // Load/Store instructions.
   1809 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
   1810   if (dst.is(pc)) {
   1811     positions_recorder()->WriteRecordedPositions();
   1812   }
   1813   addrmod2(cond | B26 | L, dst, src);
   1814 }
   1815 
   1816 
   1817 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
   1818   addrmod2(cond | B26, src, dst);
   1819 }
   1820 
   1821 
   1822 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
   1823   addrmod2(cond | B26 | B | L, dst, src);
   1824 }
   1825 
   1826 
   1827 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
   1828   addrmod2(cond | B26 | B, src, dst);
   1829 }
   1830 
   1831 
   1832 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
   1833   addrmod3(cond | L | B7 | H | B4, dst, src);
   1834 }
   1835 
   1836 
   1837 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
   1838   addrmod3(cond | B7 | H | B4, src, dst);
   1839 }
   1840 
   1841 
   1842 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
   1843   addrmod3(cond | L | B7 | S6 | B4, dst, src);
   1844 }
   1845 
   1846 
   1847 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
   1848   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
   1849 }
   1850 
   1851 
   1852 void Assembler::ldrd(Register dst1, Register dst2,
   1853                      const MemOperand& src, Condition cond) {
   1854   ASSERT(IsEnabled(ARMv7));
   1855   ASSERT(src.rm().is(no_reg));
   1856   ASSERT(!dst1.is(lr));  // r14.
   1857   ASSERT_EQ(0, dst1.code() % 2);
   1858   ASSERT_EQ(dst1.code() + 1, dst2.code());
   1859   addrmod3(cond | B7 | B6 | B4, dst1, src);
   1860 }
   1861 
   1862 
   1863 void Assembler::strd(Register src1, Register src2,
   1864                      const MemOperand& dst, Condition cond) {
   1865   ASSERT(dst.rm().is(no_reg));
   1866   ASSERT(!src1.is(lr));  // r14.
   1867   ASSERT_EQ(0, src1.code() % 2);
   1868   ASSERT_EQ(src1.code() + 1, src2.code());
   1869   ASSERT(IsEnabled(ARMv7));
   1870   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
   1871 }
   1872 
   1873 
   1874 // Preload instructions.
   1875 void Assembler::pld(const MemOperand& address) {
   1876   // Instruction details available in ARM DDI 0406C.b, A8.8.128.
   1877   // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
   1878   // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
   1879   ASSERT(address.rm().is(no_reg));
   1880   ASSERT(address.am() == Offset);
   1881   int U = B23;
   1882   int offset = address.offset();
   1883   if (offset < 0) {
   1884     offset = -offset;
   1885     U = 0;
   1886   }
   1887   ASSERT(offset < 4096);
   1888   emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
   1889        0xf*B12 | offset);
   1890 }
   1891 
   1892 
   1893 // Load/Store multiple instructions.
   1894 void Assembler::ldm(BlockAddrMode am,
   1895                     Register base,
   1896                     RegList dst,
   1897                     Condition cond) {
   1898   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
   1899   ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
   1900 
   1901   addrmod4(cond | B27 | am | L, base, dst);
   1902 
   1903   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
   1904   if (cond == al && (dst & pc.bit()) != 0) {
   1905     // There is a slight chance that the ldm instruction was actually a call,
   1906     // in which case it would be wrong to return into the constant pool; we
   1907     // recognize this case by checking if the emission of the pool was blocked
   1908     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
   1909     // the case, we emit a jump over the pool.
   1910     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
   1911   }
   1912 }
   1913 
   1914 
   1915 void Assembler::stm(BlockAddrMode am,
   1916                     Register base,
   1917                     RegList src,
   1918                     Condition cond) {
   1919   addrmod4(cond | B27 | am, base, src);
   1920 }
   1921 
   1922 
   1923 // Exception-generating instructions and debugging support.
   1924 // Stops with a non-negative code less than kNumOfWatchedStops support
   1925 // enabling/disabling and a counter feature. See simulator-arm.h .
   1926 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
   1927 #ifndef __arm__
   1928   ASSERT(code >= kDefaultStopCode);
   1929   {
   1930     // The Simulator will handle the stop instruction and get the message
   1931     // address. It expects to find the address just after the svc instruction.
   1932     BlockConstPoolScope block_const_pool(this);
   1933     if (code >= 0) {
   1934       svc(kStopCode + code, cond);
   1935     } else {
   1936       svc(kStopCode + kMaxStopCode, cond);
   1937     }
   1938     emit(reinterpret_cast<Instr>(msg));
   1939   }
   1940 #else  // def __arm__
   1941   if (cond != al) {
   1942     Label skip;
   1943     b(&skip, NegateCondition(cond));
   1944     bkpt(0);
   1945     bind(&skip);
   1946   } else {
   1947     bkpt(0);
   1948   }
   1949 #endif  // def __arm__
   1950 }
   1951 
   1952 
   1953 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
   1954   ASSERT(is_uint16(imm16));
   1955   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
   1956 }
   1957 
   1958 
   1959 void Assembler::svc(uint32_t imm24, Condition cond) {
   1960   ASSERT(is_uint24(imm24));
   1961   emit(cond | 15*B24 | imm24);
   1962 }
   1963 
   1964 
   1965 // Coprocessor instructions.
   1966 void Assembler::cdp(Coprocessor coproc,
   1967                     int opcode_1,
   1968                     CRegister crd,
   1969                     CRegister crn,
   1970                     CRegister crm,
   1971                     int opcode_2,
   1972                     Condition cond) {
   1973   ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
   1974   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
   1975        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
   1976 }
   1977 
   1978 
   1979 void Assembler::cdp2(Coprocessor coproc,
   1980                      int opcode_1,
   1981                      CRegister crd,
   1982                      CRegister crn,
   1983                      CRegister crm,
   1984                      int opcode_2) {  // v5 and above
   1985   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
   1986 }
   1987 
   1988 
   1989 void Assembler::mcr(Coprocessor coproc,
   1990                     int opcode_1,
   1991                     Register rd,
   1992                     CRegister crn,
   1993                     CRegister crm,
   1994                     int opcode_2,
   1995                     Condition cond) {
   1996   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   1997   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
   1998        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   1999 }
   2000 
   2001 
   2002 void Assembler::mcr2(Coprocessor coproc,
   2003                      int opcode_1,
   2004                      Register rd,
   2005                      CRegister crn,
   2006                      CRegister crm,
   2007                      int opcode_2) {  // v5 and above
   2008   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2009 }
   2010 
   2011 
   2012 void Assembler::mrc(Coprocessor coproc,
   2013                     int opcode_1,
   2014                     Register rd,
   2015                     CRegister crn,
   2016                     CRegister crm,
   2017                     int opcode_2,
   2018                     Condition cond) {
   2019   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   2020   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
   2021        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   2022 }
   2023 
   2024 
   2025 void Assembler::mrc2(Coprocessor coproc,
   2026                      int opcode_1,
   2027                      Register rd,
   2028                      CRegister crn,
   2029                      CRegister crm,
   2030                      int opcode_2) {  // v5 and above
   2031   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2032 }
   2033 
   2034 
   2035 void Assembler::ldc(Coprocessor coproc,
   2036                     CRegister crd,
   2037                     const MemOperand& src,
   2038                     LFlag l,
   2039                     Condition cond) {
   2040   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
   2041 }
   2042 
   2043 
   2044 void Assembler::ldc(Coprocessor coproc,
   2045                     CRegister crd,
   2046                     Register rn,
   2047                     int option,
   2048                     LFlag l,
   2049                     Condition cond) {
   2050   // Unindexed addressing.
   2051   ASSERT(is_uint8(option));
   2052   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
   2053        coproc*B8 | (option & 255));
   2054 }
   2055 
   2056 
   2057 void Assembler::ldc2(Coprocessor coproc,
   2058                      CRegister crd,
   2059                      const MemOperand& src,
   2060                      LFlag l) {  // v5 and above
   2061   ldc(coproc, crd, src, l, kSpecialCondition);
   2062 }
   2063 
   2064 
   2065 void Assembler::ldc2(Coprocessor coproc,
   2066                      CRegister crd,
   2067                      Register rn,
   2068                      int option,
   2069                      LFlag l) {  // v5 and above
   2070   ldc(coproc, crd, rn, option, l, kSpecialCondition);
   2071 }
   2072 
   2073 
   2074 // Support for VFP.
   2075 
   2076 void Assembler::vldr(const DwVfpRegister dst,
   2077                      const Register base,
   2078                      int offset,
   2079                      const Condition cond) {
   2080   // Ddst = MEM(Rbase + offset).
   2081   // Instruction details available in ARM DDI 0406C.b, A8-924.
   2082   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
   2083   // Vd(15-12) | 1011(11-8) | offset
   2084   int u = 1;
   2085   if (offset < 0) {
   2086     offset = -offset;
   2087     u = 0;
   2088   }
   2089   int vd, d;
   2090   dst.split_code(&vd, &d);
   2091 
   2092   ASSERT(offset >= 0);
   2093   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2094     emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
   2095          0xB*B8 | ((offset / 4) & 255));
   2096   } else {
   2097     // Larger offsets must be handled by computing the correct address
   2098     // in the ip register.
   2099     ASSERT(!base.is(ip));
   2100     if (u == 1) {
   2101       add(ip, base, Operand(offset));
   2102     } else {
   2103       sub(ip, base, Operand(offset));
   2104     }
   2105     emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2106   }
   2107 }
   2108 
   2109 
   2110 void Assembler::vldr(const DwVfpRegister dst,
   2111                      const MemOperand& operand,
   2112                      const Condition cond) {
   2113   ASSERT(!operand.rm().is_valid());
   2114   ASSERT(operand.am_ == Offset);
   2115   vldr(dst, operand.rn(), operand.offset(), cond);
   2116 }
   2117 
   2118 
   2119 void Assembler::vldr(const SwVfpRegister dst,
   2120                      const Register base,
   2121                      int offset,
   2122                      const Condition cond) {
   2123   // Sdst = MEM(Rbase + offset).
   2124   // Instruction details available in ARM DDI 0406A, A8-628.
   2125   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   2126   // Vdst(15-12) | 1010(11-8) | offset
   2127   int u = 1;
   2128   if (offset < 0) {
   2129     offset = -offset;
   2130     u = 0;
   2131   }
   2132   int sd, d;
   2133   dst.split_code(&sd, &d);
   2134   ASSERT(offset >= 0);
   2135 
   2136   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2137   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
   2138        0xA*B8 | ((offset / 4) & 255));
   2139   } else {
   2140     // Larger offsets must be handled by computing the correct address
   2141     // in the ip register.
   2142     ASSERT(!base.is(ip));
   2143     if (u == 1) {
   2144       add(ip, base, Operand(offset));
   2145     } else {
   2146       sub(ip, base, Operand(offset));
   2147     }
   2148     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2149   }
   2150 }
   2151 
   2152 
   2153 void Assembler::vldr(const SwVfpRegister dst,
   2154                      const MemOperand& operand,
   2155                      const Condition cond) {
   2156   ASSERT(!operand.rm().is_valid());
   2157   ASSERT(operand.am_ == Offset);
   2158   vldr(dst, operand.rn(), operand.offset(), cond);
   2159 }
   2160 
   2161 
   2162 void Assembler::vstr(const DwVfpRegister src,
   2163                      const Register base,
   2164                      int offset,
   2165                      const Condition cond) {
   2166   // MEM(Rbase + offset) = Dsrc.
   2167   // Instruction details available in ARM DDI 0406C.b, A8-1082.
   2168   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
   2169   // Vd(15-12) | 1011(11-8) | (offset/4)
   2170   int u = 1;
   2171   if (offset < 0) {
   2172     offset = -offset;
   2173     u = 0;
   2174   }
   2175   ASSERT(offset >= 0);
   2176   int vd, d;
   2177   src.split_code(&vd, &d);
   2178 
   2179   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2180     emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
   2181          ((offset / 4) & 255));
   2182   } else {
   2183     // Larger offsets must be handled by computing the correct address
   2184     // in the ip register.
   2185     ASSERT(!base.is(ip));
   2186     if (u == 1) {
   2187       add(ip, base, Operand(offset));
   2188     } else {
   2189       sub(ip, base, Operand(offset));
   2190     }
   2191     emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2192   }
   2193 }
   2194 
   2195 
   2196 void Assembler::vstr(const DwVfpRegister src,
   2197                      const MemOperand& operand,
   2198                      const Condition cond) {
   2199   ASSERT(!operand.rm().is_valid());
   2200   ASSERT(operand.am_ == Offset);
   2201   vstr(src, operand.rn(), operand.offset(), cond);
   2202 }
   2203 
   2204 
   2205 void Assembler::vstr(const SwVfpRegister src,
   2206                      const Register base,
   2207                      int offset,
   2208                      const Condition cond) {
   2209   // MEM(Rbase + offset) = SSrc.
   2210   // Instruction details available in ARM DDI 0406A, A8-786.
   2211   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
   2212   // Vdst(15-12) | 1010(11-8) | (offset/4)
   2213   int u = 1;
   2214   if (offset < 0) {
   2215     offset = -offset;
   2216     u = 0;
   2217   }
   2218   int sd, d;
   2219   src.split_code(&sd, &d);
   2220   ASSERT(offset >= 0);
   2221   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2222     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
   2223          0xA*B8 | ((offset / 4) & 255));
   2224   } else {
   2225     // Larger offsets must be handled by computing the correct address
   2226     // in the ip register.
   2227     ASSERT(!base.is(ip));
   2228     if (u == 1) {
   2229       add(ip, base, Operand(offset));
   2230     } else {
   2231       sub(ip, base, Operand(offset));
   2232     }
   2233     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2234   }
   2235 }
   2236 
   2237 
   2238 void Assembler::vstr(const SwVfpRegister src,
   2239                      const MemOperand& operand,
   2240                      const Condition cond) {
   2241   ASSERT(!operand.rm().is_valid());
   2242   ASSERT(operand.am_ == Offset);
   2243   vstr(src, operand.rn(), operand.offset(), cond);
   2244 }
   2245 
   2246 
   2247 void  Assembler::vldm(BlockAddrMode am,
   2248                       Register base,
   2249                       DwVfpRegister first,
   2250                       DwVfpRegister last,
   2251                       Condition cond) {
   2252   // Instruction details available in ARM DDI 0406C.b, A8-922.
   2253   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2254   // first(15-12) | 1011(11-8) | (count * 2)
   2255   ASSERT_LE(first.code(), last.code());
   2256   ASSERT(am == ia || am == ia_w || am == db_w);
   2257   ASSERT(!base.is(pc));
   2258 
   2259   int sd, d;
   2260   first.split_code(&sd, &d);
   2261   int count = last.code() - first.code() + 1;
   2262   ASSERT(count <= 16);
   2263   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2264        0xB*B8 | count*2);
   2265 }
   2266 
   2267 
   2268 void  Assembler::vstm(BlockAddrMode am,
   2269                       Register base,
   2270                       DwVfpRegister first,
   2271                       DwVfpRegister last,
   2272                       Condition cond) {
   2273   // Instruction details available in ARM DDI 0406C.b, A8-1080.
   2274   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2275   // first(15-12) | 1011(11-8) | (count * 2)
   2276   ASSERT_LE(first.code(), last.code());
   2277   ASSERT(am == ia || am == ia_w || am == db_w);
   2278   ASSERT(!base.is(pc));
   2279 
   2280   int sd, d;
   2281   first.split_code(&sd, &d);
   2282   int count = last.code() - first.code() + 1;
   2283   ASSERT(count <= 16);
   2284   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2285        0xB*B8 | count*2);
   2286 }
   2287 
   2288 void  Assembler::vldm(BlockAddrMode am,
   2289                       Register base,
   2290                       SwVfpRegister first,
   2291                       SwVfpRegister last,
   2292                       Condition cond) {
   2293   // Instruction details available in ARM DDI 0406A, A8-626.
   2294   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2295   // first(15-12) | 1010(11-8) | (count/2)
   2296   ASSERT_LE(first.code(), last.code());
   2297   ASSERT(am == ia || am == ia_w || am == db_w);
   2298   ASSERT(!base.is(pc));
   2299 
   2300   int sd, d;
   2301   first.split_code(&sd, &d);
   2302   int count = last.code() - first.code() + 1;
   2303   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2304        0xA*B8 | count);
   2305 }
   2306 
   2307 
   2308 void  Assembler::vstm(BlockAddrMode am,
   2309                       Register base,
   2310                       SwVfpRegister first,
   2311                       SwVfpRegister last,
   2312                       Condition cond) {
   2313   // Instruction details available in ARM DDI 0406A, A8-784.
   2314   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2315   // first(15-12) | 1011(11-8) | (count/2)
   2316   ASSERT_LE(first.code(), last.code());
   2317   ASSERT(am == ia || am == ia_w || am == db_w);
   2318   ASSERT(!base.is(pc));
   2319 
   2320   int sd, d;
   2321   first.split_code(&sd, &d);
   2322   int count = last.code() - first.code() + 1;
   2323   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2324        0xA*B8 | count);
   2325 }
   2326 
   2327 
   2328 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
   2329   uint64_t i;
   2330   memcpy(&i, &d, 8);
   2331 
   2332   *lo = i & 0xffffffff;
   2333   *hi = i >> 32;
   2334 }
   2335 
   2336 
   2337 // Only works for little endian floating point formats.
   2338 // We don't support VFP on the mixed endian floating point platform.
   2339 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
   2340   ASSERT(CpuFeatures::IsSupported(VFP3));
   2341 
   2342   // VMOV can accept an immediate of the form:
   2343   //
   2344   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
   2345   //
   2346   // The immediate is encoded using an 8-bit quantity, comprised of two
   2347   // 4-bit fields. For an 8-bit immediate of the form:
   2348   //
   2349   //  [abcdefgh]
   2350   //
   2351   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
   2352   // created of the form:
   2353   //
   2354   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
   2355   //      00000000,00000000,00000000,00000000]
   2356   //
   2357   // where B = ~b.
   2358   //
   2359 
   2360   uint32_t lo, hi;
   2361   DoubleAsTwoUInt32(d, &lo, &hi);
   2362 
   2363   // The most obvious constraint is the long block of zeroes.
   2364   if ((lo != 0) || ((hi & 0xffff) != 0)) {
   2365     return false;
   2366   }
   2367 
   2368   // Bits 62:55 must be all clear or all set.
   2369   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
   2370     return false;
   2371   }
   2372 
   2373   // Bit 63 must be NOT bit 62.
   2374   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
   2375     return false;
   2376   }
   2377 
   2378   // Create the encoded immediate in the form:
   2379   //  [00000000,0000abcd,00000000,0000efgh]
   2380   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
   2381   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
   2382   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
   2383 
   2384   return true;
   2385 }
   2386 
   2387 
   2388 void Assembler::vmov(const DwVfpRegister dst,
   2389                      double imm,
   2390                      const Register scratch) {
   2391   uint32_t enc;
   2392   if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
   2393     // The double can be encoded in the instruction.
   2394     //
   2395     // Dd = immediate
   2396     // Instruction details available in ARM DDI 0406C.b, A8-936.
   2397     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
   2398     // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
   2399     int vd, d;
   2400     dst.split_code(&vd, &d);
   2401     emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
   2402   } else if (FLAG_enable_vldr_imm && can_use_constant_pool()) {
   2403     // TODO(jfb) Temporarily turned off until we have constant blinding or
   2404     //           some equivalent mitigation: an attacker can otherwise control
   2405     //           generated data which also happens to be executable, a Very Bad
   2406     //           Thing indeed.
   2407     //           Blinding gets tricky because we don't have xor, we probably
   2408     //           need to add/subtract without losing precision, which requires a
   2409     //           cookie value that Lithium is probably better positioned to
   2410     //           choose.
   2411     //           We could also add a few peepholes here like detecting 0.0 and
   2412     //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
   2413     //           to zero (we set flush-to-zero), and normalizing NaN values.
   2414     //           We could also detect redundant values.
   2415     //           The code could also randomize the order of values, though
   2416     //           that's tricky because vldr has a limited reach. Furthermore
   2417     //           it breaks load locality.
   2418     RelocInfo rinfo(pc_, imm);
   2419     ConstantPoolAddEntry(rinfo);
   2420     vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0));
   2421   } else {
   2422     // Synthesise the double from ARM immediates.
   2423     uint32_t lo, hi;
   2424     DoubleAsTwoUInt32(imm, &lo, &hi);
   2425 
   2426     if (scratch.is(no_reg)) {
   2427       if (dst.code() < 16) {
   2428         const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
   2429         // Move the low part of the double into the lower of the corresponsing S
   2430         // registers of D register dst.
   2431         mov(ip, Operand(lo));
   2432         vmov(loc.low(), ip);
   2433 
   2434         // Move the high part of the double into the higher of the
   2435         // corresponsing S registers of D register dst.
   2436         mov(ip, Operand(hi));
   2437         vmov(loc.high(), ip);
   2438       } else {
   2439         // D16-D31 does not have S registers, so move the low and high parts
   2440         // directly to the D register using vmov.32.
   2441         // Note: This may be slower, so we only do this when we have to.
   2442         mov(ip, Operand(lo));
   2443         vmov(dst, VmovIndexLo, ip);
   2444         mov(ip, Operand(hi));
   2445         vmov(dst, VmovIndexHi, ip);
   2446       }
   2447     } else {
   2448       // Move the low and high parts of the double to a D register in one
   2449       // instruction.
   2450       mov(ip, Operand(lo));
   2451       mov(scratch, Operand(hi));
   2452       vmov(dst, ip, scratch);
   2453     }
   2454   }
   2455 }
   2456 
   2457 
   2458 void Assembler::vmov(const SwVfpRegister dst,
   2459                      const SwVfpRegister src,
   2460                      const Condition cond) {
   2461   // Sd = Sm
   2462   // Instruction details available in ARM DDI 0406B, A8-642.
   2463   int sd, d, sm, m;
   2464   dst.split_code(&sd, &d);
   2465   src.split_code(&sm, &m);
   2466   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
   2467 }
   2468 
   2469 
   2470 void Assembler::vmov(const DwVfpRegister dst,
   2471                      const DwVfpRegister src,
   2472                      const Condition cond) {
   2473   // Dd = Dm
   2474   // Instruction details available in ARM DDI 0406C.b, A8-938.
   2475   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   2476   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2477   int vd, d;
   2478   dst.split_code(&vd, &d);
   2479   int vm, m;
   2480   src.split_code(&vm, &m);
   2481   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
   2482        vm);
   2483 }
   2484 
   2485 
   2486 void Assembler::vmov(const DwVfpRegister dst,
   2487                      const VmovIndex index,
   2488                      const Register src,
   2489                      const Condition cond) {
   2490   // Dd[index] = Rt
   2491   // Instruction details available in ARM DDI 0406C.b, A8-940.
   2492   // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
   2493   // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2494   ASSERT(index.index == 0 || index.index == 1);
   2495   int vd, d;
   2496   dst.split_code(&vd, &d);
   2497   emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
   2498        d*B7 | B4);
   2499 }
   2500 
   2501 
   2502 void Assembler::vmov(const Register dst,
   2503                      const VmovIndex index,
   2504                      const DwVfpRegister src,
   2505                      const Condition cond) {
   2506   // Dd[index] = Rt
   2507   // Instruction details available in ARM DDI 0406C.b, A8.8.342.
   2508   // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
   2509   // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2510   ASSERT(index.index == 0 || index.index == 1);
   2511   int vn, n;
   2512   src.split_code(&vn, &n);
   2513   emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
   2514        0xB*B8 | n*B7 | B4);
   2515 }
   2516 
   2517 
   2518 void Assembler::vmov(const DwVfpRegister dst,
   2519                      const Register src1,
   2520                      const Register src2,
   2521                      const Condition cond) {
   2522   // Dm = <Rt,Rt2>.
   2523   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2524   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
   2525   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2526   ASSERT(!src1.is(pc) && !src2.is(pc));
   2527   int vm, m;
   2528   dst.split_code(&vm, &m);
   2529   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
   2530        src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2531 }
   2532 
   2533 
   2534 void Assembler::vmov(const Register dst1,
   2535                      const Register dst2,
   2536                      const DwVfpRegister src,
   2537                      const Condition cond) {
   2538   // <Rt,Rt2> = Dm.
   2539   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2540   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
   2541   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2542   ASSERT(!dst1.is(pc) && !dst2.is(pc));
   2543   int vm, m;
   2544   src.split_code(&vm, &m);
   2545   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
   2546        dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2547 }
   2548 
   2549 
   2550 void Assembler::vmov(const SwVfpRegister dst,
   2551                      const Register src,
   2552                      const Condition cond) {
   2553   // Sn = Rt.
   2554   // Instruction details available in ARM DDI 0406A, A8-642.
   2555   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
   2556   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2557   ASSERT(!src.is(pc));
   2558   int sn, n;
   2559   dst.split_code(&sn, &n);
   2560   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
   2561 }
   2562 
   2563 
   2564 void Assembler::vmov(const Register dst,
   2565                      const SwVfpRegister src,
   2566                      const Condition cond) {
   2567   // Rt = Sn.
   2568   // Instruction details available in ARM DDI 0406A, A8-642.
   2569   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
   2570   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2571   ASSERT(!dst.is(pc));
   2572   int sn, n;
   2573   src.split_code(&sn, &n);
   2574   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
   2575 }
   2576 
   2577 
   2578 // Type of data to read from or write to VFP register.
   2579 // Used as specifier in generic vcvt instruction.
   2580 enum VFPType { S32, U32, F32, F64 };
   2581 
   2582 
   2583 static bool IsSignedVFPType(VFPType type) {
   2584   switch (type) {
   2585     case S32:
   2586       return true;
   2587     case U32:
   2588       return false;
   2589     default:
   2590       UNREACHABLE();
   2591       return false;
   2592   }
   2593 }
   2594 
   2595 
   2596 static bool IsIntegerVFPType(VFPType type) {
   2597   switch (type) {
   2598     case S32:
   2599     case U32:
   2600       return true;
   2601     case F32:
   2602     case F64:
   2603       return false;
   2604     default:
   2605       UNREACHABLE();
   2606       return false;
   2607   }
   2608 }
   2609 
   2610 
   2611 static bool IsDoubleVFPType(VFPType type) {
   2612   switch (type) {
   2613     case F32:
   2614       return false;
   2615     case F64:
   2616       return true;
   2617     default:
   2618       UNREACHABLE();
   2619       return false;
   2620   }
   2621 }
   2622 
   2623 
   2624 // Split five bit reg_code based on size of reg_type.
   2625 //  32-bit register codes are Vm:M
   2626 //  64-bit register codes are M:Vm
   2627 // where Vm is four bits, and M is a single bit.
   2628 static void SplitRegCode(VFPType reg_type,
   2629                          int reg_code,
   2630                          int* vm,
   2631                          int* m) {
   2632   ASSERT((reg_code >= 0) && (reg_code <= 31));
   2633   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
   2634     // 32 bit type.
   2635     *m  = reg_code & 0x1;
   2636     *vm = reg_code >> 1;
   2637   } else {
   2638     // 64 bit type.
   2639     *m  = (reg_code & 0x10) >> 4;
   2640     *vm = reg_code & 0x0F;
   2641   }
   2642 }
   2643 
   2644 
   2645 // Encode vcvt.src_type.dst_type instruction.
   2646 static Instr EncodeVCVT(const VFPType dst_type,
   2647                         const int dst_code,
   2648                         const VFPType src_type,
   2649                         const int src_code,
   2650                         VFPConversionMode mode,
   2651                         const Condition cond) {
   2652   ASSERT(src_type != dst_type);
   2653   int D, Vd, M, Vm;
   2654   SplitRegCode(src_type, src_code, &Vm, &M);
   2655   SplitRegCode(dst_type, dst_code, &Vd, &D);
   2656 
   2657   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
   2658     // Conversion between IEEE floating point and 32-bit integer.
   2659     // Instruction details available in ARM DDI 0406B, A8.6.295.
   2660     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
   2661     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2662     ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
   2663 
   2664     int sz, opc2, op;
   2665 
   2666     if (IsIntegerVFPType(dst_type)) {
   2667       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
   2668       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2669       op = mode;
   2670     } else {
   2671       ASSERT(IsIntegerVFPType(src_type));
   2672       opc2 = 0x0;
   2673       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
   2674       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
   2675     }
   2676 
   2677     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
   2678             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
   2679   } else {
   2680     // Conversion between IEEE double and single precision.
   2681     // Instruction details available in ARM DDI 0406B, A8.6.298.
   2682     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
   2683     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2684     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2685     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
   2686             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
   2687   }
   2688 }
   2689 
   2690 
   2691 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2692                              const SwVfpRegister src,
   2693                              VFPConversionMode mode,
   2694                              const Condition cond) {
   2695   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
   2696 }
   2697 
   2698 
   2699 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
   2700                              const SwVfpRegister src,
   2701                              VFPConversionMode mode,
   2702                              const Condition cond) {
   2703   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
   2704 }
   2705 
   2706 
   2707 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
   2708                              const SwVfpRegister src,
   2709                              VFPConversionMode mode,
   2710                              const Condition cond) {
   2711   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
   2712 }
   2713 
   2714 
   2715 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
   2716                              const DwVfpRegister src,
   2717                              VFPConversionMode mode,
   2718                              const Condition cond) {
   2719   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
   2720 }
   2721 
   2722 
   2723 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
   2724                              const DwVfpRegister src,
   2725                              VFPConversionMode mode,
   2726                              const Condition cond) {
   2727   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
   2728 }
   2729 
   2730 
   2731 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
   2732                              const SwVfpRegister src,
   2733                              VFPConversionMode mode,
   2734                              const Condition cond) {
   2735   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
   2736 }
   2737 
   2738 
   2739 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
   2740                              const DwVfpRegister src,
   2741                              VFPConversionMode mode,
   2742                              const Condition cond) {
   2743   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
   2744 }
   2745 
   2746 
   2747 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2748                              int fraction_bits,
   2749                              const Condition cond) {
   2750   // Instruction details available in ARM DDI 0406C.b, A8-874.
   2751   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
   2752   // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
   2753   ASSERT(fraction_bits > 0 && fraction_bits <= 32);
   2754   ASSERT(CpuFeatures::IsSupported(VFP3));
   2755   int vd, d;
   2756   dst.split_code(&vd, &d);
   2757   int imm5 = 32 - fraction_bits;
   2758   int i = imm5 & 1;
   2759   int imm4 = (imm5 >> 1) & 0xf;
   2760   emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
   2761        vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
   2762 }
   2763 
   2764 
   2765 void Assembler::vneg(const DwVfpRegister dst,
   2766                      const DwVfpRegister src,
   2767                      const Condition cond) {
   2768   // Instruction details available in ARM DDI 0406C.b, A8-968.
   2769   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
   2770   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2771   int vd, d;
   2772   dst.split_code(&vd, &d);
   2773   int vm, m;
   2774   src.split_code(&vm, &m);
   2775 
   2776   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   2777        m*B5 | vm);
   2778 }
   2779 
   2780 
   2781 void Assembler::vabs(const DwVfpRegister dst,
   2782                      const DwVfpRegister src,
   2783                      const Condition cond) {
   2784   // Instruction details available in ARM DDI 0406C.b, A8-524.
   2785   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   2786   // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2787   int vd, d;
   2788   dst.split_code(&vd, &d);
   2789   int vm, m;
   2790   src.split_code(&vm, &m);
   2791   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
   2792        m*B5 | vm);
   2793 }
   2794 
   2795 
   2796 void Assembler::vadd(const DwVfpRegister dst,
   2797                      const DwVfpRegister src1,
   2798                      const DwVfpRegister src2,
   2799                      const Condition cond) {
   2800   // Dd = vadd(Dn, Dm) double precision floating point addition.
   2801   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2802   // Instruction details available in ARM DDI 0406C.b, A8-830.
   2803   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   2804   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2805   int vd, d;
   2806   dst.split_code(&vd, &d);
   2807   int vn, n;
   2808   src1.split_code(&vn, &n);
   2809   int vm, m;
   2810   src2.split_code(&vm, &m);
   2811   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2812        n*B7 | m*B5 | vm);
   2813 }
   2814 
   2815 
   2816 void Assembler::vsub(const DwVfpRegister dst,
   2817                      const DwVfpRegister src1,
   2818                      const DwVfpRegister src2,
   2819                      const Condition cond) {
   2820   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
   2821   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2822   // Instruction details available in ARM DDI 0406C.b, A8-1086.
   2823   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   2824   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2825   int vd, d;
   2826   dst.split_code(&vd, &d);
   2827   int vn, n;
   2828   src1.split_code(&vn, &n);
   2829   int vm, m;
   2830   src2.split_code(&vm, &m);
   2831   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2832        n*B7 | B6 | m*B5 | vm);
   2833 }
   2834 
   2835 
   2836 void Assembler::vmul(const DwVfpRegister dst,
   2837                      const DwVfpRegister src1,
   2838                      const DwVfpRegister src2,
   2839                      const Condition cond) {
   2840   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
   2841   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2842   // Instruction details available in ARM DDI 0406C.b, A8-960.
   2843   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
   2844   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2845   int vd, d;
   2846   dst.split_code(&vd, &d);
   2847   int vn, n;
   2848   src1.split_code(&vn, &n);
   2849   int vm, m;
   2850   src2.split_code(&vm, &m);
   2851   emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2852        n*B7 | m*B5 | vm);
   2853 }
   2854 
   2855 
   2856 void Assembler::vmla(const DwVfpRegister dst,
   2857                      const DwVfpRegister src1,
   2858                      const DwVfpRegister src2,
   2859                      const Condition cond) {
   2860   // Instruction details available in ARM DDI 0406C.b, A8-932.
   2861   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   2862   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
   2863   int vd, d;
   2864   dst.split_code(&vd, &d);
   2865   int vn, n;
   2866   src1.split_code(&vn, &n);
   2867   int vm, m;
   2868   src2.split_code(&vm, &m);
   2869   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   2870        vm);
   2871 }
   2872 
   2873 
   2874 void Assembler::vmls(const DwVfpRegister dst,
   2875                      const DwVfpRegister src1,
   2876                      const DwVfpRegister src2,
   2877                      const Condition cond) {
   2878   // Instruction details available in ARM DDI 0406C.b, A8-932.
   2879   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   2880   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
   2881   int vd, d;
   2882   dst.split_code(&vd, &d);
   2883   int vn, n;
   2884   src1.split_code(&vn, &n);
   2885   int vm, m;
   2886   src2.split_code(&vm, &m);
   2887   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
   2888        m*B5 | vm);
   2889 }
   2890 
   2891 
   2892 void Assembler::vdiv(const DwVfpRegister dst,
   2893                      const DwVfpRegister src1,
   2894                      const DwVfpRegister src2,
   2895                      const Condition cond) {
   2896   // Dd = vdiv(Dn, Dm) double precision floating point division.
   2897   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2898   // Instruction details available in ARM DDI 0406C.b, A8-882.
   2899   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
   2900   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2901   int vd, d;
   2902   dst.split_code(&vd, &d);
   2903   int vn, n;
   2904   src1.split_code(&vn, &n);
   2905   int vm, m;
   2906   src2.split_code(&vm, &m);
   2907   emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   2908        vm);
   2909 }
   2910 
   2911 
   2912 void Assembler::vcmp(const DwVfpRegister src1,
   2913                      const DwVfpRegister src2,
   2914                      const Condition cond) {
   2915   // vcmp(Dd, Dm) double precision floating point comparison.
   2916   // Instruction details available in ARM DDI 0406C.b, A8-864.
   2917   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
   2918   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2919   int vd, d;
   2920   src1.split_code(&vd, &d);
   2921   int vm, m;
   2922   src2.split_code(&vm, &m);
   2923   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   2924        m*B5 | vm);
   2925 }
   2926 
   2927 
   2928 void Assembler::vcmp(const DwVfpRegister src1,
   2929                      const double src2,
   2930                      const Condition cond) {
   2931   // vcmp(Dd, #0.0) double precision floating point comparison.
   2932   // Instruction details available in ARM DDI 0406C.b, A8-864.
   2933   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
   2934   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
   2935   ASSERT(src2 == 0.0);
   2936   int vd, d;
   2937   src1.split_code(&vd, &d);
   2938   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
   2939 }
   2940 
   2941 
   2942 void Assembler::vmsr(Register dst, Condition cond) {
   2943   // Instruction details available in ARM DDI 0406A, A8-652.
   2944   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
   2945   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2946   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
   2947        dst.code()*B12 | 0xA*B8 | B4);
   2948 }
   2949 
   2950 
   2951 void Assembler::vmrs(Register dst, Condition cond) {
   2952   // Instruction details available in ARM DDI 0406A, A8-652.
   2953   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
   2954   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2955   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
   2956        dst.code()*B12 | 0xA*B8 | B4);
   2957 }
   2958 
   2959 
   2960 void Assembler::vsqrt(const DwVfpRegister dst,
   2961                       const DwVfpRegister src,
   2962                       const Condition cond) {
   2963   // Instruction details available in ARM DDI 0406C.b, A8-1058.
   2964   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
   2965   // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
   2966   int vd, d;
   2967   dst.split_code(&vd, &d);
   2968   int vm, m;
   2969   src.split_code(&vm, &m);
   2970   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
   2971        m*B5 | vm);
   2972 }
   2973 
   2974 
   2975 // Support for NEON.
   2976 
   2977 void Assembler::vld1(NeonSize size,
   2978                      const NeonListOperand& dst,
   2979                      const NeonMemOperand& src) {
   2980   // Instruction details available in ARM DDI 0406C.b, A8.8.320.
   2981   // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
   2982   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   2983   ASSERT(CpuFeatures::IsSupported(NEON));
   2984   int vd, d;
   2985   dst.base().split_code(&vd, &d);
   2986   emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
   2987        dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
   2988 }
   2989 
   2990 
   2991 void Assembler::vst1(NeonSize size,
   2992                      const NeonListOperand& src,
   2993                      const NeonMemOperand& dst) {
   2994   // Instruction details available in ARM DDI 0406C.b, A8.8.404.
   2995   // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
   2996   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   2997   ASSERT(CpuFeatures::IsSupported(NEON));
   2998   int vd, d;
   2999   src.base().split_code(&vd, &d);
   3000   emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
   3001        size*B6 | dst.align()*B4 | dst.rm().code());
   3002 }
   3003 
   3004 
   3005 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
   3006   // Instruction details available in ARM DDI 0406C.b, A8.8.346.
   3007   // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
   3008   // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
   3009   ASSERT(CpuFeatures::IsSupported(NEON));
   3010   int vd, d;
   3011   dst.split_code(&vd, &d);
   3012   int vm, m;
   3013   src.split_code(&vm, &m);
   3014   emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
   3015         (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
   3016 }
   3017 
   3018 
   3019 // Pseudo instructions.
   3020 void Assembler::nop(int type) {
   3021   // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
   3022   // some of the CPU's pipeline and has to issue. Older ARM chips simply used
   3023   // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
   3024   // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
   3025   // a type.
   3026   ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3027   emit(al | 13*B21 | type*B12 | type);
   3028 }
   3029 
   3030 
   3031 bool Assembler::IsMovT(Instr instr) {
   3032   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3033              ((kNumRegisters-1)*B12) |            // mask out register
   3034              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3035   return instr == 0x34*B20;
   3036 }
   3037 
   3038 
   3039 bool Assembler::IsMovW(Instr instr) {
   3040   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3041              ((kNumRegisters-1)*B12) |            // mask out destination
   3042              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3043   return instr == 0x30*B20;
   3044 }
   3045 
   3046 
   3047 bool Assembler::IsNop(Instr instr, int type) {
   3048   ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3049   // Check for mov rx, rx where x = type.
   3050   return instr == (al | 13*B21 | type*B12 | type);
   3051 }
   3052 
   3053 
   3054 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
   3055   uint32_t dummy1;
   3056   uint32_t dummy2;
   3057   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
   3058 }
   3059 
   3060 
   3061 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
   3062   return is_uint12(abs(imm32));
   3063 }
   3064 
   3065 
   3066 // Debugging.
   3067 void Assembler::RecordJSReturn() {
   3068   positions_recorder()->WriteRecordedPositions();
   3069   CheckBuffer();
   3070   RecordRelocInfo(RelocInfo::JS_RETURN);
   3071 }
   3072 
   3073 
   3074 void Assembler::RecordDebugBreakSlot() {
   3075   positions_recorder()->WriteRecordedPositions();
   3076   CheckBuffer();
   3077   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
   3078 }
   3079 
   3080 
   3081 void Assembler::RecordComment(const char* msg) {
   3082   if (FLAG_code_comments) {
   3083     CheckBuffer();
   3084     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
   3085   }
   3086 }
   3087 
   3088 
   3089 void Assembler::RecordConstPool(int size) {
   3090   // We only need this for debugger support, to correctly compute offsets in the
   3091   // code.
   3092   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3093 }
   3094 
   3095 
   3096 void Assembler::GrowBuffer() {
   3097   if (!own_buffer_) FATAL("external code buffer is too small");
   3098 
   3099   // Compute new buffer size.
   3100   CodeDesc desc;  // the new buffer
   3101   if (buffer_size_ < 4*KB) {
   3102     desc.buffer_size = 4*KB;
   3103   } else if (buffer_size_ < 1*MB) {
   3104     desc.buffer_size = 2*buffer_size_;
   3105   } else {
   3106     desc.buffer_size = buffer_size_ + 1*MB;
   3107   }
   3108   CHECK_GT(desc.buffer_size, 0);  // no overflow
   3109 
   3110   // Set up new buffer.
   3111   desc.buffer = NewArray<byte>(desc.buffer_size);
   3112 
   3113   desc.instr_size = pc_offset();
   3114   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
   3115 
   3116   // Copy the data.
   3117   int pc_delta = desc.buffer - buffer_;
   3118   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   3119   MemMove(desc.buffer, buffer_, desc.instr_size);
   3120   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
   3121           desc.reloc_size);
   3122 
   3123   // Switch buffers.
   3124   DeleteArray(buffer_);
   3125   buffer_ = desc.buffer;
   3126   buffer_size_ = desc.buffer_size;
   3127   pc_ += pc_delta;
   3128   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   3129                                reloc_info_writer.last_pc() + pc_delta);
   3130 
   3131   // None of our relocation types are pc relative pointing outside the code
   3132   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   3133   // to relocate any emitted relocation entries.
   3134 
   3135   // Relocate pending relocation entries.
   3136   for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
   3137     RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
   3138     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   3139            rinfo.rmode() != RelocInfo::POSITION);
   3140     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
   3141       rinfo.set_pc(rinfo.pc() + pc_delta);
   3142     }
   3143   }
   3144   for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
   3145     RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
   3146     ASSERT(rinfo.rmode() == RelocInfo::NONE64);
   3147     rinfo.set_pc(rinfo.pc() + pc_delta);
   3148   }
   3149   constant_pool_builder_.Relocate(pc_delta);
   3150 }
   3151 
   3152 
   3153 void Assembler::db(uint8_t data) {
   3154   // No relocation info should be pending while using db. db is used
   3155   // to write pure data with no pointers and the constant pool should
   3156   // be emitted before using db.
   3157   ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3158   ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3159   CheckBuffer();
   3160   *reinterpret_cast<uint8_t*>(pc_) = data;
   3161   pc_ += sizeof(uint8_t);
   3162 }
   3163 
   3164 
   3165 void Assembler::dd(uint32_t data) {
   3166   // No relocation info should be pending while using dd. dd is used
   3167   // to write pure data with no pointers and the constant pool should
   3168   // be emitted before using dd.
   3169   ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3170   ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3171   CheckBuffer();
   3172   *reinterpret_cast<uint32_t*>(pc_) = data;
   3173   pc_ += sizeof(uint32_t);
   3174 }
   3175 
   3176 
   3177 void Assembler::emit_code_stub_address(Code* stub) {
   3178   CheckBuffer();
   3179   *reinterpret_cast<uint32_t*>(pc_) =
   3180       reinterpret_cast<uint32_t>(stub->instruction_start());
   3181   pc_ += sizeof(uint32_t);
   3182 }
   3183 
   3184 
   3185 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   3186   RelocInfo rinfo(pc_, rmode, data, NULL);
   3187   RecordRelocInfo(rinfo);
   3188 }
   3189 
   3190 
   3191 void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
   3192   if (!RelocInfo::IsNone(rinfo.rmode())) {
   3193     // Don't record external references unless the heap will be serialized.
   3194     if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE &&
   3195         !serializer_enabled() && !emit_debug_code()) {
   3196       return;
   3197     }
   3198     ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   3199     if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
   3200       RelocInfo reloc_info_with_ast_id(rinfo.pc(),
   3201                                        rinfo.rmode(),
   3202                                        RecordedAstId().ToInt(),
   3203                                        NULL);
   3204       ClearRecordedAstId();
   3205       reloc_info_writer.Write(&reloc_info_with_ast_id);
   3206     } else {
   3207       reloc_info_writer.Write(&rinfo);
   3208     }
   3209   }
   3210 }
   3211 
   3212 
   3213 void Assembler::ConstantPoolAddEntry(const RelocInfo& rinfo) {
   3214   if (FLAG_enable_ool_constant_pool) {
   3215     constant_pool_builder_.AddEntry(this, rinfo);
   3216   } else {
   3217     if (rinfo.rmode() == RelocInfo::NONE64) {
   3218       ASSERT(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
   3219       if (num_pending_64_bit_reloc_info_ == 0) {
   3220         first_const_pool_64_use_ = pc_offset();
   3221       }
   3222       pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
   3223     } else {
   3224       ASSERT(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
   3225       if (num_pending_32_bit_reloc_info_ == 0) {
   3226         first_const_pool_32_use_ = pc_offset();
   3227       }
   3228       pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
   3229     }
   3230     // Make sure the constant pool is not emitted in place of the next
   3231     // instruction for which we just recorded relocation info.
   3232     BlockConstPoolFor(1);
   3233   }
   3234 }
   3235 
   3236 
   3237 void Assembler::BlockConstPoolFor(int instructions) {
   3238   if (FLAG_enable_ool_constant_pool) {
   3239     // Should be a no-op if using an out-of-line constant pool.
   3240     ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3241     ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3242     return;
   3243   }
   3244 
   3245   int pc_limit = pc_offset() + instructions * kInstrSize;
   3246   if (no_const_pool_before_ < pc_limit) {
   3247     // Max pool start (if we need a jump and an alignment).
   3248 #ifdef DEBUG
   3249     int start = pc_limit + kInstrSize + 2 * kPointerSize;
   3250     ASSERT((num_pending_32_bit_reloc_info_ == 0) ||
   3251            (start - first_const_pool_32_use_ +
   3252             num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool));
   3253     ASSERT((num_pending_64_bit_reloc_info_ == 0) ||
   3254            (start - first_const_pool_64_use_ < kMaxDistToFPPool));
   3255 #endif
   3256     no_const_pool_before_ = pc_limit;
   3257   }
   3258 
   3259   if (next_buffer_check_ < no_const_pool_before_) {
   3260     next_buffer_check_ = no_const_pool_before_;
   3261   }
   3262 }
   3263 
   3264 
   3265 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   3266   if (FLAG_enable_ool_constant_pool) {
   3267     // Should be a no-op if using an out-of-line constant pool.
   3268     ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3269     ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3270     return;
   3271   }
   3272 
   3273   // Some short sequence of instruction mustn't be broken up by constant pool
   3274   // emission, such sequences are protected by calls to BlockConstPoolFor and
   3275   // BlockConstPoolScope.
   3276   if (is_const_pool_blocked()) {
   3277     // Something is wrong if emission is forced and blocked at the same time.
   3278     ASSERT(!force_emit);
   3279     return;
   3280   }
   3281 
   3282   // There is nothing to do if there are no pending constant pool entries.
   3283   if ((num_pending_32_bit_reloc_info_ == 0) &&
   3284       (num_pending_64_bit_reloc_info_ == 0)) {
   3285     // Calculate the offset of the next check.
   3286     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   3287     return;
   3288   }
   3289 
   3290   // Check that the code buffer is large enough before emitting the constant
   3291   // pool (include the jump over the pool and the constant pool marker and
   3292   // the gap to the relocation information).
   3293   int jump_instr = require_jump ? kInstrSize : 0;
   3294   int size_up_to_marker = jump_instr + kInstrSize;
   3295   int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize;
   3296   bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
   3297   bool require_64_bit_align = false;
   3298   if (has_fp_values) {
   3299     require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7);
   3300     if (require_64_bit_align) {
   3301       size_after_marker += kInstrSize;
   3302     }
   3303     size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize;
   3304   }
   3305 
   3306   int size = size_up_to_marker + size_after_marker;
   3307 
   3308   // We emit a constant pool when:
   3309   //  * requested to do so by parameter force_emit (e.g. after each function).
   3310   //  * the distance from the first instruction accessing the constant pool to
   3311   //    any of the constant pool entries will exceed its limit the next
   3312   //    time the pool is checked. This is overly restrictive, but we don't emit
   3313   //    constant pool entries in-order so it's conservatively correct.
   3314   //  * the instruction doesn't require a jump after itself to jump over the
   3315   //    constant pool, and we're getting close to running out of range.
   3316   if (!force_emit) {
   3317     ASSERT((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0));
   3318     bool need_emit = false;
   3319     if (has_fp_values) {
   3320       int dist64 = pc_offset() +
   3321                    size -
   3322                    num_pending_32_bit_reloc_info_ * kPointerSize -
   3323                    first_const_pool_64_use_;
   3324       if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
   3325           (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
   3326         need_emit = true;
   3327       }
   3328     }
   3329     int dist32 =
   3330       pc_offset() + size - first_const_pool_32_use_;
   3331     if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
   3332         (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
   3333       need_emit = true;
   3334     }
   3335     if (!need_emit) return;
   3336   }
   3337 
   3338   int needed_space = size + kGap;
   3339   while (buffer_space() <= needed_space) GrowBuffer();
   3340 
   3341   {
   3342     // Block recursive calls to CheckConstPool.
   3343     BlockConstPoolScope block_const_pool(this);
   3344     RecordComment("[ Constant Pool");
   3345     RecordConstPool(size);
   3346 
   3347     // Emit jump over constant pool if necessary.
   3348     Label after_pool;
   3349     if (require_jump) {
   3350       b(&after_pool);
   3351     }
   3352 
   3353     // Put down constant pool marker "Undefined instruction".
   3354     // The data size helps disassembly know what to print.
   3355     emit(kConstantPoolMarker |
   3356          EncodeConstantPoolLength(size_after_marker / kPointerSize));
   3357 
   3358     if (require_64_bit_align) {
   3359       emit(kConstantPoolMarker);
   3360     }
   3361 
   3362     // Emit 64-bit constant pool entries first: their range is smaller than
   3363     // 32-bit entries.
   3364     for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
   3365       RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
   3366 
   3367       ASSERT(!((uintptr_t)pc_ & 0x7));  // Check 64-bit alignment.
   3368 
   3369       Instr instr = instr_at(rinfo.pc());
   3370       // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
   3371       ASSERT((IsVldrDPcImmediateOffset(instr) &&
   3372               GetVldrDRegisterImmediateOffset(instr) == 0));
   3373 
   3374       int delta = pc_ - rinfo.pc() - kPcLoadDelta;
   3375       ASSERT(is_uint10(delta));
   3376 
   3377       bool found = false;
   3378       uint64_t value = rinfo.raw_data64();
   3379       for (int j = 0; j < i; j++) {
   3380         RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j];
   3381         if (value == rinfo2.raw_data64()) {
   3382           found = true;
   3383           ASSERT(rinfo2.rmode() == RelocInfo::NONE64);
   3384           Instr instr2 = instr_at(rinfo2.pc());
   3385           ASSERT(IsVldrDPcImmediateOffset(instr2));
   3386           delta = GetVldrDRegisterImmediateOffset(instr2);
   3387           delta += rinfo2.pc() - rinfo.pc();
   3388           break;
   3389         }
   3390       }
   3391 
   3392       instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));
   3393 
   3394       if (!found) {
   3395         uint64_t uint_data = rinfo.raw_data64();
   3396         emit(uint_data & 0xFFFFFFFF);
   3397         emit(uint_data >> 32);
   3398       }
   3399     }
   3400 
   3401     // Emit 32-bit constant pool entries.
   3402     for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
   3403       RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
   3404       ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   3405              rinfo.rmode() != RelocInfo::POSITION &&
   3406              rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
   3407              rinfo.rmode() != RelocInfo::CONST_POOL &&
   3408              rinfo.rmode() != RelocInfo::NONE64);
   3409 
   3410       Instr instr = instr_at(rinfo.pc());
   3411 
   3412       // 64-bit loads shouldn't get here.
   3413       ASSERT(!IsVldrDPcImmediateOffset(instr));
   3414 
   3415       if (IsLdrPcImmediateOffset(instr) &&
   3416           GetLdrRegisterImmediateOffset(instr) == 0) {
   3417         int delta = pc_ - rinfo.pc() - kPcLoadDelta;
   3418         ASSERT(is_uint12(delta));
   3419         // 0 is the smallest delta:
   3420         //   ldr rd, [pc, #0]
   3421         //   constant pool marker
   3422         //   data
   3423 
   3424         bool found = false;
   3425         if (!serializer_enabled() && rinfo.rmode() >= RelocInfo::CELL) {
   3426           for (int j = 0; j < i; j++) {
   3427             RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j];
   3428 
   3429             if ((rinfo2.data() == rinfo.data()) &&
   3430                 (rinfo2.rmode() == rinfo.rmode())) {
   3431               Instr instr2 = instr_at(rinfo2.pc());
   3432               if (IsLdrPcImmediateOffset(instr2)) {
   3433                 delta = GetLdrRegisterImmediateOffset(instr2);
   3434                 delta += rinfo2.pc() - rinfo.pc();
   3435                 found = true;
   3436                 break;
   3437               }
   3438             }
   3439           }
   3440         }
   3441 
   3442         instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
   3443 
   3444         if (!found) {
   3445           emit(rinfo.data());
   3446         }
   3447       } else {
   3448         ASSERT(IsMovW(instr));
   3449       }
   3450     }
   3451 
   3452     num_pending_32_bit_reloc_info_ = 0;
   3453     num_pending_64_bit_reloc_info_ = 0;
   3454     first_const_pool_32_use_ = -1;
   3455     first_const_pool_64_use_ = -1;
   3456 
   3457     RecordComment("]");
   3458 
   3459     if (after_pool.is_linked()) {
   3460       bind(&after_pool);
   3461     }
   3462   }
   3463 
   3464   // Since a constant pool was just emitted, move the check offset forward by
   3465   // the standard interval.
   3466   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   3467 }
   3468 
   3469 
   3470 Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
   3471   if (!FLAG_enable_ool_constant_pool) {
   3472     return isolate->factory()->empty_constant_pool_array();
   3473   }
   3474   return constant_pool_builder_.New(isolate);
   3475 }
   3476 
   3477 
   3478 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
   3479   constant_pool_builder_.Populate(this, constant_pool);
   3480 }
   3481 
   3482 
   3483 ConstantPoolBuilder::ConstantPoolBuilder()
   3484     : entries_(),
   3485       merged_indexes_(),
   3486       count_of_64bit_(0),
   3487       count_of_code_ptr_(0),
   3488       count_of_heap_ptr_(0),
   3489       count_of_32bit_(0) { }
   3490 
   3491 
   3492 bool ConstantPoolBuilder::IsEmpty() {
   3493   return entries_.size() == 0;
   3494 }
   3495 
   3496 
   3497 bool ConstantPoolBuilder::Is64BitEntry(RelocInfo::Mode rmode) {
   3498   return rmode == RelocInfo::NONE64;
   3499 }
   3500 
   3501 
   3502 bool ConstantPoolBuilder::Is32BitEntry(RelocInfo::Mode rmode) {
   3503   return !RelocInfo::IsGCRelocMode(rmode) && rmode != RelocInfo::NONE64;
   3504 }
   3505 
   3506 
   3507 bool ConstantPoolBuilder::IsCodePtrEntry(RelocInfo::Mode rmode) {
   3508   return RelocInfo::IsCodeTarget(rmode);
   3509 }
   3510 
   3511 
   3512 bool ConstantPoolBuilder::IsHeapPtrEntry(RelocInfo::Mode rmode) {
   3513   return RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode);
   3514 }
   3515 
   3516 
   3517 void ConstantPoolBuilder::AddEntry(Assembler* assm,
   3518                                    const RelocInfo& rinfo) {
   3519   RelocInfo::Mode rmode = rinfo.rmode();
   3520   ASSERT(rmode != RelocInfo::COMMENT &&
   3521          rmode != RelocInfo::POSITION &&
   3522          rmode != RelocInfo::STATEMENT_POSITION &&
   3523          rmode != RelocInfo::CONST_POOL);
   3524 
   3525 
   3526   // Try to merge entries which won't be patched.
   3527   int merged_index = -1;
   3528   if (RelocInfo::IsNone(rmode) ||
   3529       (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) {
   3530     size_t i;
   3531     std::vector<RelocInfo>::const_iterator it;
   3532     for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
   3533       if (RelocInfo::IsEqual(rinfo, *it)) {
   3534         merged_index = i;
   3535         break;
   3536       }
   3537     }
   3538   }
   3539 
   3540   entries_.push_back(rinfo);
   3541   merged_indexes_.push_back(merged_index);
   3542 
   3543   if (merged_index == -1) {
   3544     // Not merged, so update the appropriate count.
   3545     if (Is64BitEntry(rmode)) {
   3546       count_of_64bit_++;
   3547     } else if (Is32BitEntry(rmode)) {
   3548       count_of_32bit_++;
   3549     } else if (IsCodePtrEntry(rmode)) {
   3550       count_of_code_ptr_++;
   3551     } else {
   3552       ASSERT(IsHeapPtrEntry(rmode));
   3553       count_of_heap_ptr_++;
   3554     }
   3555   }
   3556 
   3557   // Check if we still have room for another entry given Arm's ldr and vldr
   3558   // immediate offset range.
   3559   // TODO(rmcilroy): Avoid creating a new object here when we support
   3560   //                 extended constant pools.
   3561   ConstantPoolArray::NumberOfEntries total(count_of_64bit_,
   3562                                            count_of_code_ptr_,
   3563                                            count_of_heap_ptr_,
   3564                                            count_of_32bit_);
   3565   ConstantPoolArray::NumberOfEntries int64_counts(count_of_64bit_, 0, 0, 0);
   3566   if (!(is_uint12(ConstantPoolArray::SizeFor(total)) &&
   3567         is_uint10(ConstantPoolArray::SizeFor(int64_counts)))) {
   3568     assm->set_constant_pool_full();
   3569   }
   3570 }
   3571 
   3572 
   3573 void ConstantPoolBuilder::Relocate(int pc_delta) {
   3574   for (std::vector<RelocInfo>::iterator rinfo = entries_.begin();
   3575        rinfo != entries_.end(); rinfo++) {
   3576     ASSERT(rinfo->rmode() != RelocInfo::JS_RETURN);
   3577     rinfo->set_pc(rinfo->pc() + pc_delta);
   3578   }
   3579 }
   3580 
   3581 
   3582 Handle<ConstantPoolArray> ConstantPoolBuilder::New(Isolate* isolate) {
   3583   if (IsEmpty()) {
   3584     return isolate->factory()->empty_constant_pool_array();
   3585   } else {
   3586     ConstantPoolArray::NumberOfEntries small(count_of_64bit_,
   3587                                              count_of_code_ptr_,
   3588                                              count_of_heap_ptr_,
   3589                                              count_of_32bit_);
   3590     return isolate->factory()->NewConstantPoolArray(small);
   3591   }
   3592 }
   3593 
   3594 
   3595 void ConstantPoolBuilder::Populate(Assembler* assm,
   3596                                    ConstantPoolArray* constant_pool) {
   3597   ASSERT(count_of_64bit_ == constant_pool->number_of_entries(
   3598              ConstantPoolArray::INT64, ConstantPoolArray::SMALL_SECTION));
   3599   ASSERT(count_of_code_ptr_ == constant_pool->number_of_entries(
   3600              ConstantPoolArray::CODE_PTR, ConstantPoolArray::SMALL_SECTION));
   3601   ASSERT(count_of_heap_ptr_ == constant_pool->number_of_entries(
   3602              ConstantPoolArray::HEAP_PTR, ConstantPoolArray::SMALL_SECTION));
   3603   ASSERT(count_of_32bit_ == constant_pool->number_of_entries(
   3604              ConstantPoolArray::INT32, ConstantPoolArray::SMALL_SECTION));
   3605   ASSERT(entries_.size() == merged_indexes_.size());
   3606 
   3607   int index_64bit = 0;
   3608   int index_code_ptr = count_of_64bit_;
   3609   int index_heap_ptr = count_of_64bit_ + count_of_code_ptr_;
   3610   int index_32bit = count_of_64bit_ + count_of_code_ptr_ + count_of_heap_ptr_;
   3611 
   3612   size_t i;
   3613   std::vector<RelocInfo>::const_iterator rinfo;
   3614   for (rinfo = entries_.begin(), i = 0; rinfo != entries_.end(); rinfo++, i++) {
   3615     RelocInfo::Mode rmode = rinfo->rmode();
   3616 
   3617     // Update constant pool if necessary and get the entry's offset.
   3618     int offset;
   3619     if (merged_indexes_[i] == -1) {
   3620       if (Is64BitEntry(rmode)) {
   3621         offset = constant_pool->OffsetOfElementAt(index_64bit) - kHeapObjectTag;
   3622         constant_pool->set(index_64bit++, rinfo->data64());
   3623       } else if (Is32BitEntry(rmode)) {
   3624         offset = constant_pool->OffsetOfElementAt(index_32bit) - kHeapObjectTag;
   3625         constant_pool->set(index_32bit++, static_cast<int32_t>(rinfo->data()));
   3626       } else if (IsCodePtrEntry(rmode)) {
   3627         offset = constant_pool->OffsetOfElementAt(index_code_ptr) -
   3628             kHeapObjectTag;
   3629         constant_pool->set(index_code_ptr++,
   3630                            reinterpret_cast<Address>(rinfo->data()));
   3631       } else {
   3632         ASSERT(IsHeapPtrEntry(rmode));
   3633         offset = constant_pool->OffsetOfElementAt(index_heap_ptr) -
   3634             kHeapObjectTag;
   3635         constant_pool->set(index_heap_ptr++,
   3636                            reinterpret_cast<Object *>(rinfo->data()));
   3637       }
   3638       merged_indexes_[i] = offset;  // Stash offset for merged entries.
   3639     } else {
   3640       size_t merged_index = static_cast<size_t>(merged_indexes_[i]);
   3641       ASSERT(merged_index < merged_indexes_.size() && merged_index < i);
   3642       offset = merged_indexes_[merged_index];
   3643     }
   3644 
   3645     // Patch vldr/ldr instruction with correct offset.
   3646     Instr instr = assm->instr_at(rinfo->pc());
   3647     if (Is64BitEntry(rmode)) {
   3648       // Instruction to patch must be 'vldr rd, [pp, #0]'.
   3649       ASSERT((Assembler::IsVldrDPpImmediateOffset(instr) &&
   3650               Assembler::GetVldrDRegisterImmediateOffset(instr) == 0));
   3651       ASSERT(is_uint10(offset));
   3652       assm->instr_at_put(rinfo->pc(),
   3653           Assembler::SetVldrDRegisterImmediateOffset(instr, offset));
   3654     } else {
   3655       // Instruction to patch must be 'ldr rd, [pp, #0]'.
   3656       ASSERT((Assembler::IsLdrPpImmediateOffset(instr) &&
   3657               Assembler::GetLdrRegisterImmediateOffset(instr) == 0));
   3658       ASSERT(is_uint12(offset));
   3659       assm->instr_at_put(rinfo->pc(),
   3660           Assembler::SetLdrRegisterImmediateOffset(instr, offset));
   3661     }
   3662   }
   3663 
   3664   ASSERT((index_64bit == count_of_64bit_) &&
   3665          (index_code_ptr == (index_64bit + count_of_code_ptr_)) &&
   3666          (index_heap_ptr == (index_code_ptr + count_of_heap_ptr_)) &&
   3667          (index_32bit == (index_heap_ptr + count_of_32bit_)));
   3668 }
   3669 
   3670 
   3671 } }  // namespace v8::internal
   3672 
   3673 #endif  // V8_TARGET_ARCH_ARM
   3674