Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Builder implementation for CGRecordLayout objects.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGRecordLayout.h"
     15 #include "CGCXXABI.h"
     16 #include "CodeGenTypes.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/Attr.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/Frontend/CodeGenOptions.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/MathExtras.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 namespace {
     34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
     35 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
     36 /// detail some of the complexities and weirdnesses here.
     37 /// * LLVM does not have unions - Unions can, in theory be represented by any
     38 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
     39 ///   and add padding if necessary.
     40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
     41 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
     42 ///   contains enough information to determine where the runs break.  Microsoft
     43 ///   and Itanium follow different rules and use different codepaths.
     44 /// * It is desired that, when possible, bitfields use the appropriate iN type
     45 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
     46 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
     47 ///   and if it is possible to use that extra byte of padding we must use
     48 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
     49 ///   C++ examples that require clipping:
     50 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
     51 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
     52 //    could exist: struct B : A { char b; }; // b goes at offset 3
     53 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
     54 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
     55 ///   has an underlying storage type.  Therefore empty structures containing
     56 ///   zero sized subobjects such as empty records or zero sized arrays still get
     57 ///   a zero sized (empty struct) storage type.
     58 /// * Clang reads the complete type rather than the base type when generating
     59 ///   code to access fields.  Bitfields in tail position with tail padding may
     60 ///   be clipped in the base class but not the complete class (we may discover
     61 ///   that the tail padding is not used in the complete class.) However,
     62 ///   because LLVM reads from the complete type it can generate incorrect code
     63 ///   if we do not clip the tail padding off of the bitfield in the complete
     64 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
     65 ///   The location of the clip is stored internally as a sentinal of type
     66 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
     67 ///   should because locations of things such as VBases are bogus in the llvm
     68 ///   type anyway) then we could eliminate the SCISSOR.
     69 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
     70 ///   get their own storage because they're laid out as part of another base
     71 ///   or at the beginning of the structure.  Determining if a VBase actually
     72 ///   gets storage awkwardly involves a walk of all bases.
     73 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
     74 struct CGRecordLowering {
     75   // MemberInfo is a helper structure that contains information about a record
     76   // member.  In additional to the standard member types, there exists a
     77   // sentinal member type that ensures correct rounding.
     78   struct MemberInfo {
     79     CharUnits Offset;
     80     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
     81     llvm::Type *Data;
     82     union {
     83       const FieldDecl *FD;
     84       const CXXRecordDecl *RD;
     85     };
     86     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
     87                const FieldDecl *FD = nullptr)
     88       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
     89     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
     90                const CXXRecordDecl *RD)
     91       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
     92     // MemberInfos are sorted so we define a < operator.
     93     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
     94   };
     95   // The constructor.
     96   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D);
     97   // Short helper routines.
     98   /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
     99   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
    100     return MemberInfo(Offset, MemberInfo::Field, Data);
    101   }
    102   bool useMSABI() {
    103     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
    104            D->isMsStruct(Context);
    105   }
    106   /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
    107   llvm::Type *getIntNType(uint64_t NumBits) {
    108     return llvm::Type::getIntNTy(Types.getLLVMContext(),
    109         (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
    110   }
    111   /// \brief Gets an llvm type of size NumBytes and alignment 1.
    112   llvm::Type *getByteArrayType(CharUnits NumBytes) {
    113     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
    114     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
    115     return NumBytes == CharUnits::One() ? Type :
    116         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
    117   }
    118   /// \brief Gets the storage type for a field decl and handles storage
    119   /// for itanium bitfields that are smaller than their declared type.
    120   llvm::Type *getStorageType(const FieldDecl *FD) {
    121     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
    122     return useMSABI() || !FD->isBitField() ? Type :
    123         getIntNType(std::min(FD->getBitWidthValue(Context),
    124                              (unsigned)Context.toBits(getSize(Type))));
    125   }
    126   /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
    127   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
    128     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
    129   }
    130   CharUnits bitsToCharUnits(uint64_t BitOffset) {
    131     return Context.toCharUnitsFromBits(BitOffset);
    132   }
    133   CharUnits getSize(llvm::Type *Type) {
    134     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
    135   }
    136   CharUnits getAlignment(llvm::Type *Type) {
    137     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
    138   }
    139   bool isZeroInitializable(const FieldDecl *FD) {
    140     const Type *Type = FD->getType()->getBaseElementTypeUnsafe();
    141     if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
    142       return Types.getCXXABI().isZeroInitializable(MPT);
    143     if (const RecordType *RT = Type->getAs<RecordType>())
    144       return isZeroInitializable(RT->getDecl());
    145     return true;
    146   }
    147   bool isZeroInitializable(const RecordDecl *RD) {
    148     return Types.getCGRecordLayout(RD).isZeroInitializable();
    149   }
    150   void appendPaddingBytes(CharUnits Size) {
    151     if (!Size.isZero())
    152       FieldTypes.push_back(getByteArrayType(Size));
    153   }
    154   uint64_t getFieldBitOffset(const FieldDecl *FD) {
    155     return Layout.getFieldOffset(FD->getFieldIndex());
    156   }
    157   // Layout routines.
    158   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
    159                        llvm::Type *StorageType);
    160   /// \brief Lowers an ASTRecordLayout to a llvm type.
    161   void lower(bool NonVirtualBaseType);
    162   void lowerUnion();
    163   void accumulateFields();
    164   void accumulateBitFields(RecordDecl::field_iterator Field,
    165                         RecordDecl::field_iterator FieldEnd);
    166   void accumulateBases();
    167   void accumulateVPtrs();
    168   void accumulateVBases();
    169   /// \brief Recursively searches all of the bases to find out if a vbase is
    170   /// not the primary vbase of some base class.
    171   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
    172   void calculateZeroInit();
    173   /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
    174   /// padding that is or can potentially be used.
    175   void clipTailPadding();
    176   /// \brief Determines if we need a packed llvm struct.
    177   void determinePacked();
    178   /// \brief Inserts padding everwhere it's needed.
    179   void insertPadding();
    180   /// \brief Fills out the structures that are ultimately consumed.
    181   void fillOutputFields();
    182   // Input memoization fields.
    183   CodeGenTypes &Types;
    184   const ASTContext &Context;
    185   const RecordDecl *D;
    186   const CXXRecordDecl *RD;
    187   const ASTRecordLayout &Layout;
    188   const llvm::DataLayout &DataLayout;
    189   // Helpful intermediate data-structures.
    190   std::vector<MemberInfo> Members;
    191   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
    192   SmallVector<llvm::Type *, 16> FieldTypes;
    193   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
    194   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
    195   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
    196   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
    197   bool IsZeroInitializable : 1;
    198   bool IsZeroInitializableAsBase : 1;
    199   bool Packed : 1;
    200 private:
    201   CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
    202   void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
    203 };
    204 } // namespace {
    205 
    206 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D)
    207   : Types(Types), Context(Types.getContext()), D(D),
    208     RD(dyn_cast<CXXRecordDecl>(D)),
    209     Layout(Types.getContext().getASTRecordLayout(D)),
    210     DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
    211     IsZeroInitializableAsBase(true), Packed(false) {}
    212 
    213 void CGRecordLowering::setBitFieldInfo(
    214     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
    215   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
    216   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
    217   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
    218   Info.Size = FD->getBitWidthValue(Context);
    219   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
    220   // Here we calculate the actual storage alignment of the bits.  E.g if we've
    221   // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
    222   // alignment of 2.
    223   Info.StorageAlignment =
    224       Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
    225   if (Info.Size > Info.StorageSize)
    226     Info.Size = Info.StorageSize;
    227   // Reverse the bit offsets for big endian machines. Because we represent
    228   // a bitfield as a single large integer load, we can imagine the bits
    229   // counting from the most-significant-bit instead of the
    230   // least-significant-bit.
    231   if (DataLayout.isBigEndian())
    232     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
    233 }
    234 
    235 void CGRecordLowering::lower(bool NVBaseType) {
    236   // The lowering process implemented in this function takes a variety of
    237   // carefully ordered phases.
    238   // 1) Store all members (fields and bases) in a list and sort them by offset.
    239   // 2) Add a 1-byte capstone member at the Size of the structure.
    240   // 3) Clip bitfield storages members if their tail padding is or might be
    241   //    used by another field or base.  The clipping process uses the capstone
    242   //    by treating it as another object that occurs after the record.
    243   // 4) Determine if the llvm-struct requires packing.  It's important that this
    244   //    phase occur after clipping, because clipping changes the llvm type.
    245   //    This phase reads the offset of the capstone when determining packedness
    246   //    and updates the alignment of the capstone to be equal of the alignment
    247   //    of the record after doing so.
    248   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
    249   //    have been computed and needs to know the alignment of the record in
    250   //    order to understand if explicit tail padding is needed.
    251   // 6) Remove the capstone, we don't need it anymore.
    252   // 7) Determine if this record can be zero-initialized.  This phase could have
    253   //    been placed anywhere after phase 1.
    254   // 8) Format the complete list of members in a way that can be consumed by
    255   //    CodeGenTypes::ComputeRecordLayout.
    256   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
    257   if (D->isUnion())
    258     return lowerUnion();
    259   accumulateFields();
    260   // RD implies C++.
    261   if (RD) {
    262     accumulateVPtrs();
    263     accumulateBases();
    264     if (Members.empty())
    265       return appendPaddingBytes(Size);
    266     if (!NVBaseType)
    267       accumulateVBases();
    268   }
    269   std::stable_sort(Members.begin(), Members.end());
    270   Members.push_back(StorageInfo(Size, getIntNType(8)));
    271   clipTailPadding();
    272   determinePacked();
    273   insertPadding();
    274   Members.pop_back();
    275   calculateZeroInit();
    276   fillOutputFields();
    277 }
    278 
    279 void CGRecordLowering::lowerUnion() {
    280   CharUnits LayoutSize = Layout.getSize();
    281   llvm::Type *StorageType = nullptr;
    282   // Compute zero-initializable status.
    283   if (!D->field_empty() && !isZeroInitializable(*D->field_begin()))
    284     IsZeroInitializable = IsZeroInitializableAsBase = false;
    285   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
    286   // locate the "most appropriate" storage type.  The heuristic for finding the
    287   // storage type isn't necessary, the first (non-0-length-bitfield) field's
    288   // type would work fine and be simpler but would be differen than what we've
    289   // been doing and cause lit tests to change.
    290   for (const auto *Field : D->fields()) {
    291     if (Field->isBitField()) {
    292       // Skip 0 sized bitfields.
    293       if (Field->getBitWidthValue(Context) == 0)
    294         continue;
    295       llvm::Type *FieldType = getStorageType(Field);
    296       if (LayoutSize < getSize(FieldType))
    297         FieldType = getByteArrayType(LayoutSize);
    298       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
    299     }
    300     Fields[Field->getCanonicalDecl()] = 0;
    301     llvm::Type *FieldType = getStorageType(Field);
    302     // Conditionally update our storage type if we've got a new "better" one.
    303     if (!StorageType ||
    304         getAlignment(FieldType) >  getAlignment(StorageType) ||
    305         (getAlignment(FieldType) == getAlignment(StorageType) &&
    306         getSize(FieldType) > getSize(StorageType)))
    307       StorageType = FieldType;
    308   }
    309   // If we have no storage type just pad to the appropriate size and return.
    310   if (!StorageType)
    311     return appendPaddingBytes(LayoutSize);
    312   // If our storage size was bigger than our required size (can happen in the
    313   // case of packed bitfields on Itanium) then just use an I8 array.
    314   if (LayoutSize < getSize(StorageType))
    315     StorageType = getByteArrayType(LayoutSize);
    316   FieldTypes.push_back(StorageType);
    317   appendPaddingBytes(LayoutSize - getSize(StorageType));
    318   // Set packed if we need it.
    319   if (LayoutSize % getAlignment(StorageType))
    320     Packed = true;
    321 }
    322 
    323 void CGRecordLowering::accumulateFields() {
    324   for (RecordDecl::field_iterator Field = D->field_begin(),
    325                                   FieldEnd = D->field_end();
    326     Field != FieldEnd;)
    327     if (Field->isBitField()) {
    328       RecordDecl::field_iterator Start = Field;
    329       // Iterate to gather the list of bitfields.
    330       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
    331       accumulateBitFields(Start, Field);
    332     } else {
    333       Members.push_back(MemberInfo(
    334           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
    335           getStorageType(*Field), *Field));
    336       ++Field;
    337     }
    338 }
    339 
    340 void
    341 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
    342                                       RecordDecl::field_iterator FieldEnd) {
    343   // Run stores the first element of the current run of bitfields.  FieldEnd is
    344   // used as a special value to note that we don't have a current run.  A
    345   // bitfield run is a contiguous collection of bitfields that can be stored in
    346   // the same storage block.  Zero-sized bitfields and bitfields that would
    347   // cross an alignment boundary break a run and start a new one.
    348   RecordDecl::field_iterator Run = FieldEnd;
    349   // Tail is the offset of the first bit off the end of the current run.  It's
    350   // used to determine if the ASTRecordLayout is treating these two bitfields as
    351   // contiguous.  StartBitOffset is offset of the beginning of the Run.
    352   uint64_t StartBitOffset, Tail = 0;
    353   if (useMSABI()) {
    354     for (; Field != FieldEnd; ++Field) {
    355       uint64_t BitOffset = getFieldBitOffset(*Field);
    356       // Zero-width bitfields end runs.
    357       if (Field->getBitWidthValue(Context) == 0) {
    358         Run = FieldEnd;
    359         continue;
    360       }
    361       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
    362       // If we don't have a run yet, or don't live within the previous run's
    363       // allocated storage then we allocate some storage and start a new run.
    364       if (Run == FieldEnd || BitOffset >= Tail) {
    365         Run = Field;
    366         StartBitOffset = BitOffset;
    367         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
    368         // Add the storage member to the record.  This must be added to the
    369         // record before the bitfield members so that it gets laid out before
    370         // the bitfields it contains get laid out.
    371         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
    372       }
    373       // Bitfields get the offset of their storage but come afterward and remain
    374       // there after a stable sort.
    375       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
    376                                    MemberInfo::Field, nullptr, *Field));
    377     }
    378     return;
    379   }
    380   for (;;) {
    381     // Check to see if we need to start a new run.
    382     if (Run == FieldEnd) {
    383       // If we're out of fields, return.
    384       if (Field == FieldEnd)
    385         break;
    386       // Any non-zero-length bitfield can start a new run.
    387       if (Field->getBitWidthValue(Context) != 0) {
    388         Run = Field;
    389         StartBitOffset = getFieldBitOffset(*Field);
    390         Tail = StartBitOffset + Field->getBitWidthValue(Context);
    391       }
    392       ++Field;
    393       continue;
    394     }
    395     // Add bitfields to the run as long as they qualify.
    396     if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
    397         Tail == getFieldBitOffset(*Field)) {
    398       Tail += Field->getBitWidthValue(Context);
    399       ++Field;
    400       continue;
    401     }
    402     // We've hit a break-point in the run and need to emit a storage field.
    403     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
    404     // Add the storage member to the record and set the bitfield info for all of
    405     // the bitfields in the run.  Bitfields get the offset of their storage but
    406     // come afterward and remain there after a stable sort.
    407     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
    408     for (; Run != Field; ++Run)
    409       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
    410                                    MemberInfo::Field, nullptr, *Run));
    411     Run = FieldEnd;
    412   }
    413 }
    414 
    415 void CGRecordLowering::accumulateBases() {
    416   // If we've got a primary virtual base, we need to add it with the bases.
    417   if (Layout.isPrimaryBaseVirtual()) {
    418     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
    419     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
    420                                  getStorageType(BaseDecl), BaseDecl));
    421   }
    422   // Accumulate the non-virtual bases.
    423   for (const auto &Base : RD->bases()) {
    424     if (Base.isVirtual())
    425       continue;
    426     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    427     if (!BaseDecl->isEmpty())
    428       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
    429           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
    430   }
    431 }
    432 
    433 void CGRecordLowering::accumulateVPtrs() {
    434   if (Layout.hasOwnVFPtr())
    435     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
    436         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
    437             getPointerTo()->getPointerTo()));
    438   if (Layout.hasOwnVBPtr())
    439     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
    440         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
    441 }
    442 
    443 void CGRecordLowering::accumulateVBases() {
    444   CharUnits ScissorOffset = Layout.getNonVirtualSize();
    445   // In the itanium ABI, it's possible to place a vbase at a dsize that is
    446   // smaller than the nvsize.  Here we check to see if such a base is placed
    447   // before the nvsize and set the scissor offset to that, instead of the
    448   // nvsize.
    449   if (!useMSABI())
    450     for (const auto &Base : RD->vbases()) {
    451       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    452       if (BaseDecl->isEmpty())
    453         continue;
    454       // If the vbase is a primary virtual base of some base, then it doesn't
    455       // get its own storage location but instead lives inside of that base.
    456       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
    457         continue;
    458       ScissorOffset = std::min(ScissorOffset,
    459                                Layout.getVBaseClassOffset(BaseDecl));
    460     }
    461   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
    462                                RD));
    463   for (const auto &Base : RD->vbases()) {
    464     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    465     if (BaseDecl->isEmpty())
    466       continue;
    467     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
    468     // If the vbase is a primary virtual base of some base, then it doesn't
    469     // get its own storage location but instead lives inside of that base.
    470     if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) &&
    471         !hasOwnStorage(RD, BaseDecl)) {
    472       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
    473                                    BaseDecl));
    474       continue;
    475     }
    476     // If we've got a vtordisp, add it as a storage type.
    477     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
    478       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
    479                                     getIntNType(32)));
    480     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
    481                                  getStorageType(BaseDecl), BaseDecl));
    482   }
    483 }
    484 
    485 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
    486                                      const CXXRecordDecl *Query) {
    487   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
    488   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
    489     return false;
    490   for (const auto &Base : Decl->bases())
    491     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
    492       return false;
    493   return true;
    494 }
    495 
    496 void CGRecordLowering::calculateZeroInit() {
    497   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
    498                                                MemberEnd = Members.end();
    499        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
    500     if (Member->Kind == MemberInfo::Field) {
    501       if (!Member->FD || isZeroInitializable(Member->FD))
    502         continue;
    503       IsZeroInitializable = IsZeroInitializableAsBase = false;
    504     } else if (Member->Kind == MemberInfo::Base ||
    505                Member->Kind == MemberInfo::VBase) {
    506       if (isZeroInitializable(Member->RD))
    507         continue;
    508       IsZeroInitializable = false;
    509       if (Member->Kind == MemberInfo::Base)
    510         IsZeroInitializableAsBase = false;
    511     }
    512   }
    513 }
    514 
    515 void CGRecordLowering::clipTailPadding() {
    516   std::vector<MemberInfo>::iterator Prior = Members.begin();
    517   CharUnits Tail = getSize(Prior->Data);
    518   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
    519                                          MemberEnd = Members.end();
    520        Member != MemberEnd; ++Member) {
    521     // Only members with data and the scissor can cut into tail padding.
    522     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
    523       continue;
    524     if (Member->Offset < Tail) {
    525       assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
    526              "Only storage fields have tail padding!");
    527       Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
    528           cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
    529     }
    530     if (Member->Data)
    531       Prior = Member;
    532     Tail = Prior->Offset + getSize(Prior->Data);
    533   }
    534 }
    535 
    536 void CGRecordLowering::determinePacked() {
    537   CharUnits Alignment = CharUnits::One();
    538   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
    539                                                MemberEnd = Members.end();
    540        Member != MemberEnd; ++Member) {
    541     if (!Member->Data)
    542       continue;
    543     // If any member falls at an offset that it not a multiple of its alignment,
    544     // then the entire record must be packed.
    545     if (Member->Offset % getAlignment(Member->Data))
    546       Packed = true;
    547     Alignment = std::max(Alignment, getAlignment(Member->Data));
    548   }
    549   // If the size of the record (the capstone's offset) is not a multiple of the
    550   // record's alignment, it must be packed.
    551   if (Members.back().Offset % Alignment)
    552     Packed = true;
    553   // Update the alignment of the sentinal.
    554   if (!Packed)
    555     Members.back().Data = getIntNType(Context.toBits(Alignment));
    556 }
    557 
    558 void CGRecordLowering::insertPadding() {
    559   std::vector<std::pair<CharUnits, CharUnits> > Padding;
    560   CharUnits Size = CharUnits::Zero();
    561   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
    562                                                MemberEnd = Members.end();
    563        Member != MemberEnd; ++Member) {
    564     if (!Member->Data)
    565       continue;
    566     CharUnits Offset = Member->Offset;
    567     assert(Offset >= Size);
    568     // Insert padding if we need to.
    569     if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
    570                                           getAlignment(Member->Data)))
    571       Padding.push_back(std::make_pair(Size, Offset - Size));
    572     Size = Offset + getSize(Member->Data);
    573   }
    574   if (Padding.empty())
    575     return;
    576   // Add the padding to the Members list and sort it.
    577   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
    578         Pad = Padding.begin(), PadEnd = Padding.end();
    579         Pad != PadEnd; ++Pad)
    580     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
    581   std::stable_sort(Members.begin(), Members.end());
    582 }
    583 
    584 void CGRecordLowering::fillOutputFields() {
    585   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
    586                                                MemberEnd = Members.end();
    587        Member != MemberEnd; ++Member) {
    588     if (Member->Data)
    589       FieldTypes.push_back(Member->Data);
    590     if (Member->Kind == MemberInfo::Field) {
    591       if (Member->FD)
    592         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
    593       // A field without storage must be a bitfield.
    594       if (!Member->Data)
    595         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
    596     } else if (Member->Kind == MemberInfo::Base)
    597       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
    598     else if (Member->Kind == MemberInfo::VBase)
    599       VirtualBases[Member->RD] = FieldTypes.size() - 1;
    600   }
    601 }
    602 
    603 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    604                                         const FieldDecl *FD,
    605                                         uint64_t Offset, uint64_t Size,
    606                                         uint64_t StorageSize,
    607                                         uint64_t StorageAlignment) {
    608   // This function is vestigial from CGRecordLayoutBuilder days but is still
    609   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
    610   // when addressed will allow for the removal of this function.
    611   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
    612   CharUnits TypeSizeInBytes =
    613     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
    614   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
    615 
    616   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
    617 
    618   if (Size > TypeSizeInBits) {
    619     // We have a wide bit-field. The extra bits are only used for padding, so
    620     // if we have a bitfield of type T, with size N:
    621     //
    622     // T t : N;
    623     //
    624     // We can just assume that it's:
    625     //
    626     // T t : sizeof(T);
    627     //
    628     Size = TypeSizeInBits;
    629   }
    630 
    631   // Reverse the bit offsets for big endian machines. Because we represent
    632   // a bitfield as a single large integer load, we can imagine the bits
    633   // counting from the most-significant-bit instead of the
    634   // least-significant-bit.
    635   if (Types.getDataLayout().isBigEndian()) {
    636     Offset = StorageSize - (Offset + Size);
    637   }
    638 
    639   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
    640 }
    641 
    642 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
    643                                                   llvm::StructType *Ty) {
    644   CGRecordLowering Builder(*this, D);
    645 
    646   Builder.lower(false);
    647 
    648   // If we're in C++, compute the base subobject type.
    649   llvm::StructType *BaseTy = nullptr;
    650   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
    651     BaseTy = Ty;
    652     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
    653       CGRecordLowering BaseBuilder(*this, D);
    654       BaseBuilder.lower(true);
    655       BaseTy = llvm::StructType::create(
    656           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
    657       addRecordTypeName(D, BaseTy, ".base");
    658     }
    659   }
    660 
    661   // Fill in the struct *after* computing the base type.  Filling in the body
    662   // signifies that the type is no longer opaque and record layout is complete,
    663   // but we may need to recursively layout D while laying D out as a base type.
    664   Ty->setBody(Builder.FieldTypes, Builder.Packed);
    665 
    666   CGRecordLayout *RL =
    667     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
    668                         Builder.IsZeroInitializableAsBase);
    669 
    670   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
    671   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
    672 
    673   // Add all the field numbers.
    674   RL->FieldInfo.swap(Builder.Fields);
    675 
    676   // Add bitfield info.
    677   RL->BitFields.swap(Builder.BitFields);
    678 
    679   // Dump the layout, if requested.
    680   if (getContext().getLangOpts().DumpRecordLayouts) {
    681     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
    682     llvm::outs() << "Record: ";
    683     D->dump(llvm::outs());
    684     llvm::outs() << "\nLayout: ";
    685     RL->print(llvm::outs());
    686   }
    687 
    688 #ifndef NDEBUG
    689   // Verify that the computed LLVM struct size matches the AST layout size.
    690   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
    691 
    692   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
    693   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
    694          "Type size mismatch!");
    695 
    696   if (BaseTy) {
    697     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    698 
    699     uint64_t AlignedNonVirtualTypeSizeInBits =
    700       getContext().toBits(NonVirtualSize);
    701 
    702     assert(AlignedNonVirtualTypeSizeInBits ==
    703            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
    704            "Type size mismatch!");
    705   }
    706 
    707   // Verify that the LLVM and AST field offsets agree.
    708   llvm::StructType *ST =
    709     dyn_cast<llvm::StructType>(RL->getLLVMType());
    710   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
    711 
    712   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
    713   RecordDecl::field_iterator it = D->field_begin();
    714   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
    715     const FieldDecl *FD = *it;
    716 
    717     // For non-bit-fields, just check that the LLVM struct offset matches the
    718     // AST offset.
    719     if (!FD->isBitField()) {
    720       unsigned FieldNo = RL->getLLVMFieldNo(FD);
    721       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
    722              "Invalid field offset!");
    723       continue;
    724     }
    725 
    726     // Ignore unnamed bit-fields.
    727     if (!FD->getDeclName())
    728       continue;
    729 
    730     // Don't inspect zero-length bitfields.
    731     if (FD->getBitWidthValue(getContext()) == 0)
    732       continue;
    733 
    734     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
    735     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
    736 
    737     // Unions have overlapping elements dictating their layout, but for
    738     // non-unions we can verify that this section of the layout is the exact
    739     // expected size.
    740     if (D->isUnion()) {
    741       // For unions we verify that the start is zero and the size
    742       // is in-bounds. However, on BE systems, the offset may be non-zero, but
    743       // the size + offset should match the storage size in that case as it
    744       // "starts" at the back.
    745       if (getDataLayout().isBigEndian())
    746         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
    747                Info.StorageSize &&
    748                "Big endian union bitfield does not end at the back");
    749       else
    750         assert(Info.Offset == 0 &&
    751                "Little endian union bitfield with a non-zero offset");
    752       assert(Info.StorageSize <= SL->getSizeInBits() &&
    753              "Union not large enough for bitfield storage");
    754     } else {
    755       assert(Info.StorageSize ==
    756              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
    757              "Storage size does not match the element type size");
    758     }
    759     assert(Info.Size > 0 && "Empty bitfield!");
    760     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
    761            "Bitfield outside of its allocated storage");
    762   }
    763 #endif
    764 
    765   return RL;
    766 }
    767 
    768 void CGRecordLayout::print(raw_ostream &OS) const {
    769   OS << "<CGRecordLayout\n";
    770   OS << "  LLVMType:" << *CompleteObjectType << "\n";
    771   if (BaseSubobjectType)
    772     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
    773   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
    774   OS << "  BitFields:[\n";
    775 
    776   // Print bit-field infos in declaration order.
    777   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
    778   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
    779          it = BitFields.begin(), ie = BitFields.end();
    780        it != ie; ++it) {
    781     const RecordDecl *RD = it->first->getParent();
    782     unsigned Index = 0;
    783     for (RecordDecl::field_iterator
    784            it2 = RD->field_begin(); *it2 != it->first; ++it2)
    785       ++Index;
    786     BFIs.push_back(std::make_pair(Index, &it->second));
    787   }
    788   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
    789   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
    790     OS.indent(4);
    791     BFIs[i].second->print(OS);
    792     OS << "\n";
    793   }
    794 
    795   OS << "]>\n";
    796 }
    797 
    798 void CGRecordLayout::dump() const {
    799   print(llvm::errs());
    800 }
    801 
    802 void CGBitFieldInfo::print(raw_ostream &OS) const {
    803   OS << "<CGBitFieldInfo"
    804      << " Offset:" << Offset
    805      << " Size:" << Size
    806      << " IsSigned:" << IsSigned
    807      << " StorageSize:" << StorageSize
    808      << " StorageAlignment:" << StorageAlignment << ">";
    809 }
    810 
    811 void CGBitFieldInfo::dump() const {
    812   print(llvm::errs());
    813 }
    814