1 //===-- StackColoring.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the stack-coloring optimization that looks for 11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), 12 // which represent the possible lifetime of stack slots. It attempts to 13 // merge disjoint stack slots and reduce the used stack space. 14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 15 // 16 // TODO: In the future we plan to improve stack coloring in the following ways: 17 // 1. Allow merging multiple small slots into a single larger slot at different 18 // offsets. 19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 20 // spill slots. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SparseSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/LiveInterval.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/StackProtector.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/MC/MCInstrItineraries.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "stackcoloring" 61 62 static cl::opt<bool> 63 DisableColoring("no-stack-coloring", 64 cl::init(false), cl::Hidden, 65 cl::desc("Disable stack coloring")); 66 67 /// The user may write code that uses allocas outside of the declared lifetime 68 /// zone. This can happen when the user returns a reference to a local 69 /// data-structure. We can detect these cases and decide not to optimize the 70 /// code. If this flag is enabled, we try to save the user. 71 static cl::opt<bool> 72 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 73 cl::init(false), cl::Hidden, 74 cl::desc("Do not optimize lifetime zones that " 75 "are broken")); 76 77 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 78 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 79 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 80 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 81 82 //===----------------------------------------------------------------------===// 83 // StackColoring Pass 84 //===----------------------------------------------------------------------===// 85 86 namespace { 87 /// StackColoring - A machine pass for merging disjoint stack allocations, 88 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 89 class StackColoring : public MachineFunctionPass { 90 MachineFrameInfo *MFI; 91 MachineFunction *MF; 92 93 /// A class representing liveness information for a single basic block. 94 /// Each bit in the BitVector represents the liveness property 95 /// for a different stack slot. 96 struct BlockLifetimeInfo { 97 /// Which slots BEGINs in each basic block. 98 BitVector Begin; 99 /// Which slots ENDs in each basic block. 100 BitVector End; 101 /// Which slots are marked as LIVE_IN, coming into each basic block. 102 BitVector LiveIn; 103 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 104 BitVector LiveOut; 105 }; 106 107 /// Maps active slots (per bit) for each basic block. 108 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap; 109 LivenessMap BlockLiveness; 110 111 /// Maps serial numbers to basic blocks. 112 DenseMap<const MachineBasicBlock*, int> BasicBlocks; 113 /// Maps basic blocks to a serial number. 114 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering; 115 116 /// Maps liveness intervals for each slot. 117 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; 118 /// VNInfo is used for the construction of LiveIntervals. 119 VNInfo::Allocator VNInfoAllocator; 120 /// SlotIndex analysis object. 121 SlotIndexes *Indexes; 122 /// The stack protector object. 123 StackProtector *SP; 124 125 /// The list of lifetime markers found. These markers are to be removed 126 /// once the coloring is done. 127 SmallVector<MachineInstr*, 8> Markers; 128 129 public: 130 static char ID; 131 StackColoring() : MachineFunctionPass(ID) { 132 initializeStackColoringPass(*PassRegistry::getPassRegistry()); 133 } 134 void getAnalysisUsage(AnalysisUsage &AU) const override; 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 private: 138 /// Debug. 139 void dump() const; 140 141 /// Removes all of the lifetime marker instructions from the function. 142 /// \returns true if any markers were removed. 143 bool removeAllMarkers(); 144 145 /// Scan the machine function and find all of the lifetime markers. 146 /// Record the findings in the BEGIN and END vectors. 147 /// \returns the number of markers found. 148 unsigned collectMarkers(unsigned NumSlot); 149 150 /// Perform the dataflow calculation and calculate the lifetime for each of 151 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 152 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 153 /// in and out blocks. 154 void calculateLocalLiveness(); 155 156 /// Construct the LiveIntervals for the slots. 157 void calculateLiveIntervals(unsigned NumSlots); 158 159 /// Go over the machine function and change instructions which use stack 160 /// slots to use the joint slots. 161 void remapInstructions(DenseMap<int, int> &SlotRemap); 162 163 /// The input program may contain instructions which are not inside lifetime 164 /// markers. This can happen due to a bug in the compiler or due to a bug in 165 /// user code (for example, returning a reference to a local variable). 166 /// This procedure checks all of the instructions in the function and 167 /// invalidates lifetime ranges which do not contain all of the instructions 168 /// which access that frame slot. 169 void removeInvalidSlotRanges(); 170 171 /// Map entries which point to other entries to their destination. 172 /// A->B->C becomes A->C. 173 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 174 }; 175 } // end anonymous namespace 176 177 char StackColoring::ID = 0; 178 char &llvm::StackColoringID = StackColoring::ID; 179 180 INITIALIZE_PASS_BEGIN(StackColoring, 181 "stack-coloring", "Merge disjoint stack slots", false, false) 182 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 184 INITIALIZE_PASS_DEPENDENCY(StackProtector) 185 INITIALIZE_PASS_END(StackColoring, 186 "stack-coloring", "Merge disjoint stack slots", false, false) 187 188 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { 189 AU.addRequired<MachineDominatorTree>(); 190 AU.addPreserved<MachineDominatorTree>(); 191 AU.addRequired<SlotIndexes>(); 192 AU.addRequired<StackProtector>(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 void StackColoring::dump() const { 197 for (MachineBasicBlock *MBB : depth_first(MF)) { 198 DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " [" 199 << MBB->getName() << "]\n"); 200 201 LivenessMap::const_iterator BI = BlockLiveness.find(MBB); 202 assert(BI != BlockLiveness.end() && "Block not found"); 203 const BlockLifetimeInfo &BlockInfo = BI->second; 204 205 DEBUG(dbgs()<<"BEGIN : {"); 206 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i) 207 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" "); 208 DEBUG(dbgs()<<"}\n"); 209 210 DEBUG(dbgs()<<"END : {"); 211 for (unsigned i=0; i < BlockInfo.End.size(); ++i) 212 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" "); 213 214 DEBUG(dbgs()<<"}\n"); 215 216 DEBUG(dbgs()<<"LIVE_IN: {"); 217 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i) 218 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" "); 219 220 DEBUG(dbgs()<<"}\n"); 221 DEBUG(dbgs()<<"LIVEOUT: {"); 222 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i) 223 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" "); 224 DEBUG(dbgs()<<"}\n"); 225 } 226 } 227 228 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 229 unsigned MarkersFound = 0; 230 // Scan the function to find all lifetime markers. 231 // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a 232 // deterministic numbering, and because we'll need a post-order iteration 233 // later for solving the liveness dataflow problem. 234 for (MachineBasicBlock *MBB : depth_first(MF)) { 235 236 // Assign a serial number to this basic block. 237 BasicBlocks[MBB] = BasicBlockNumbering.size(); 238 BasicBlockNumbering.push_back(MBB); 239 240 // Keep a reference to avoid repeated lookups. 241 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; 242 243 BlockInfo.Begin.resize(NumSlot); 244 BlockInfo.End.resize(NumSlot); 245 246 for (MachineInstr &MI : *MBB) { 247 if (MI.getOpcode() != TargetOpcode::LIFETIME_START && 248 MI.getOpcode() != TargetOpcode::LIFETIME_END) 249 continue; 250 251 Markers.push_back(&MI); 252 253 bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START; 254 const MachineOperand &MO = MI.getOperand(0); 255 unsigned Slot = MO.getIndex(); 256 257 MarkersFound++; 258 259 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 260 if (Allocation) { 261 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<< 262 " with allocation: "<< Allocation->getName()<<"\n"); 263 } 264 265 if (IsStart) { 266 BlockInfo.Begin.set(Slot); 267 } else { 268 if (BlockInfo.Begin.test(Slot)) { 269 // Allocas that start and end within a single block are handled 270 // specially when computing the LiveIntervals to avoid pessimizing 271 // the liveness propagation. 272 BlockInfo.Begin.reset(Slot); 273 } else { 274 BlockInfo.End.set(Slot); 275 } 276 } 277 } 278 } 279 280 // Update statistics. 281 NumMarkerSeen += MarkersFound; 282 return MarkersFound; 283 } 284 285 void StackColoring::calculateLocalLiveness() { 286 // Perform a standard reverse dataflow computation to solve for 287 // global liveness. The BEGIN set here is equivalent to KILL in the standard 288 // formulation, and END is equivalent to GEN. The result of this computation 289 // is a map from blocks to bitvectors where the bitvectors represent which 290 // allocas are live in/out of that block. 291 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(), 292 BasicBlockNumbering.end()); 293 unsigned NumSSMIters = 0; 294 bool changed = true; 295 while (changed) { 296 changed = false; 297 ++NumSSMIters; 298 299 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet; 300 301 for (const MachineBasicBlock *BB : BasicBlockNumbering) { 302 if (!BBSet.count(BB)) continue; 303 304 // Use an iterator to avoid repeated lookups. 305 LivenessMap::iterator BI = BlockLiveness.find(BB); 306 assert(BI != BlockLiveness.end() && "Block not found"); 307 BlockLifetimeInfo &BlockInfo = BI->second; 308 309 BitVector LocalLiveIn; 310 BitVector LocalLiveOut; 311 312 // Forward propagation from begins to ends. 313 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 314 PE = BB->pred_end(); PI != PE; ++PI) { 315 LivenessMap::const_iterator I = BlockLiveness.find(*PI); 316 assert(I != BlockLiveness.end() && "Predecessor not found"); 317 LocalLiveIn |= I->second.LiveOut; 318 } 319 LocalLiveIn |= BlockInfo.End; 320 LocalLiveIn.reset(BlockInfo.Begin); 321 322 // Reverse propagation from ends to begins. 323 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 324 SE = BB->succ_end(); SI != SE; ++SI) { 325 LivenessMap::const_iterator I = BlockLiveness.find(*SI); 326 assert(I != BlockLiveness.end() && "Successor not found"); 327 LocalLiveOut |= I->second.LiveIn; 328 } 329 LocalLiveOut |= BlockInfo.Begin; 330 LocalLiveOut.reset(BlockInfo.End); 331 332 LocalLiveIn |= LocalLiveOut; 333 LocalLiveOut |= LocalLiveIn; 334 335 // After adopting the live bits, we need to turn-off the bits which 336 // are de-activated in this block. 337 LocalLiveOut.reset(BlockInfo.End); 338 LocalLiveIn.reset(BlockInfo.Begin); 339 340 // If we have both BEGIN and END markers in the same basic block then 341 // we know that the BEGIN marker comes after the END, because we already 342 // handle the case where the BEGIN comes before the END when collecting 343 // the markers (and building the BEGIN/END vectore). 344 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both 345 // BEGIN and END because it means that the value lives before and after 346 // this basic block. 347 BitVector LocalEndBegin = BlockInfo.End; 348 LocalEndBegin &= BlockInfo.Begin; 349 LocalLiveIn |= LocalEndBegin; 350 LocalLiveOut |= LocalEndBegin; 351 352 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 353 changed = true; 354 BlockInfo.LiveIn |= LocalLiveIn; 355 356 NextBBSet.insert(BB->pred_begin(), BB->pred_end()); 357 } 358 359 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 360 changed = true; 361 BlockInfo.LiveOut |= LocalLiveOut; 362 363 NextBBSet.insert(BB->succ_begin(), BB->succ_end()); 364 } 365 } 366 367 BBSet = NextBBSet; 368 }// while changed. 369 } 370 371 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 372 SmallVector<SlotIndex, 16> Starts; 373 SmallVector<SlotIndex, 16> Finishes; 374 375 // For each block, find which slots are active within this block 376 // and update the live intervals. 377 for (const MachineBasicBlock &MBB : *MF) { 378 Starts.clear(); 379 Starts.resize(NumSlots); 380 Finishes.clear(); 381 Finishes.resize(NumSlots); 382 383 // Create the interval for the basic blocks with lifetime markers in them. 384 for (const MachineInstr *MI : Markers) { 385 if (MI->getParent() != &MBB) 386 continue; 387 388 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START || 389 MI->getOpcode() == TargetOpcode::LIFETIME_END) && 390 "Invalid Lifetime marker"); 391 392 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START; 393 const MachineOperand &Mo = MI->getOperand(0); 394 int Slot = Mo.getIndex(); 395 assert(Slot >= 0 && "Invalid slot"); 396 397 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); 398 399 if (IsStart) { 400 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex) 401 Starts[Slot] = ThisIndex; 402 } else { 403 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex) 404 Finishes[Slot] = ThisIndex; 405 } 406 } 407 408 // Create the interval of the blocks that we previously found to be 'alive'. 409 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; 410 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 411 pos = MBBLiveness.LiveIn.find_next(pos)) { 412 Starts[pos] = Indexes->getMBBStartIdx(&MBB); 413 } 414 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1; 415 pos = MBBLiveness.LiveOut.find_next(pos)) { 416 Finishes[pos] = Indexes->getMBBEndIdx(&MBB); 417 } 418 419 for (unsigned i = 0; i < NumSlots; ++i) { 420 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range"); 421 if (!Starts[i].isValid()) 422 continue; 423 424 assert(Starts[i] && Finishes[i] && "Invalid interval"); 425 VNInfo *ValNum = Intervals[i]->getValNumInfo(0); 426 SlotIndex S = Starts[i]; 427 SlotIndex F = Finishes[i]; 428 if (S < F) { 429 // We have a single consecutive region. 430 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum)); 431 } else { 432 // We have two non-consecutive regions. This happens when 433 // LIFETIME_START appears after the LIFETIME_END marker. 434 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB); 435 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB); 436 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum)); 437 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum)); 438 } 439 } 440 } 441 } 442 443 bool StackColoring::removeAllMarkers() { 444 unsigned Count = 0; 445 for (MachineInstr *MI : Markers) { 446 MI->eraseFromParent(); 447 Count++; 448 } 449 Markers.clear(); 450 451 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n"); 452 return Count; 453 } 454 455 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 456 unsigned FixedInstr = 0; 457 unsigned FixedMemOp = 0; 458 unsigned FixedDbg = 0; 459 MachineModuleInfo *MMI = &MF->getMMI(); 460 461 // Remap debug information that refers to stack slots. 462 for (auto &VI : MMI->getVariableDbgInfo()) { 463 if (!VI.Var) 464 continue; 465 if (SlotRemap.count(VI.Slot)) { 466 DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n"); 467 VI.Slot = SlotRemap[VI.Slot]; 468 FixedDbg++; 469 } 470 } 471 472 // Keep a list of *allocas* which need to be remapped. 473 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 474 for (const std::pair<int, int> &SI : SlotRemap) { 475 const AllocaInst *From = MFI->getObjectAllocation(SI.first); 476 const AllocaInst *To = MFI->getObjectAllocation(SI.second); 477 assert(To && From && "Invalid allocation object"); 478 Allocas[From] = To; 479 480 // AA might be used later for instruction scheduling, and we need it to be 481 // able to deduce the correct aliasing releationships between pointers 482 // derived from the alloca being remapped and the target of that remapping. 483 // The only safe way, without directly informing AA about the remapping 484 // somehow, is to directly update the IR to reflect the change being made 485 // here. 486 Instruction *Inst = const_cast<AllocaInst *>(To); 487 if (From->getType() != To->getType()) { 488 BitCastInst *Cast = new BitCastInst(Inst, From->getType()); 489 Cast->insertAfter(Inst); 490 Inst = Cast; 491 } 492 493 // Allow the stack protector to adjust its value map to account for the 494 // upcoming replacement. 495 SP->adjustForColoring(From, To); 496 497 // Note that this will not replace uses in MMOs (which we'll update below), 498 // or anywhere else (which is why we won't delete the original 499 // instruction). 500 const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst); 501 } 502 503 // Remap all instructions to the new stack slots. 504 for (MachineBasicBlock &BB : *MF) 505 for (MachineInstr &I : BB) { 506 // Skip lifetime markers. We'll remove them soon. 507 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 508 I.getOpcode() == TargetOpcode::LIFETIME_END) 509 continue; 510 511 // Update the MachineMemOperand to use the new alloca. 512 for (MachineMemOperand *MMO : I.memoperands()) { 513 // FIXME: In order to enable the use of TBAA when using AA in CodeGen, 514 // we'll also need to update the TBAA nodes in MMOs with values 515 // derived from the merged allocas. When doing this, we'll need to use 516 // the same variant of GetUnderlyingObjects that is used by the 517 // instruction scheduler (that can look through ptrtoint/inttoptr 518 // pairs). 519 520 // We've replaced IR-level uses of the remapped allocas, so we only 521 // need to replace direct uses here. 522 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); 523 if (!AI) 524 continue; 525 526 if (!Allocas.count(AI)) 527 continue; 528 529 MMO->setValue(Allocas[AI]); 530 FixedMemOp++; 531 } 532 533 // Update all of the machine instruction operands. 534 for (MachineOperand &MO : I.operands()) { 535 if (!MO.isFI()) 536 continue; 537 int FromSlot = MO.getIndex(); 538 539 // Don't touch arguments. 540 if (FromSlot<0) 541 continue; 542 543 // Only look at mapped slots. 544 if (!SlotRemap.count(FromSlot)) 545 continue; 546 547 // In a debug build, check that the instruction that we are modifying is 548 // inside the expected live range. If the instruction is not inside 549 // the calculated range then it means that the alloca usage moved 550 // outside of the lifetime markers, or that the user has a bug. 551 // NOTE: Alloca address calculations which happen outside the lifetime 552 // zone are are okay, despite the fact that we don't have a good way 553 // for validating all of the usages of the calculation. 554 #ifndef NDEBUG 555 bool TouchesMemory = I.mayLoad() || I.mayStore(); 556 // If we *don't* protect the user from escaped allocas, don't bother 557 // validating the instructions. 558 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) { 559 SlotIndex Index = Indexes->getInstructionIndex(&I); 560 const LiveInterval *Interval = &*Intervals[FromSlot]; 561 assert(Interval->find(Index) != Interval->end() && 562 "Found instruction usage outside of live range."); 563 } 564 #endif 565 566 // Fix the machine instructions. 567 int ToSlot = SlotRemap[FromSlot]; 568 MO.setIndex(ToSlot); 569 FixedInstr++; 570 } 571 } 572 573 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n"); 574 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n"); 575 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n"); 576 } 577 578 void StackColoring::removeInvalidSlotRanges() { 579 for (MachineBasicBlock &BB : *MF) 580 for (MachineInstr &I : BB) { 581 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 582 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue()) 583 continue; 584 585 // Some intervals are suspicious! In some cases we find address 586 // calculations outside of the lifetime zone, but not actual memory 587 // read or write. Memory accesses outside of the lifetime zone are a clear 588 // violation, but address calculations are okay. This can happen when 589 // GEPs are hoisted outside of the lifetime zone. 590 // So, in here we only check instructions which can read or write memory. 591 if (!I.mayLoad() && !I.mayStore()) 592 continue; 593 594 // Check all of the machine operands. 595 for (const MachineOperand &MO : I.operands()) { 596 if (!MO.isFI()) 597 continue; 598 599 int Slot = MO.getIndex(); 600 601 if (Slot<0) 602 continue; 603 604 if (Intervals[Slot]->empty()) 605 continue; 606 607 // Check that the used slot is inside the calculated lifetime range. 608 // If it is not, warn about it and invalidate the range. 609 LiveInterval *Interval = &*Intervals[Slot]; 610 SlotIndex Index = Indexes->getInstructionIndex(&I); 611 if (Interval->find(Index) == Interval->end()) { 612 Interval->clear(); 613 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n"); 614 EscapedAllocas++; 615 } 616 } 617 } 618 } 619 620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 621 unsigned NumSlots) { 622 // Expunge slot remap map. 623 for (unsigned i=0; i < NumSlots; ++i) { 624 // If we are remapping i 625 if (SlotRemap.count(i)) { 626 int Target = SlotRemap[i]; 627 // As long as our target is mapped to something else, follow it. 628 while (SlotRemap.count(Target)) { 629 Target = SlotRemap[Target]; 630 SlotRemap[i] = Target; 631 } 632 } 633 } 634 } 635 636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) { 637 if (skipOptnoneFunction(*Func.getFunction())) 638 return false; 639 640 DEBUG(dbgs() << "********** Stack Coloring **********\n" 641 << "********** Function: " 642 << ((const Value*)Func.getFunction())->getName() << '\n'); 643 MF = &Func; 644 MFI = MF->getFrameInfo(); 645 Indexes = &getAnalysis<SlotIndexes>(); 646 SP = &getAnalysis<StackProtector>(); 647 BlockLiveness.clear(); 648 BasicBlocks.clear(); 649 BasicBlockNumbering.clear(); 650 Markers.clear(); 651 Intervals.clear(); 652 VNInfoAllocator.Reset(); 653 654 unsigned NumSlots = MFI->getObjectIndexEnd(); 655 656 // If there are no stack slots then there are no markers to remove. 657 if (!NumSlots) 658 return false; 659 660 SmallVector<int, 8> SortedSlots; 661 662 SortedSlots.reserve(NumSlots); 663 Intervals.reserve(NumSlots); 664 665 unsigned NumMarkers = collectMarkers(NumSlots); 666 667 unsigned TotalSize = 0; 668 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n"); 669 DEBUG(dbgs()<<"Slot structure:\n"); 670 671 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 672 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n"); 673 TotalSize += MFI->getObjectSize(i); 674 } 675 676 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n"); 677 678 // Don't continue because there are not enough lifetime markers, or the 679 // stack is too small, or we are told not to optimize the slots. 680 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 681 DEBUG(dbgs()<<"Will not try to merge slots.\n"); 682 return removeAllMarkers(); 683 } 684 685 for (unsigned i=0; i < NumSlots; ++i) { 686 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); 687 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 688 Intervals.push_back(std::move(LI)); 689 SortedSlots.push_back(i); 690 } 691 692 // Calculate the liveness of each block. 693 calculateLocalLiveness(); 694 695 // Propagate the liveness information. 696 calculateLiveIntervals(NumSlots); 697 698 // Search for allocas which are used outside of the declared lifetime 699 // markers. 700 if (ProtectFromEscapedAllocas) 701 removeInvalidSlotRanges(); 702 703 // Maps old slots to new slots. 704 DenseMap<int, int> SlotRemap; 705 unsigned RemovedSlots = 0; 706 unsigned ReducedSize = 0; 707 708 // Do not bother looking at empty intervals. 709 for (unsigned I = 0; I < NumSlots; ++I) { 710 if (Intervals[SortedSlots[I]]->empty()) 711 SortedSlots[I] = -1; 712 } 713 714 // This is a simple greedy algorithm for merging allocas. First, sort the 715 // slots, placing the largest slots first. Next, perform an n^2 scan and look 716 // for disjoint slots. When you find disjoint slots, merge the samller one 717 // into the bigger one and update the live interval. Remove the small alloca 718 // and continue. 719 720 // Sort the slots according to their size. Place unused slots at the end. 721 // Use stable sort to guarantee deterministic code generation. 722 std::stable_sort(SortedSlots.begin(), SortedSlots.end(), 723 [this](int LHS, int RHS) { 724 // We use -1 to denote a uninteresting slot. Place these slots at the end. 725 if (LHS == -1) return false; 726 if (RHS == -1) return true; 727 // Sort according to size. 728 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 729 }); 730 731 bool Changed = true; 732 while (Changed) { 733 Changed = false; 734 for (unsigned I = 0; I < NumSlots; ++I) { 735 if (SortedSlots[I] == -1) 736 continue; 737 738 for (unsigned J=I+1; J < NumSlots; ++J) { 739 if (SortedSlots[J] == -1) 740 continue; 741 742 int FirstSlot = SortedSlots[I]; 743 int SecondSlot = SortedSlots[J]; 744 LiveInterval *First = &*Intervals[FirstSlot]; 745 LiveInterval *Second = &*Intervals[SecondSlot]; 746 assert (!First->empty() && !Second->empty() && "Found an empty range"); 747 748 // Merge disjoint slots. 749 if (!First->overlaps(*Second)) { 750 Changed = true; 751 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); 752 SlotRemap[SecondSlot] = FirstSlot; 753 SortedSlots[J] = -1; 754 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<< 755 SecondSlot<<" together.\n"); 756 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), 757 MFI->getObjectAlignment(SecondSlot)); 758 759 assert(MFI->getObjectSize(FirstSlot) >= 760 MFI->getObjectSize(SecondSlot) && 761 "Merging a small object into a larger one"); 762 763 RemovedSlots+=1; 764 ReducedSize += MFI->getObjectSize(SecondSlot); 765 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 766 MFI->RemoveStackObject(SecondSlot); 767 } 768 } 769 } 770 }// While changed. 771 772 // Record statistics. 773 StackSpaceSaved += ReducedSize; 774 StackSlotMerged += RemovedSlots; 775 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<< 776 ReducedSize<<" bytes\n"); 777 778 // Scan the entire function and update all machine operands that use frame 779 // indices to use the remapped frame index. 780 expungeSlotMap(SlotRemap, NumSlots); 781 remapInstructions(SlotRemap); 782 783 return removeAllMarkers(); 784 } 785