Home | History | Annotate | Download | only in CodeGen
      1 //===-- StackColoring.cpp -------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements the stack-coloring optimization that looks for
     11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
     12 // which represent the possible lifetime of stack slots. It attempts to
     13 // merge disjoint stack slots and reduce the used stack space.
     14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
     15 //
     16 // TODO: In the future we plan to improve stack coloring in the following ways:
     17 // 1. Allow merging multiple small slots into a single larger slot at different
     18 //    offsets.
     19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
     20 //    spill slots.
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/ADT/BitVector.h"
     26 #include "llvm/ADT/DepthFirstIterator.h"
     27 #include "llvm/ADT/PostOrderIterator.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/ADT/SmallPtrSet.h"
     30 #include "llvm/ADT/SparseSet.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/CodeGen/LiveInterval.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     36 #include "llvm/CodeGen/MachineDominators.h"
     37 #include "llvm/CodeGen/MachineFrameInfo.h"
     38 #include "llvm/CodeGen/MachineFunctionPass.h"
     39 #include "llvm/CodeGen/MachineLoopInfo.h"
     40 #include "llvm/CodeGen/MachineMemOperand.h"
     41 #include "llvm/CodeGen/MachineModuleInfo.h"
     42 #include "llvm/CodeGen/MachineRegisterInfo.h"
     43 #include "llvm/CodeGen/PseudoSourceValue.h"
     44 #include "llvm/CodeGen/SlotIndexes.h"
     45 #include "llvm/CodeGen/StackProtector.h"
     46 #include "llvm/IR/DebugInfo.h"
     47 #include "llvm/IR/Dominators.h"
     48 #include "llvm/IR/Function.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/Module.h"
     51 #include "llvm/MC/MCInstrItineraries.h"
     52 #include "llvm/Support/CommandLine.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include "llvm/Target/TargetInstrInfo.h"
     56 #include "llvm/Target/TargetRegisterInfo.h"
     57 
     58 using namespace llvm;
     59 
     60 #define DEBUG_TYPE "stackcoloring"
     61 
     62 static cl::opt<bool>
     63 DisableColoring("no-stack-coloring",
     64         cl::init(false), cl::Hidden,
     65         cl::desc("Disable stack coloring"));
     66 
     67 /// The user may write code that uses allocas outside of the declared lifetime
     68 /// zone. This can happen when the user returns a reference to a local
     69 /// data-structure. We can detect these cases and decide not to optimize the
     70 /// code. If this flag is enabled, we try to save the user.
     71 static cl::opt<bool>
     72 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
     73                           cl::init(false), cl::Hidden,
     74                           cl::desc("Do not optimize lifetime zones that "
     75                                    "are broken"));
     76 
     77 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
     78 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
     79 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
     80 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
     81 
     82 //===----------------------------------------------------------------------===//
     83 //                           StackColoring Pass
     84 //===----------------------------------------------------------------------===//
     85 
     86 namespace {
     87 /// StackColoring - A machine pass for merging disjoint stack allocations,
     88 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
     89 class StackColoring : public MachineFunctionPass {
     90   MachineFrameInfo *MFI;
     91   MachineFunction *MF;
     92 
     93   /// A class representing liveness information for a single basic block.
     94   /// Each bit in the BitVector represents the liveness property
     95   /// for a different stack slot.
     96   struct BlockLifetimeInfo {
     97     /// Which slots BEGINs in each basic block.
     98     BitVector Begin;
     99     /// Which slots ENDs in each basic block.
    100     BitVector End;
    101     /// Which slots are marked as LIVE_IN, coming into each basic block.
    102     BitVector LiveIn;
    103     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
    104     BitVector LiveOut;
    105   };
    106 
    107   /// Maps active slots (per bit) for each basic block.
    108   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
    109   LivenessMap BlockLiveness;
    110 
    111   /// Maps serial numbers to basic blocks.
    112   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
    113   /// Maps basic blocks to a serial number.
    114   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
    115 
    116   /// Maps liveness intervals for each slot.
    117   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
    118   /// VNInfo is used for the construction of LiveIntervals.
    119   VNInfo::Allocator VNInfoAllocator;
    120   /// SlotIndex analysis object.
    121   SlotIndexes *Indexes;
    122   /// The stack protector object.
    123   StackProtector *SP;
    124 
    125   /// The list of lifetime markers found. These markers are to be removed
    126   /// once the coloring is done.
    127   SmallVector<MachineInstr*, 8> Markers;
    128 
    129 public:
    130   static char ID;
    131   StackColoring() : MachineFunctionPass(ID) {
    132     initializeStackColoringPass(*PassRegistry::getPassRegistry());
    133   }
    134   void getAnalysisUsage(AnalysisUsage &AU) const override;
    135   bool runOnMachineFunction(MachineFunction &MF) override;
    136 
    137 private:
    138   /// Debug.
    139   void dump() const;
    140 
    141   /// Removes all of the lifetime marker instructions from the function.
    142   /// \returns true if any markers were removed.
    143   bool removeAllMarkers();
    144 
    145   /// Scan the machine function and find all of the lifetime markers.
    146   /// Record the findings in the BEGIN and END vectors.
    147   /// \returns the number of markers found.
    148   unsigned collectMarkers(unsigned NumSlot);
    149 
    150   /// Perform the dataflow calculation and calculate the lifetime for each of
    151   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
    152   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
    153   /// in and out blocks.
    154   void calculateLocalLiveness();
    155 
    156   /// Construct the LiveIntervals for the slots.
    157   void calculateLiveIntervals(unsigned NumSlots);
    158 
    159   /// Go over the machine function and change instructions which use stack
    160   /// slots to use the joint slots.
    161   void remapInstructions(DenseMap<int, int> &SlotRemap);
    162 
    163   /// The input program may contain instructions which are not inside lifetime
    164   /// markers. This can happen due to a bug in the compiler or due to a bug in
    165   /// user code (for example, returning a reference to a local variable).
    166   /// This procedure checks all of the instructions in the function and
    167   /// invalidates lifetime ranges which do not contain all of the instructions
    168   /// which access that frame slot.
    169   void removeInvalidSlotRanges();
    170 
    171   /// Map entries which point to other entries to their destination.
    172   ///   A->B->C becomes A->C.
    173    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
    174 };
    175 } // end anonymous namespace
    176 
    177 char StackColoring::ID = 0;
    178 char &llvm::StackColoringID = StackColoring::ID;
    179 
    180 INITIALIZE_PASS_BEGIN(StackColoring,
    181                    "stack-coloring", "Merge disjoint stack slots", false, false)
    182 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    184 INITIALIZE_PASS_DEPENDENCY(StackProtector)
    185 INITIALIZE_PASS_END(StackColoring,
    186                    "stack-coloring", "Merge disjoint stack slots", false, false)
    187 
    188 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
    189   AU.addRequired<MachineDominatorTree>();
    190   AU.addPreserved<MachineDominatorTree>();
    191   AU.addRequired<SlotIndexes>();
    192   AU.addRequired<StackProtector>();
    193   MachineFunctionPass::getAnalysisUsage(AU);
    194 }
    195 
    196 void StackColoring::dump() const {
    197   for (MachineBasicBlock *MBB : depth_first(MF)) {
    198     DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " ["
    199                  << MBB->getName() << "]\n");
    200 
    201     LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
    202     assert(BI != BlockLiveness.end() && "Block not found");
    203     const BlockLifetimeInfo &BlockInfo = BI->second;
    204 
    205     DEBUG(dbgs()<<"BEGIN  : {");
    206     for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
    207       DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
    208     DEBUG(dbgs()<<"}\n");
    209 
    210     DEBUG(dbgs()<<"END    : {");
    211     for (unsigned i=0; i < BlockInfo.End.size(); ++i)
    212       DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
    213 
    214     DEBUG(dbgs()<<"}\n");
    215 
    216     DEBUG(dbgs()<<"LIVE_IN: {");
    217     for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
    218       DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
    219 
    220     DEBUG(dbgs()<<"}\n");
    221     DEBUG(dbgs()<<"LIVEOUT: {");
    222     for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
    223       DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
    224     DEBUG(dbgs()<<"}\n");
    225   }
    226 }
    227 
    228 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
    229   unsigned MarkersFound = 0;
    230   // Scan the function to find all lifetime markers.
    231   // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
    232   // deterministic numbering, and because we'll need a post-order iteration
    233   // later for solving the liveness dataflow problem.
    234   for (MachineBasicBlock *MBB : depth_first(MF)) {
    235 
    236     // Assign a serial number to this basic block.
    237     BasicBlocks[MBB] = BasicBlockNumbering.size();
    238     BasicBlockNumbering.push_back(MBB);
    239 
    240     // Keep a reference to avoid repeated lookups.
    241     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
    242 
    243     BlockInfo.Begin.resize(NumSlot);
    244     BlockInfo.End.resize(NumSlot);
    245 
    246     for (MachineInstr &MI : *MBB) {
    247       if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
    248           MI.getOpcode() != TargetOpcode::LIFETIME_END)
    249         continue;
    250 
    251       Markers.push_back(&MI);
    252 
    253       bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
    254       const MachineOperand &MO = MI.getOperand(0);
    255       unsigned Slot = MO.getIndex();
    256 
    257       MarkersFound++;
    258 
    259       const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
    260       if (Allocation) {
    261         DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
    262               " with allocation: "<< Allocation->getName()<<"\n");
    263       }
    264 
    265       if (IsStart) {
    266         BlockInfo.Begin.set(Slot);
    267       } else {
    268         if (BlockInfo.Begin.test(Slot)) {
    269           // Allocas that start and end within a single block are handled
    270           // specially when computing the LiveIntervals to avoid pessimizing
    271           // the liveness propagation.
    272           BlockInfo.Begin.reset(Slot);
    273         } else {
    274           BlockInfo.End.set(Slot);
    275         }
    276       }
    277     }
    278   }
    279 
    280   // Update statistics.
    281   NumMarkerSeen += MarkersFound;
    282   return MarkersFound;
    283 }
    284 
    285 void StackColoring::calculateLocalLiveness() {
    286   // Perform a standard reverse dataflow computation to solve for
    287   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
    288   // formulation, and END is equivalent to GEN.  The result of this computation
    289   // is a map from blocks to bitvectors where the bitvectors represent which
    290   // allocas are live in/out of that block.
    291   SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
    292                                                  BasicBlockNumbering.end());
    293   unsigned NumSSMIters = 0;
    294   bool changed = true;
    295   while (changed) {
    296     changed = false;
    297     ++NumSSMIters;
    298 
    299     SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
    300 
    301     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
    302       if (!BBSet.count(BB)) continue;
    303 
    304       // Use an iterator to avoid repeated lookups.
    305       LivenessMap::iterator BI = BlockLiveness.find(BB);
    306       assert(BI != BlockLiveness.end() && "Block not found");
    307       BlockLifetimeInfo &BlockInfo = BI->second;
    308 
    309       BitVector LocalLiveIn;
    310       BitVector LocalLiveOut;
    311 
    312       // Forward propagation from begins to ends.
    313       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
    314            PE = BB->pred_end(); PI != PE; ++PI) {
    315         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
    316         assert(I != BlockLiveness.end() && "Predecessor not found");
    317         LocalLiveIn |= I->second.LiveOut;
    318       }
    319       LocalLiveIn |= BlockInfo.End;
    320       LocalLiveIn.reset(BlockInfo.Begin);
    321 
    322       // Reverse propagation from ends to begins.
    323       for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
    324            SE = BB->succ_end(); SI != SE; ++SI) {
    325         LivenessMap::const_iterator I = BlockLiveness.find(*SI);
    326         assert(I != BlockLiveness.end() && "Successor not found");
    327         LocalLiveOut |= I->second.LiveIn;
    328       }
    329       LocalLiveOut |= BlockInfo.Begin;
    330       LocalLiveOut.reset(BlockInfo.End);
    331 
    332       LocalLiveIn |= LocalLiveOut;
    333       LocalLiveOut |= LocalLiveIn;
    334 
    335       // After adopting the live bits, we need to turn-off the bits which
    336       // are de-activated in this block.
    337       LocalLiveOut.reset(BlockInfo.End);
    338       LocalLiveIn.reset(BlockInfo.Begin);
    339 
    340       // If we have both BEGIN and END markers in the same basic block then
    341       // we know that the BEGIN marker comes after the END, because we already
    342       // handle the case where the BEGIN comes before the END when collecting
    343       // the markers (and building the BEGIN/END vectore).
    344       // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
    345       // BEGIN and END because it means that the value lives before and after
    346       // this basic block.
    347       BitVector LocalEndBegin = BlockInfo.End;
    348       LocalEndBegin &= BlockInfo.Begin;
    349       LocalLiveIn |= LocalEndBegin;
    350       LocalLiveOut |= LocalEndBegin;
    351 
    352       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
    353         changed = true;
    354         BlockInfo.LiveIn |= LocalLiveIn;
    355 
    356         NextBBSet.insert(BB->pred_begin(), BB->pred_end());
    357       }
    358 
    359       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
    360         changed = true;
    361         BlockInfo.LiveOut |= LocalLiveOut;
    362 
    363         NextBBSet.insert(BB->succ_begin(), BB->succ_end());
    364       }
    365     }
    366 
    367     BBSet = NextBBSet;
    368   }// while changed.
    369 }
    370 
    371 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
    372   SmallVector<SlotIndex, 16> Starts;
    373   SmallVector<SlotIndex, 16> Finishes;
    374 
    375   // For each block, find which slots are active within this block
    376   // and update the live intervals.
    377   for (const MachineBasicBlock &MBB : *MF) {
    378     Starts.clear();
    379     Starts.resize(NumSlots);
    380     Finishes.clear();
    381     Finishes.resize(NumSlots);
    382 
    383     // Create the interval for the basic blocks with lifetime markers in them.
    384     for (const MachineInstr *MI : Markers) {
    385       if (MI->getParent() != &MBB)
    386         continue;
    387 
    388       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
    389               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
    390              "Invalid Lifetime marker");
    391 
    392       bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
    393       const MachineOperand &Mo = MI->getOperand(0);
    394       int Slot = Mo.getIndex();
    395       assert(Slot >= 0 && "Invalid slot");
    396 
    397       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
    398 
    399       if (IsStart) {
    400         if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
    401           Starts[Slot] = ThisIndex;
    402       } else {
    403         if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
    404           Finishes[Slot] = ThisIndex;
    405       }
    406     }
    407 
    408     // Create the interval of the blocks that we previously found to be 'alive'.
    409     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
    410     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
    411          pos = MBBLiveness.LiveIn.find_next(pos)) {
    412       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
    413     }
    414     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
    415          pos = MBBLiveness.LiveOut.find_next(pos)) {
    416       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
    417     }
    418 
    419     for (unsigned i = 0; i < NumSlots; ++i) {
    420       assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
    421       if (!Starts[i].isValid())
    422         continue;
    423 
    424       assert(Starts[i] && Finishes[i] && "Invalid interval");
    425       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
    426       SlotIndex S = Starts[i];
    427       SlotIndex F = Finishes[i];
    428       if (S < F) {
    429         // We have a single consecutive region.
    430         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
    431       } else {
    432         // We have two non-consecutive regions. This happens when
    433         // LIFETIME_START appears after the LIFETIME_END marker.
    434         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
    435         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
    436         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
    437         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
    438       }
    439     }
    440   }
    441 }
    442 
    443 bool StackColoring::removeAllMarkers() {
    444   unsigned Count = 0;
    445   for (MachineInstr *MI : Markers) {
    446     MI->eraseFromParent();
    447     Count++;
    448   }
    449   Markers.clear();
    450 
    451   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
    452   return Count;
    453 }
    454 
    455 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
    456   unsigned FixedInstr = 0;
    457   unsigned FixedMemOp = 0;
    458   unsigned FixedDbg = 0;
    459   MachineModuleInfo *MMI = &MF->getMMI();
    460 
    461   // Remap debug information that refers to stack slots.
    462   for (auto &VI : MMI->getVariableDbgInfo()) {
    463     if (!VI.Var)
    464       continue;
    465     if (SlotRemap.count(VI.Slot)) {
    466       DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n");
    467       VI.Slot = SlotRemap[VI.Slot];
    468       FixedDbg++;
    469     }
    470   }
    471 
    472   // Keep a list of *allocas* which need to be remapped.
    473   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
    474   for (const std::pair<int, int> &SI : SlotRemap) {
    475     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
    476     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
    477     assert(To && From && "Invalid allocation object");
    478     Allocas[From] = To;
    479 
    480     // AA might be used later for instruction scheduling, and we need it to be
    481     // able to deduce the correct aliasing releationships between pointers
    482     // derived from the alloca being remapped and the target of that remapping.
    483     // The only safe way, without directly informing AA about the remapping
    484     // somehow, is to directly update the IR to reflect the change being made
    485     // here.
    486     Instruction *Inst = const_cast<AllocaInst *>(To);
    487     if (From->getType() != To->getType()) {
    488       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
    489       Cast->insertAfter(Inst);
    490       Inst = Cast;
    491     }
    492 
    493     // Allow the stack protector to adjust its value map to account for the
    494     // upcoming replacement.
    495     SP->adjustForColoring(From, To);
    496 
    497     // Note that this will not replace uses in MMOs (which we'll update below),
    498     // or anywhere else (which is why we won't delete the original
    499     // instruction).
    500     const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
    501   }
    502 
    503   // Remap all instructions to the new stack slots.
    504   for (MachineBasicBlock &BB : *MF)
    505     for (MachineInstr &I : BB) {
    506       // Skip lifetime markers. We'll remove them soon.
    507       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    508           I.getOpcode() == TargetOpcode::LIFETIME_END)
    509         continue;
    510 
    511       // Update the MachineMemOperand to use the new alloca.
    512       for (MachineMemOperand *MMO : I.memoperands()) {
    513         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
    514         // we'll also need to update the TBAA nodes in MMOs with values
    515         // derived from the merged allocas. When doing this, we'll need to use
    516         // the same variant of GetUnderlyingObjects that is used by the
    517         // instruction scheduler (that can look through ptrtoint/inttoptr
    518         // pairs).
    519 
    520         // We've replaced IR-level uses of the remapped allocas, so we only
    521         // need to replace direct uses here.
    522         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
    523         if (!AI)
    524           continue;
    525 
    526         if (!Allocas.count(AI))
    527           continue;
    528 
    529         MMO->setValue(Allocas[AI]);
    530         FixedMemOp++;
    531       }
    532 
    533       // Update all of the machine instruction operands.
    534       for (MachineOperand &MO : I.operands()) {
    535         if (!MO.isFI())
    536           continue;
    537         int FromSlot = MO.getIndex();
    538 
    539         // Don't touch arguments.
    540         if (FromSlot<0)
    541           continue;
    542 
    543         // Only look at mapped slots.
    544         if (!SlotRemap.count(FromSlot))
    545           continue;
    546 
    547         // In a debug build, check that the instruction that we are modifying is
    548         // inside the expected live range. If the instruction is not inside
    549         // the calculated range then it means that the alloca usage moved
    550         // outside of the lifetime markers, or that the user has a bug.
    551         // NOTE: Alloca address calculations which happen outside the lifetime
    552         // zone are are okay, despite the fact that we don't have a good way
    553         // for validating all of the usages of the calculation.
    554 #ifndef NDEBUG
    555         bool TouchesMemory = I.mayLoad() || I.mayStore();
    556         // If we *don't* protect the user from escaped allocas, don't bother
    557         // validating the instructions.
    558         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
    559           SlotIndex Index = Indexes->getInstructionIndex(&I);
    560           const LiveInterval *Interval = &*Intervals[FromSlot];
    561           assert(Interval->find(Index) != Interval->end() &&
    562                  "Found instruction usage outside of live range.");
    563         }
    564 #endif
    565 
    566         // Fix the machine instructions.
    567         int ToSlot = SlotRemap[FromSlot];
    568         MO.setIndex(ToSlot);
    569         FixedInstr++;
    570       }
    571     }
    572 
    573   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
    574   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
    575   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
    576 }
    577 
    578 void StackColoring::removeInvalidSlotRanges() {
    579   for (MachineBasicBlock &BB : *MF)
    580     for (MachineInstr &I : BB) {
    581       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    582           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
    583         continue;
    584 
    585       // Some intervals are suspicious! In some cases we find address
    586       // calculations outside of the lifetime zone, but not actual memory
    587       // read or write. Memory accesses outside of the lifetime zone are a clear
    588       // violation, but address calculations are okay. This can happen when
    589       // GEPs are hoisted outside of the lifetime zone.
    590       // So, in here we only check instructions which can read or write memory.
    591       if (!I.mayLoad() && !I.mayStore())
    592         continue;
    593 
    594       // Check all of the machine operands.
    595       for (const MachineOperand &MO : I.operands()) {
    596         if (!MO.isFI())
    597           continue;
    598 
    599         int Slot = MO.getIndex();
    600 
    601         if (Slot<0)
    602           continue;
    603 
    604         if (Intervals[Slot]->empty())
    605           continue;
    606 
    607         // Check that the used slot is inside the calculated lifetime range.
    608         // If it is not, warn about it and invalidate the range.
    609         LiveInterval *Interval = &*Intervals[Slot];
    610         SlotIndex Index = Indexes->getInstructionIndex(&I);
    611         if (Interval->find(Index) == Interval->end()) {
    612           Interval->clear();
    613           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
    614           EscapedAllocas++;
    615         }
    616       }
    617     }
    618 }
    619 
    620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
    621                                    unsigned NumSlots) {
    622   // Expunge slot remap map.
    623   for (unsigned i=0; i < NumSlots; ++i) {
    624     // If we are remapping i
    625     if (SlotRemap.count(i)) {
    626       int Target = SlotRemap[i];
    627       // As long as our target is mapped to something else, follow it.
    628       while (SlotRemap.count(Target)) {
    629         Target = SlotRemap[Target];
    630         SlotRemap[i] = Target;
    631       }
    632     }
    633   }
    634 }
    635 
    636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
    637   if (skipOptnoneFunction(*Func.getFunction()))
    638     return false;
    639 
    640   DEBUG(dbgs() << "********** Stack Coloring **********\n"
    641                << "********** Function: "
    642                << ((const Value*)Func.getFunction())->getName() << '\n');
    643   MF = &Func;
    644   MFI = MF->getFrameInfo();
    645   Indexes = &getAnalysis<SlotIndexes>();
    646   SP = &getAnalysis<StackProtector>();
    647   BlockLiveness.clear();
    648   BasicBlocks.clear();
    649   BasicBlockNumbering.clear();
    650   Markers.clear();
    651   Intervals.clear();
    652   VNInfoAllocator.Reset();
    653 
    654   unsigned NumSlots = MFI->getObjectIndexEnd();
    655 
    656   // If there are no stack slots then there are no markers to remove.
    657   if (!NumSlots)
    658     return false;
    659 
    660   SmallVector<int, 8> SortedSlots;
    661 
    662   SortedSlots.reserve(NumSlots);
    663   Intervals.reserve(NumSlots);
    664 
    665   unsigned NumMarkers = collectMarkers(NumSlots);
    666 
    667   unsigned TotalSize = 0;
    668   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
    669   DEBUG(dbgs()<<"Slot structure:\n");
    670 
    671   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
    672     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
    673     TotalSize += MFI->getObjectSize(i);
    674   }
    675 
    676   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
    677 
    678   // Don't continue because there are not enough lifetime markers, or the
    679   // stack is too small, or we are told not to optimize the slots.
    680   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
    681     DEBUG(dbgs()<<"Will not try to merge slots.\n");
    682     return removeAllMarkers();
    683   }
    684 
    685   for (unsigned i=0; i < NumSlots; ++i) {
    686     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
    687     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
    688     Intervals.push_back(std::move(LI));
    689     SortedSlots.push_back(i);
    690   }
    691 
    692   // Calculate the liveness of each block.
    693   calculateLocalLiveness();
    694 
    695   // Propagate the liveness information.
    696   calculateLiveIntervals(NumSlots);
    697 
    698   // Search for allocas which are used outside of the declared lifetime
    699   // markers.
    700   if (ProtectFromEscapedAllocas)
    701     removeInvalidSlotRanges();
    702 
    703   // Maps old slots to new slots.
    704   DenseMap<int, int> SlotRemap;
    705   unsigned RemovedSlots = 0;
    706   unsigned ReducedSize = 0;
    707 
    708   // Do not bother looking at empty intervals.
    709   for (unsigned I = 0; I < NumSlots; ++I) {
    710     if (Intervals[SortedSlots[I]]->empty())
    711       SortedSlots[I] = -1;
    712   }
    713 
    714   // This is a simple greedy algorithm for merging allocas. First, sort the
    715   // slots, placing the largest slots first. Next, perform an n^2 scan and look
    716   // for disjoint slots. When you find disjoint slots, merge the samller one
    717   // into the bigger one and update the live interval. Remove the small alloca
    718   // and continue.
    719 
    720   // Sort the slots according to their size. Place unused slots at the end.
    721   // Use stable sort to guarantee deterministic code generation.
    722   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
    723                    [this](int LHS, int RHS) {
    724     // We use -1 to denote a uninteresting slot. Place these slots at the end.
    725     if (LHS == -1) return false;
    726     if (RHS == -1) return true;
    727     // Sort according to size.
    728     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
    729   });
    730 
    731   bool Changed = true;
    732   while (Changed) {
    733     Changed = false;
    734     for (unsigned I = 0; I < NumSlots; ++I) {
    735       if (SortedSlots[I] == -1)
    736         continue;
    737 
    738       for (unsigned J=I+1; J < NumSlots; ++J) {
    739         if (SortedSlots[J] == -1)
    740           continue;
    741 
    742         int FirstSlot = SortedSlots[I];
    743         int SecondSlot = SortedSlots[J];
    744         LiveInterval *First = &*Intervals[FirstSlot];
    745         LiveInterval *Second = &*Intervals[SecondSlot];
    746         assert (!First->empty() && !Second->empty() && "Found an empty range");
    747 
    748         // Merge disjoint slots.
    749         if (!First->overlaps(*Second)) {
    750           Changed = true;
    751           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
    752           SlotRemap[SecondSlot] = FirstSlot;
    753           SortedSlots[J] = -1;
    754           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
    755                 SecondSlot<<" together.\n");
    756           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
    757                                            MFI->getObjectAlignment(SecondSlot));
    758 
    759           assert(MFI->getObjectSize(FirstSlot) >=
    760                  MFI->getObjectSize(SecondSlot) &&
    761                  "Merging a small object into a larger one");
    762 
    763           RemovedSlots+=1;
    764           ReducedSize += MFI->getObjectSize(SecondSlot);
    765           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
    766           MFI->RemoveStackObject(SecondSlot);
    767         }
    768       }
    769     }
    770   }// While changed.
    771 
    772   // Record statistics.
    773   StackSpaceSaved += ReducedSize;
    774   StackSlotMerged += RemovedSlots;
    775   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
    776         ReducedSize<<" bytes\n");
    777 
    778   // Scan the entire function and update all machine operands that use frame
    779   // indices to use the remapped frame index.
    780   expungeSlotMap(SlotRemap, NumSlots);
    781   remapInstructions(SlotRemap);
    782 
    783   return removeAllMarkers();
    784 }
    785