Home | History | Annotate | Download | only in net
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.net;
     18 
     19 import android.os.SystemClock;
     20 import android.util.Log;
     21 
     22 import java.net.DatagramPacket;
     23 import java.net.DatagramSocket;
     24 import java.net.InetAddress;
     25 
     26 /**
     27  * {@hide}
     28  *
     29  * Simple SNTP client class for retrieving network time.
     30  *
     31  * Sample usage:
     32  * <pre>SntpClient client = new SntpClient();
     33  * if (client.requestTime("time.foo.com")) {
     34  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
     35  * }
     36  * </pre>
     37  */
     38 public class SntpClient
     39 {
     40     private static final String TAG = "SntpClient";
     41 
     42     private static final int REFERENCE_TIME_OFFSET = 16;
     43     private static final int ORIGINATE_TIME_OFFSET = 24;
     44     private static final int RECEIVE_TIME_OFFSET = 32;
     45     private static final int TRANSMIT_TIME_OFFSET = 40;
     46     private static final int NTP_PACKET_SIZE = 48;
     47 
     48     private static final int NTP_PORT = 123;
     49     private static final int NTP_MODE_CLIENT = 3;
     50     private static final int NTP_VERSION = 3;
     51 
     52     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
     53     // 70 years plus 17 leap days
     54     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
     55 
     56     // system time computed from NTP server response
     57     private long mNtpTime;
     58 
     59     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
     60     private long mNtpTimeReference;
     61 
     62     // round trip time in milliseconds
     63     private long mRoundTripTime;
     64 
     65     /**
     66      * Sends an SNTP request to the given host and processes the response.
     67      *
     68      * @param host host name of the server.
     69      * @param timeout network timeout in milliseconds.
     70      * @return true if the transaction was successful.
     71      */
     72     public boolean requestTime(String host, int timeout) {
     73         DatagramSocket socket = null;
     74         try {
     75             socket = new DatagramSocket();
     76             socket.setSoTimeout(timeout);
     77             InetAddress address = InetAddress.getByName(host);
     78             byte[] buffer = new byte[NTP_PACKET_SIZE];
     79             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
     80 
     81             // set mode = 3 (client) and version = 3
     82             // mode is in low 3 bits of first byte
     83             // version is in bits 3-5 of first byte
     84             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
     85 
     86             // get current time and write it to the request packet
     87             long requestTime = System.currentTimeMillis();
     88             long requestTicks = SystemClock.elapsedRealtime();
     89             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
     90 
     91             socket.send(request);
     92 
     93             // read the response
     94             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
     95             socket.receive(response);
     96             long responseTicks = SystemClock.elapsedRealtime();
     97             long responseTime = requestTime + (responseTicks - requestTicks);
     98 
     99             // extract the results
    100             long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
    101             long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
    102             long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
    103             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
    104             // receiveTime = originateTime + transit + skew
    105             // responseTime = transmitTime + transit - skew
    106             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
    107             //             = ((originateTime + transit + skew - originateTime) +
    108             //                (transmitTime - (transmitTime + transit - skew)))/2
    109             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
    110             //             = (transit + skew - transit + skew)/2
    111             //             = (2 * skew)/2 = skew
    112             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
    113             // if (false) Log.d(TAG, "round trip: " + roundTripTime + " ms");
    114             // if (false) Log.d(TAG, "clock offset: " + clockOffset + " ms");
    115 
    116             // save our results - use the times on this side of the network latency
    117             // (response rather than request time)
    118             mNtpTime = responseTime + clockOffset;
    119             mNtpTimeReference = responseTicks;
    120             mRoundTripTime = roundTripTime;
    121         } catch (Exception e) {
    122             if (false) Log.d(TAG, "request time failed: " + e);
    123             return false;
    124         } finally {
    125             if (socket != null) {
    126                 socket.close();
    127             }
    128         }
    129 
    130         return true;
    131     }
    132 
    133     /**
    134      * Returns the time computed from the NTP transaction.
    135      *
    136      * @return time value computed from NTP server response.
    137      */
    138     public long getNtpTime() {
    139         return mNtpTime;
    140     }
    141 
    142     /**
    143      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
    144      * corresponding to the NTP time.
    145      *
    146      * @return reference clock corresponding to the NTP time.
    147      */
    148     public long getNtpTimeReference() {
    149         return mNtpTimeReference;
    150     }
    151 
    152     /**
    153      * Returns the round trip time of the NTP transaction
    154      *
    155      * @return round trip time in milliseconds.
    156      */
    157     public long getRoundTripTime() {
    158         return mRoundTripTime;
    159     }
    160 
    161     /**
    162      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
    163      */
    164     private long read32(byte[] buffer, int offset) {
    165         byte b0 = buffer[offset];
    166         byte b1 = buffer[offset+1];
    167         byte b2 = buffer[offset+2];
    168         byte b3 = buffer[offset+3];
    169 
    170         // convert signed bytes to unsigned values
    171         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
    172         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
    173         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
    174         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
    175 
    176         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
    177     }
    178 
    179     /**
    180      * Reads the NTP time stamp at the given offset in the buffer and returns
    181      * it as a system time (milliseconds since January 1, 1970).
    182      */
    183     private long readTimeStamp(byte[] buffer, int offset) {
    184         long seconds = read32(buffer, offset);
    185         long fraction = read32(buffer, offset + 4);
    186         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
    187     }
    188 
    189     /**
    190      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
    191      * at the given offset in the buffer.
    192      */
    193     private void writeTimeStamp(byte[] buffer, int offset, long time) {
    194         long seconds = time / 1000L;
    195         long milliseconds = time - seconds * 1000L;
    196         seconds += OFFSET_1900_TO_1970;
    197 
    198         // write seconds in big endian format
    199         buffer[offset++] = (byte)(seconds >> 24);
    200         buffer[offset++] = (byte)(seconds >> 16);
    201         buffer[offset++] = (byte)(seconds >> 8);
    202         buffer[offset++] = (byte)(seconds >> 0);
    203 
    204         long fraction = milliseconds * 0x100000000L / 1000L;
    205         // write fraction in big endian format
    206         buffer[offset++] = (byte)(fraction >> 24);
    207         buffer[offset++] = (byte)(fraction >> 16);
    208         buffer[offset++] = (byte)(fraction >> 8);
    209         // low order bits should be random data
    210         buffer[offset++] = (byte)(Math.random() * 255.0);
    211     }
    212 }
    213