1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: David Gallup (dgallup (at) google.com) 30 // Sameer Agarwal (sameeragarwal (at) google.com) 31 32 // This include must come before any #ifndef check on Ceres compile options. 33 #include "ceres/internal/port.h" 34 35 #ifndef CERES_NO_SUITESPARSE 36 37 #include "ceres/canonical_views_clustering.h" 38 39 #include "ceres/collections_port.h" 40 #include "ceres/graph.h" 41 #include "ceres/internal/macros.h" 42 #include "ceres/map_util.h" 43 #include "glog/logging.h" 44 45 namespace ceres { 46 namespace internal { 47 48 typedef HashMap<int, int> IntMap; 49 typedef HashSet<int> IntSet; 50 51 class CanonicalViewsClustering { 52 public: 53 CanonicalViewsClustering() {} 54 55 // Compute the canonical views clustering of the vertices of the 56 // graph. centers will contain the vertices that are the identified 57 // as the canonical views/cluster centers, and membership is a map 58 // from vertices to cluster_ids. The i^th cluster center corresponds 59 // to the i^th cluster. It is possible depending on the 60 // configuration of the clustering algorithm that some of the 61 // vertices may not be assigned to any cluster. In this case they 62 // are assigned to a cluster with id = kInvalidClusterId. 63 void ComputeClustering(const CanonicalViewsClusteringOptions& options, 64 const Graph<int>& graph, 65 vector<int>* centers, 66 IntMap* membership); 67 68 private: 69 void FindValidViews(IntSet* valid_views) const; 70 double ComputeClusteringQualityDifference(const int candidate, 71 const vector<int>& centers) const; 72 void UpdateCanonicalViewAssignments(const int canonical_view); 73 void ComputeClusterMembership(const vector<int>& centers, 74 IntMap* membership) const; 75 76 CanonicalViewsClusteringOptions options_; 77 const Graph<int>* graph_; 78 // Maps a view to its representative canonical view (its cluster 79 // center). 80 IntMap view_to_canonical_view_; 81 // Maps a view to its similarity to its current cluster center. 82 HashMap<int, double> view_to_canonical_view_similarity_; 83 CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering); 84 }; 85 86 void ComputeCanonicalViewsClustering( 87 const CanonicalViewsClusteringOptions& options, 88 const Graph<int>& graph, 89 vector<int>* centers, 90 IntMap* membership) { 91 time_t start_time = time(NULL); 92 CanonicalViewsClustering cv; 93 cv.ComputeClustering(options, graph, centers, membership); 94 VLOG(2) << "Canonical views clustering time (secs): " 95 << time(NULL) - start_time; 96 } 97 98 // Implementation of CanonicalViewsClustering 99 void CanonicalViewsClustering::ComputeClustering( 100 const CanonicalViewsClusteringOptions& options, 101 const Graph<int>& graph, 102 vector<int>* centers, 103 IntMap* membership) { 104 options_ = options; 105 CHECK_NOTNULL(centers)->clear(); 106 CHECK_NOTNULL(membership)->clear(); 107 graph_ = &graph; 108 109 IntSet valid_views; 110 FindValidViews(&valid_views); 111 while (valid_views.size() > 0) { 112 // Find the next best canonical view. 113 double best_difference = -std::numeric_limits<double>::max(); 114 int best_view = 0; 115 116 // TODO(sameeragarwal): Make this loop multi-threaded. 117 for (IntSet::const_iterator view = valid_views.begin(); 118 view != valid_views.end(); 119 ++view) { 120 const double difference = 121 ComputeClusteringQualityDifference(*view, *centers); 122 if (difference > best_difference) { 123 best_difference = difference; 124 best_view = *view; 125 } 126 } 127 128 CHECK_GT(best_difference, -std::numeric_limits<double>::max()); 129 130 // Add canonical view if quality improves, or if minimum is not 131 // yet met, otherwise break. 132 if ((best_difference <= 0) && 133 (centers->size() >= options_.min_views)) { 134 break; 135 } 136 137 centers->push_back(best_view); 138 valid_views.erase(best_view); 139 UpdateCanonicalViewAssignments(best_view); 140 } 141 142 ComputeClusterMembership(*centers, membership); 143 } 144 145 // Return the set of vertices of the graph which have valid vertex 146 // weights. 147 void CanonicalViewsClustering::FindValidViews( 148 IntSet* valid_views) const { 149 const IntSet& views = graph_->vertices(); 150 for (IntSet::const_iterator view = views.begin(); 151 view != views.end(); 152 ++view) { 153 if (graph_->VertexWeight(*view) != Graph<int>::InvalidWeight()) { 154 valid_views->insert(*view); 155 } 156 } 157 } 158 159 // Computes the difference in the quality score if 'candidate' were 160 // added to the set of canonical views. 161 double CanonicalViewsClustering::ComputeClusteringQualityDifference( 162 const int candidate, 163 const vector<int>& centers) const { 164 // View score. 165 double difference = 166 options_.view_score_weight * graph_->VertexWeight(candidate); 167 168 // Compute how much the quality score changes if the candidate view 169 // was added to the list of canonical views and its nearest 170 // neighbors became members of its cluster. 171 const IntSet& neighbors = graph_->Neighbors(candidate); 172 for (IntSet::const_iterator neighbor = neighbors.begin(); 173 neighbor != neighbors.end(); 174 ++neighbor) { 175 const double old_similarity = 176 FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0); 177 const double new_similarity = graph_->EdgeWeight(*neighbor, candidate); 178 if (new_similarity > old_similarity) { 179 difference += new_similarity - old_similarity; 180 } 181 } 182 183 // Number of views penalty. 184 difference -= options_.size_penalty_weight; 185 186 // Orthogonality. 187 for (int i = 0; i < centers.size(); ++i) { 188 difference -= options_.similarity_penalty_weight * 189 graph_->EdgeWeight(centers[i], candidate); 190 } 191 192 return difference; 193 } 194 195 // Reassign views if they're more similar to the new canonical view. 196 void CanonicalViewsClustering::UpdateCanonicalViewAssignments( 197 const int canonical_view) { 198 const IntSet& neighbors = graph_->Neighbors(canonical_view); 199 for (IntSet::const_iterator neighbor = neighbors.begin(); 200 neighbor != neighbors.end(); 201 ++neighbor) { 202 const double old_similarity = 203 FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0); 204 const double new_similarity = 205 graph_->EdgeWeight(*neighbor, canonical_view); 206 if (new_similarity > old_similarity) { 207 view_to_canonical_view_[*neighbor] = canonical_view; 208 view_to_canonical_view_similarity_[*neighbor] = new_similarity; 209 } 210 } 211 } 212 213 // Assign a cluster id to each view. 214 void CanonicalViewsClustering::ComputeClusterMembership( 215 const vector<int>& centers, 216 IntMap* membership) const { 217 CHECK_NOTNULL(membership)->clear(); 218 219 // The i^th cluster has cluster id i. 220 IntMap center_to_cluster_id; 221 for (int i = 0; i < centers.size(); ++i) { 222 center_to_cluster_id[centers[i]] = i; 223 } 224 225 static const int kInvalidClusterId = -1; 226 227 const IntSet& views = graph_->vertices(); 228 for (IntSet::const_iterator view = views.begin(); 229 view != views.end(); 230 ++view) { 231 IntMap::const_iterator it = 232 view_to_canonical_view_.find(*view); 233 int cluster_id = kInvalidClusterId; 234 if (it != view_to_canonical_view_.end()) { 235 cluster_id = FindOrDie(center_to_cluster_id, it->second); 236 } 237 238 InsertOrDie(membership, *view, cluster_id); 239 } 240 } 241 242 } // namespace internal 243 } // namespace ceres 244 245 #endif // CERES_NO_SUITESPARSE 246