1 /* Create descriptor for processing file. 2 Copyright (C) 1998-2010 Red Hat, Inc. 3 This file is part of Red Hat elfutils. 4 Written by Ulrich Drepper <drepper (at) redhat.com>, 1998. 5 6 Red Hat elfutils is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by the 8 Free Software Foundation; version 2 of the License. 9 10 Red Hat elfutils is distributed in the hope that it will be useful, but 11 WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 General Public License for more details. 14 15 You should have received a copy of the GNU General Public License along 16 with Red Hat elfutils; if not, write to the Free Software Foundation, 17 Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA. 18 19 In addition, as a special exception, Red Hat, Inc. gives You the 20 additional right to link the code of Red Hat elfutils with code licensed 21 under any Open Source Initiative certified open source license 22 (http://www.opensource.org/licenses/index.php) which requires the 23 distribution of source code with any binary distribution and to 24 distribute linked combinations of the two. Non-GPL Code permitted under 25 this exception must only link to the code of Red Hat elfutils through 26 those well defined interfaces identified in the file named EXCEPTION 27 found in the source code files (the "Approved Interfaces"). The files 28 of Non-GPL Code may instantiate templates or use macros or inline 29 functions from the Approved Interfaces without causing the resulting 30 work to be covered by the GNU General Public License. Only Red Hat, 31 Inc. may make changes or additions to the list of Approved Interfaces. 32 Red Hat's grant of this exception is conditioned upon your not adding 33 any new exceptions. If you wish to add a new Approved Interface or 34 exception, please contact Red Hat. You must obey the GNU General Public 35 License in all respects for all of the Red Hat elfutils code and other 36 code used in conjunction with Red Hat elfutils except the Non-GPL Code 37 covered by this exception. If you modify this file, you may extend this 38 exception to your version of the file, but you are not obligated to do 39 so. If you do not wish to provide this exception without modification, 40 you must delete this exception statement from your version and license 41 this file solely under the GPL without exception. 42 43 Red Hat elfutils is an included package of the Open Invention Network. 44 An included package of the Open Invention Network is a package for which 45 Open Invention Network licensees cross-license their patents. No patent 46 license is granted, either expressly or impliedly, by designation as an 47 included package. Should you wish to participate in the Open Invention 48 Network licensing program, please visit www.openinventionnetwork.com 49 <http://www.openinventionnetwork.com>. */ 50 51 #ifdef HAVE_CONFIG_H 52 # include <config.h> 53 #endif 54 55 #include <assert.h> 56 #include <ctype.h> 57 #include <errno.h> 58 #include <fcntl.h> 59 #include <stdbool.h> 60 #include <stddef.h> 61 #include <string.h> 62 #include <unistd.h> 63 #include <sys/mman.h> 64 #include <sys/param.h> 65 #include <sys/stat.h> 66 67 #include <system.h> 68 #include "libelfP.h" 69 #include "common.h" 70 71 72 /* Create descriptor for archive in memory. */ 73 static inline Elf * 74 file_read_ar (int fildes, void *map_address, off_t offset, size_t maxsize, 75 Elf_Cmd cmd, Elf *parent) 76 { 77 Elf *elf; 78 79 /* Create a descriptor. */ 80 elf = allocate_elf (fildes, map_address, offset, maxsize, cmd, parent, 81 ELF_K_AR, 0); 82 if (elf != NULL) 83 { 84 /* We don't read all the symbol tables in advance. All this will 85 happen on demand. */ 86 elf->state.ar.offset = offset + SARMAG; 87 88 elf->state.ar.elf_ar_hdr.ar_rawname = elf->state.ar.raw_name; 89 } 90 91 return elf; 92 } 93 94 95 static size_t 96 get_shnum (void *map_address, unsigned char *e_ident, int fildes, off_t offset, 97 size_t maxsize) 98 { 99 size_t result; 100 union 101 { 102 Elf32_Ehdr *e32; 103 Elf64_Ehdr *e64; 104 void *p; 105 } ehdr; 106 union 107 { 108 Elf32_Ehdr e32; 109 Elf64_Ehdr e64; 110 } ehdr_mem; 111 bool is32 = e_ident[EI_CLASS] == ELFCLASS32; 112 113 /* Make the ELF header available. */ 114 if (e_ident[EI_DATA] == MY_ELFDATA 115 && (ALLOW_UNALIGNED 116 || (((size_t) e_ident 117 & ((is32 ? __alignof__ (Elf32_Ehdr) : __alignof__ (Elf64_Ehdr)) 118 - 1)) == 0))) 119 ehdr.p = e_ident; 120 else 121 { 122 /* We already read the ELF header. We have to copy the header 123 since we possibly modify the data here and the caller 124 expects the memory it passes in to be preserved. */ 125 ehdr.p = &ehdr_mem; 126 127 if (is32) 128 { 129 if (ALLOW_UNALIGNED) 130 { 131 ehdr_mem.e32.e_shnum = ((Elf32_Ehdr *) e_ident)->e_shnum; 132 ehdr_mem.e32.e_shoff = ((Elf32_Ehdr *) e_ident)->e_shoff; 133 } 134 else 135 memcpy (&ehdr_mem, e_ident, sizeof (Elf32_Ehdr)); 136 137 if (e_ident[EI_DATA] != MY_ELFDATA) 138 { 139 CONVERT (ehdr_mem.e32.e_shnum); 140 CONVERT (ehdr_mem.e32.e_shoff); 141 } 142 } 143 else 144 { 145 if (ALLOW_UNALIGNED) 146 { 147 ehdr_mem.e64.e_shnum = ((Elf64_Ehdr *) e_ident)->e_shnum; 148 ehdr_mem.e64.e_shoff = ((Elf64_Ehdr *) e_ident)->e_shoff; 149 } 150 else 151 memcpy (&ehdr_mem, e_ident, sizeof (Elf64_Ehdr)); 152 153 if (e_ident[EI_DATA] != MY_ELFDATA) 154 { 155 CONVERT (ehdr_mem.e64.e_shnum); 156 CONVERT (ehdr_mem.e64.e_shoff); 157 } 158 } 159 } 160 161 if (is32) 162 { 163 /* Get the number of sections from the ELF header. */ 164 result = ehdr.e32->e_shnum; 165 166 if (unlikely (result == 0) && ehdr.e32->e_shoff != 0) 167 { 168 if (ehdr.e32->e_shoff + sizeof (Elf32_Shdr) > maxsize) 169 /* Cannot read the first section header. */ 170 return 0; 171 172 if (likely (map_address != NULL) && e_ident[EI_DATA] == MY_ELFDATA 173 && (ALLOW_UNALIGNED 174 || (((size_t) ((char *) map_address + offset)) 175 & (__alignof__ (Elf32_Ehdr) - 1)) == 0)) 176 /* We can directly access the memory. */ 177 result = ((Elf32_Shdr *) ((char *) map_address + ehdr.e32->e_shoff 178 + offset))->sh_size; 179 else 180 { 181 Elf32_Word size; 182 183 if (likely (map_address != NULL)) 184 /* gcc will optimize the memcpy to a simple memory 185 access while taking care of alignment issues. */ 186 memcpy (&size, &((Elf32_Shdr *) ((char *) map_address 187 + ehdr.e32->e_shoff 188 + offset))->sh_size, 189 sizeof (Elf32_Word)); 190 else 191 if (unlikely (pread_retry (fildes, &size, sizeof (Elf32_Word), 192 offset + ehdr.e32->e_shoff 193 + offsetof (Elf32_Shdr, sh_size)) 194 != sizeof (Elf32_Word))) 195 return (size_t) -1l; 196 197 if (e_ident[EI_DATA] != MY_ELFDATA) 198 CONVERT (size); 199 200 result = size; 201 } 202 } 203 204 /* If the section headers were truncated, pretend none were there. */ 205 if (ehdr.e32->e_shoff > maxsize 206 || maxsize - ehdr.e32->e_shoff < sizeof (Elf32_Shdr) * result) 207 result = 0; 208 } 209 else 210 { 211 /* Get the number of sections from the ELF header. */ 212 result = ehdr.e64->e_shnum; 213 214 if (unlikely (result == 0) && ehdr.e64->e_shoff != 0) 215 { 216 if (ehdr.e64->e_shoff + sizeof (Elf64_Shdr) > maxsize) 217 /* Cannot read the first section header. */ 218 return 0; 219 220 Elf64_Xword size; 221 if (likely (map_address != NULL) && e_ident[EI_DATA] == MY_ELFDATA 222 && (ALLOW_UNALIGNED 223 || (((size_t) ((char *) map_address + offset)) 224 & (__alignof__ (Elf64_Ehdr) - 1)) == 0)) 225 /* We can directly access the memory. */ 226 size = ((Elf64_Shdr *) ((char *) map_address + ehdr.e64->e_shoff 227 + offset))->sh_size; 228 else 229 { 230 if (likely (map_address != NULL)) 231 /* gcc will optimize the memcpy to a simple memory 232 access while taking care of alignment issues. */ 233 memcpy (&size, &((Elf64_Shdr *) ((char *) map_address 234 + ehdr.e64->e_shoff 235 + offset))->sh_size, 236 sizeof (Elf64_Xword)); 237 else 238 if (unlikely (pread_retry (fildes, &size, sizeof (Elf64_Word), 239 offset + ehdr.e64->e_shoff 240 + offsetof (Elf64_Shdr, sh_size)) 241 != sizeof (Elf64_Xword))) 242 return (size_t) -1l; 243 244 if (e_ident[EI_DATA] != MY_ELFDATA) 245 CONVERT (size); 246 } 247 248 if (size > ~((GElf_Word) 0)) 249 /* Invalid value, it is too large. */ 250 return (size_t) -1l; 251 252 result = size; 253 } 254 255 /* If the section headers were truncated, pretend none were there. */ 256 if (ehdr.e64->e_shoff > maxsize 257 || maxsize - ehdr.e64->e_shoff < sizeof (Elf64_Shdr) * result) 258 result = 0; 259 } 260 261 return result; 262 } 263 264 265 /* Create descriptor for ELF file in memory. */ 266 static Elf * 267 file_read_elf (int fildes, void *map_address, unsigned char *e_ident, 268 off_t offset, size_t maxsize, Elf_Cmd cmd, Elf *parent) 269 { 270 /* Verify the binary is of the class we can handle. */ 271 if (unlikely ((e_ident[EI_CLASS] != ELFCLASS32 272 && e_ident[EI_CLASS] != ELFCLASS64) 273 /* We also can only handle two encodings. */ 274 || (e_ident[EI_DATA] != ELFDATA2LSB 275 && e_ident[EI_DATA] != ELFDATA2MSB))) 276 { 277 /* Cannot handle this. */ 278 __libelf_seterrno (ELF_E_INVALID_FILE); 279 return NULL; 280 } 281 282 /* Determine the number of sections. */ 283 size_t scncnt = get_shnum (map_address, e_ident, fildes, offset, maxsize); 284 if (scncnt == (size_t) -1l) 285 /* Could not determine the number of sections. */ 286 return NULL; 287 288 /* We can now allocate the memory. Even if there are no section headers, 289 we allocate space for a zeroth section in case we need it later. */ 290 const size_t scnmax = (scncnt ?: (cmd == ELF_C_RDWR || cmd == ELF_C_RDWR_MMAP) 291 ? 1 : 0); 292 Elf *elf = allocate_elf (fildes, map_address, offset, maxsize, cmd, parent, 293 ELF_K_ELF, scnmax * sizeof (Elf_Scn)); 294 if (elf == NULL) 295 /* Not enough memory. */ 296 return NULL; 297 298 assert ((unsigned int) scncnt == scncnt); 299 assert (offsetof (struct Elf, state.elf32.scns) 300 == offsetof (struct Elf, state.elf64.scns)); 301 elf->state.elf32.scns.cnt = scncnt; 302 elf->state.elf32.scns.max = scnmax; 303 304 /* Some more or less arbitrary value. */ 305 elf->state.elf.scnincr = 10; 306 307 /* Make the class easily available. */ 308 elf->class = e_ident[EI_CLASS]; 309 310 if (e_ident[EI_CLASS] == ELFCLASS32) 311 { 312 /* This pointer might not be directly usable if the alignment is 313 not sufficient for the architecture. */ 314 Elf32_Ehdr *ehdr = (Elf32_Ehdr *) ((char *) map_address + offset); 315 316 /* This is a 32-bit binary. */ 317 if (map_address != NULL && e_ident[EI_DATA] == MY_ELFDATA 318 && (ALLOW_UNALIGNED 319 || ((((uintptr_t) ehdr) & (__alignof__ (Elf32_Ehdr) - 1)) == 0 320 && ((uintptr_t) ((char *) ehdr + ehdr->e_shoff) 321 & (__alignof__ (Elf32_Shdr) - 1)) == 0 322 && ((uintptr_t) ((char *) ehdr + ehdr->e_phoff) 323 & (__alignof__ (Elf32_Phdr) - 1)) == 0))) 324 { 325 /* We can use the mmapped memory. */ 326 elf->state.elf32.ehdr = ehdr; 327 elf->state.elf32.shdr 328 = (Elf32_Shdr *) ((char *) ehdr + ehdr->e_shoff); 329 330 /* Don't precache the phdr pointer here. 331 elf32_getphdr will validate it against the size when asked. */ 332 333 for (size_t cnt = 0; cnt < scncnt; ++cnt) 334 { 335 elf->state.elf32.scns.data[cnt].index = cnt; 336 elf->state.elf32.scns.data[cnt].elf = elf; 337 elf->state.elf32.scns.data[cnt].shdr.e32 = 338 &elf->state.elf32.shdr[cnt]; 339 if (likely (elf->state.elf32.shdr[cnt].sh_offset < maxsize) 340 && likely (maxsize - elf->state.elf32.shdr[cnt].sh_offset 341 <= elf->state.elf32.shdr[cnt].sh_size)) 342 elf->state.elf32.scns.data[cnt].rawdata_base = 343 elf->state.elf32.scns.data[cnt].data_base = 344 ((char *) map_address + offset 345 + elf->state.elf32.shdr[cnt].sh_offset); 346 elf->state.elf32.scns.data[cnt].list = &elf->state.elf32.scns; 347 348 /* If this is a section with an extended index add a 349 reference in the section which uses the extended 350 index. */ 351 if (elf->state.elf32.shdr[cnt].sh_type == SHT_SYMTAB_SHNDX 352 && elf->state.elf32.shdr[cnt].sh_link < scncnt) 353 elf->state.elf32.scns.data[elf->state.elf32.shdr[cnt].sh_link].shndx_index 354 = cnt; 355 356 /* Set the own shndx_index field in case it has not yet 357 been set. */ 358 if (elf->state.elf32.scns.data[cnt].shndx_index == 0) 359 elf->state.elf32.scns.data[cnt].shndx_index = -1; 360 } 361 } 362 else 363 { 364 /* Copy the ELF header. */ 365 elf->state.elf32.ehdr = memcpy (&elf->state.elf32.ehdr_mem, e_ident, 366 sizeof (Elf32_Ehdr)); 367 368 if (e_ident[EI_DATA] != MY_ELFDATA) 369 { 370 CONVERT (elf->state.elf32.ehdr_mem.e_type); 371 CONVERT (elf->state.elf32.ehdr_mem.e_machine); 372 CONVERT (elf->state.elf32.ehdr_mem.e_version); 373 CONVERT (elf->state.elf32.ehdr_mem.e_entry); 374 CONVERT (elf->state.elf32.ehdr_mem.e_phoff); 375 CONVERT (elf->state.elf32.ehdr_mem.e_shoff); 376 CONVERT (elf->state.elf32.ehdr_mem.e_flags); 377 CONVERT (elf->state.elf32.ehdr_mem.e_ehsize); 378 CONVERT (elf->state.elf32.ehdr_mem.e_phentsize); 379 CONVERT (elf->state.elf32.ehdr_mem.e_phnum); 380 CONVERT (elf->state.elf32.ehdr_mem.e_shentsize); 381 CONVERT (elf->state.elf32.ehdr_mem.e_shnum); 382 CONVERT (elf->state.elf32.ehdr_mem.e_shstrndx); 383 } 384 385 for (size_t cnt = 0; cnt < scncnt; ++cnt) 386 { 387 elf->state.elf32.scns.data[cnt].index = cnt; 388 elf->state.elf32.scns.data[cnt].elf = elf; 389 elf->state.elf32.scns.data[cnt].list = &elf->state.elf32.scns; 390 } 391 } 392 393 /* So far only one block with sections. */ 394 elf->state.elf32.scns_last = &elf->state.elf32.scns; 395 } 396 else 397 { 398 /* This pointer might not be directly usable if the alignment is 399 not sufficient for the architecture. */ 400 Elf64_Ehdr *ehdr = (Elf64_Ehdr *) ((char *) map_address + offset); 401 402 /* This is a 64-bit binary. */ 403 if (map_address != NULL && e_ident[EI_DATA] == MY_ELFDATA 404 && (ALLOW_UNALIGNED 405 || ((((uintptr_t) ehdr) & (__alignof__ (Elf64_Ehdr) - 1)) == 0 406 && ((uintptr_t) ((char *) ehdr + ehdr->e_shoff) 407 & (__alignof__ (Elf64_Shdr) - 1)) == 0 408 && ((uintptr_t) ((char *) ehdr + ehdr->e_phoff) 409 & (__alignof__ (Elf64_Phdr) - 1)) == 0))) 410 { 411 /* We can use the mmapped memory. */ 412 elf->state.elf64.ehdr = ehdr; 413 elf->state.elf64.shdr 414 = (Elf64_Shdr *) ((char *) ehdr + ehdr->e_shoff); 415 416 /* Don't precache the phdr pointer here. 417 elf64_getphdr will validate it against the size when asked. */ 418 419 for (size_t cnt = 0; cnt < scncnt; ++cnt) 420 { 421 elf->state.elf64.scns.data[cnt].index = cnt; 422 elf->state.elf64.scns.data[cnt].elf = elf; 423 elf->state.elf64.scns.data[cnt].shdr.e64 = 424 &elf->state.elf64.shdr[cnt]; 425 if (likely (elf->state.elf64.shdr[cnt].sh_offset < maxsize) 426 && likely (maxsize - elf->state.elf64.shdr[cnt].sh_offset 427 <= elf->state.elf64.shdr[cnt].sh_size)) 428 elf->state.elf64.scns.data[cnt].rawdata_base = 429 elf->state.elf64.scns.data[cnt].data_base = 430 ((char *) map_address + offset 431 + elf->state.elf64.shdr[cnt].sh_offset); 432 elf->state.elf64.scns.data[cnt].list = &elf->state.elf64.scns; 433 434 /* If this is a section with an extended index add a 435 reference in the section which uses the extended 436 index. */ 437 if (elf->state.elf64.shdr[cnt].sh_type == SHT_SYMTAB_SHNDX 438 && elf->state.elf64.shdr[cnt].sh_link < scncnt) 439 elf->state.elf64.scns.data[elf->state.elf64.shdr[cnt].sh_link].shndx_index 440 = cnt; 441 442 /* Set the own shndx_index field in case it has not yet 443 been set. */ 444 if (elf->state.elf64.scns.data[cnt].shndx_index == 0) 445 elf->state.elf64.scns.data[cnt].shndx_index = -1; 446 } 447 } 448 else 449 { 450 /* Copy the ELF header. */ 451 elf->state.elf64.ehdr = memcpy (&elf->state.elf64.ehdr_mem, e_ident, 452 sizeof (Elf64_Ehdr)); 453 454 if (e_ident[EI_DATA] != MY_ELFDATA) 455 { 456 CONVERT (elf->state.elf64.ehdr_mem.e_type); 457 CONVERT (elf->state.elf64.ehdr_mem.e_machine); 458 CONVERT (elf->state.elf64.ehdr_mem.e_version); 459 CONVERT (elf->state.elf64.ehdr_mem.e_entry); 460 CONVERT (elf->state.elf64.ehdr_mem.e_phoff); 461 CONVERT (elf->state.elf64.ehdr_mem.e_shoff); 462 CONVERT (elf->state.elf64.ehdr_mem.e_flags); 463 CONVERT (elf->state.elf64.ehdr_mem.e_ehsize); 464 CONVERT (elf->state.elf64.ehdr_mem.e_phentsize); 465 CONVERT (elf->state.elf64.ehdr_mem.e_phnum); 466 CONVERT (elf->state.elf64.ehdr_mem.e_shentsize); 467 CONVERT (elf->state.elf64.ehdr_mem.e_shnum); 468 CONVERT (elf->state.elf64.ehdr_mem.e_shstrndx); 469 } 470 471 for (size_t cnt = 0; cnt < scncnt; ++cnt) 472 { 473 elf->state.elf64.scns.data[cnt].index = cnt; 474 elf->state.elf64.scns.data[cnt].elf = elf; 475 elf->state.elf64.scns.data[cnt].list = &elf->state.elf64.scns; 476 } 477 } 478 479 /* So far only one block with sections. */ 480 elf->state.elf64.scns_last = &elf->state.elf64.scns; 481 } 482 483 return elf; 484 } 485 486 487 Elf * 488 internal_function 489 __libelf_read_mmaped_file (int fildes, void *map_address, off_t offset, 490 size_t maxsize, Elf_Cmd cmd, Elf *parent) 491 { 492 /* We have to find out what kind of file this is. We handle ELF 493 files and archives. To find out what we have we must look at the 494 header. The header for an ELF file is EI_NIDENT bytes in size, 495 the header for an archive file SARMAG bytes long. */ 496 unsigned char *e_ident = (unsigned char *) map_address + offset; 497 498 /* See what kind of object we have here. */ 499 Elf_Kind kind = determine_kind (e_ident, maxsize); 500 501 switch (kind) 502 { 503 case ELF_K_ELF: 504 return file_read_elf (fildes, map_address, e_ident, offset, maxsize, 505 cmd, parent); 506 507 case ELF_K_AR: 508 return file_read_ar (fildes, map_address, offset, maxsize, cmd, parent); 509 510 default: 511 break; 512 } 513 514 /* This case is easy. Since we cannot do anything with this file 515 create a dummy descriptor. */ 516 return allocate_elf (fildes, map_address, offset, maxsize, cmd, parent, 517 ELF_K_NONE, 0); 518 } 519 520 521 static Elf * 522 read_unmmaped_file (int fildes, off_t offset, size_t maxsize, Elf_Cmd cmd, 523 Elf *parent) 524 { 525 /* We have to find out what kind of file this is. We handle ELF 526 files and archives. To find out what we have we must read the 527 header. The identification header for an ELF file is EI_NIDENT 528 bytes in size, but we read the whole ELF header since we will 529 need it anyway later. For archives the header in SARMAG bytes 530 long. Read the maximum of these numbers. 531 532 XXX We have to change this for the extended `ar' format some day. 533 534 Use a union to ensure alignment. We might later access the 535 memory as a ElfXX_Ehdr. */ 536 union 537 { 538 Elf64_Ehdr ehdr; 539 unsigned char header[MAX (sizeof (Elf64_Ehdr), SARMAG)]; 540 } mem; 541 542 /* Read the head of the file. */ 543 ssize_t nread = pread_retry (fildes, mem.header, 544 MIN (MAX (sizeof (Elf64_Ehdr), SARMAG), 545 maxsize), 546 offset); 547 if (unlikely (nread == -1)) 548 /* We cannot even read the head of the file. Maybe FILDES is associated 549 with an unseekable device. This is nothing we can handle. */ 550 return NULL; 551 552 /* See what kind of object we have here. */ 553 Elf_Kind kind = determine_kind (mem.header, nread); 554 555 switch (kind) 556 { 557 case ELF_K_AR: 558 return file_read_ar (fildes, NULL, offset, maxsize, cmd, parent); 559 560 case ELF_K_ELF: 561 /* Make sure at least the ELF header is contained in the file. */ 562 if ((size_t) nread >= (mem.header[EI_CLASS] == ELFCLASS32 563 ? sizeof (Elf32_Ehdr) : sizeof (Elf64_Ehdr))) 564 return file_read_elf (fildes, NULL, mem.header, offset, maxsize, cmd, 565 parent); 566 /* FALLTHROUGH */ 567 568 default: 569 break; 570 } 571 572 /* This case is easy. Since we cannot do anything with this file 573 create a dummy descriptor. */ 574 return allocate_elf (fildes, NULL, offset, maxsize, cmd, parent, 575 ELF_K_NONE, 0); 576 } 577 578 579 /* Open a file for reading. If possible we will try to mmap() the file. */ 580 static struct Elf * 581 read_file (int fildes, off_t offset, size_t maxsize, 582 Elf_Cmd cmd, Elf *parent) 583 { 584 void *map_address = NULL; 585 int use_mmap = (cmd == ELF_C_READ_MMAP || cmd == ELF_C_RDWR_MMAP 586 || cmd == ELF_C_WRITE_MMAP 587 || cmd == ELF_C_READ_MMAP_PRIVATE); 588 589 #if _MUDFLAP 590 /* Mudflap doesn't grok that our mmap'd data is ok. */ 591 use_mmap = 0; 592 #endif 593 594 if (use_mmap) 595 { 596 if (parent == NULL) 597 { 598 if (maxsize == ~((size_t) 0)) 599 { 600 /* We don't know in the moment how large the file is. 601 Determine it now. */ 602 struct stat st; 603 604 if (fstat (fildes, &st) == 0 605 && (sizeof (size_t) >= sizeof (st.st_size) 606 || st.st_size <= ~((size_t) 0))) 607 maxsize = (size_t) st.st_size; 608 } 609 610 /* We try to map the file ourself. */ 611 map_address = mmap (NULL, maxsize, (cmd == ELF_C_READ_MMAP 612 ? PROT_READ 613 : PROT_READ|PROT_WRITE), 614 cmd == ELF_C_READ_MMAP_PRIVATE 615 || cmd == ELF_C_READ_MMAP 616 ? MAP_PRIVATE : MAP_SHARED, 617 fildes, offset); 618 619 if (map_address == MAP_FAILED) 620 map_address = NULL; 621 } 622 else 623 { 624 /* The parent is already loaded. Use it. */ 625 assert (maxsize != ~((size_t) 0)); 626 627 map_address = parent->map_address; 628 } 629 } 630 631 /* If we have the file in memory optimize the access. */ 632 if (map_address != NULL) 633 { 634 assert (map_address != MAP_FAILED); 635 636 struct Elf *result = __libelf_read_mmaped_file (fildes, map_address, 637 offset, maxsize, cmd, 638 parent); 639 640 /* If something went wrong during the initialization unmap the 641 memory if we mmaped here. */ 642 if (result == NULL 643 && (parent == NULL 644 || parent->map_address != map_address)) 645 munmap (map_address, maxsize); 646 else if (parent == NULL) 647 /* Remember that we mmap()ed the memory. */ 648 result->flags |= ELF_F_MMAPPED; 649 650 return result; 651 } 652 653 /* Otherwise we have to do it the hard way. We read as much as necessary 654 from the file whenever we need information which is not available. */ 655 return read_unmmaped_file (fildes, offset, maxsize, cmd, parent); 656 } 657 658 659 /* Find the entry with the long names for the content of this archive. */ 660 static const char * 661 read_long_names (Elf *elf) 662 { 663 off_t offset = SARMAG; /* This is the first entry. */ 664 struct ar_hdr hdrm; 665 struct ar_hdr *hdr; 666 char *newp; 667 size_t len; 668 669 while (1) 670 { 671 if (elf->map_address != NULL) 672 { 673 if (offset + sizeof (struct ar_hdr) > elf->maximum_size) 674 return NULL; 675 676 /* The data is mapped. */ 677 hdr = (struct ar_hdr *) (elf->map_address + offset); 678 } 679 else 680 { 681 /* Read the header from the file. */ 682 if (unlikely (pread_retry (elf->fildes, &hdrm, sizeof (hdrm), 683 elf->start_offset + offset) 684 != sizeof (hdrm))) 685 return NULL; 686 687 hdr = &hdrm; 688 } 689 690 len = atol (hdr->ar_size); 691 692 if (memcmp (hdr->ar_name, "// ", 16) == 0) 693 break; 694 695 offset += sizeof (struct ar_hdr) + ((len + 1) & ~1l); 696 } 697 698 /* Due to the stupid format of the long name table entry (which are not 699 NUL terminted) we have to provide an appropriate representation anyhow. 700 Therefore we always make a copy which has the appropriate form. */ 701 newp = (char *) malloc (len); 702 if (newp != NULL) 703 { 704 char *runp; 705 706 if (elf->map_address != NULL) 707 /* Simply copy it over. */ 708 elf->state.ar.long_names = (char *) memcpy (newp, 709 elf->map_address + offset 710 + sizeof (struct ar_hdr), 711 len); 712 else 713 { 714 if (unlikely ((size_t) pread_retry (elf->fildes, newp, len, 715 elf->start_offset + offset 716 + sizeof (struct ar_hdr)) 717 != len)) 718 { 719 /* We were not able to read all data. */ 720 free (newp); 721 elf->state.ar.long_names = NULL; 722 return NULL; 723 } 724 elf->state.ar.long_names = newp; 725 } 726 727 elf->state.ar.long_names_len = len; 728 729 /* Now NUL-terminate the strings. */ 730 runp = newp; 731 while (1) 732 { 733 runp = (char *) memchr (runp, '/', newp + len - runp); 734 if (runp == NULL) 735 /* This was the last entry. */ 736 break; 737 738 /* NUL-terminate the string. */ 739 *runp = '\0'; 740 741 /* Skip the NUL byte and the \012. */ 742 runp += 2; 743 744 /* A sanity check. Somebody might have generated invalid 745 archive. */ 746 if (runp >= newp + len) 747 break; 748 } 749 } 750 751 return newp; 752 } 753 754 755 /* Read the next archive header. */ 756 int 757 internal_function 758 __libelf_next_arhdr_wrlock (elf) 759 Elf *elf; 760 { 761 struct ar_hdr *ar_hdr; 762 Elf_Arhdr *elf_ar_hdr; 763 764 if (elf->map_address != NULL) 765 { 766 /* See whether this entry is in the file. */ 767 if (unlikely (elf->state.ar.offset + sizeof (struct ar_hdr) 768 > elf->start_offset + elf->maximum_size)) 769 { 770 /* This record is not anymore in the file. */ 771 __libelf_seterrno (ELF_E_RANGE); 772 return -1; 773 } 774 ar_hdr = (struct ar_hdr *) (elf->map_address + elf->state.ar.offset); 775 } 776 else 777 { 778 ar_hdr = &elf->state.ar.ar_hdr; 779 780 if (unlikely (pread_retry (elf->fildes, ar_hdr, sizeof (struct ar_hdr), 781 elf->state.ar.offset) 782 != sizeof (struct ar_hdr))) 783 { 784 /* Something went wrong while reading the file. */ 785 __libelf_seterrno (ELF_E_RANGE); 786 return -1; 787 } 788 } 789 790 /* One little consistency check. */ 791 if (unlikely (memcmp (ar_hdr->ar_fmag, ARFMAG, 2) != 0)) 792 { 793 /* This is no valid archive. */ 794 __libelf_seterrno (ELF_E_ARCHIVE_FMAG); 795 return -1; 796 } 797 798 /* Copy the raw name over to a NUL terminated buffer. */ 799 *((char *) __mempcpy (elf->state.ar.raw_name, ar_hdr->ar_name, 16)) = '\0'; 800 801 elf_ar_hdr = &elf->state.ar.elf_ar_hdr; 802 803 /* Now convert the `struct ar_hdr' into `Elf_Arhdr'. 804 Determine whether this is a special entry. */ 805 if (ar_hdr->ar_name[0] == '/') 806 { 807 if (ar_hdr->ar_name[1] == ' ' 808 && memcmp (ar_hdr->ar_name, "/ ", 16) == 0) 809 /* This is the index. */ 810 elf_ar_hdr->ar_name = memcpy (elf->state.ar.ar_name, "/", 2); 811 else if (ar_hdr->ar_name[1] == '/' 812 && memcmp (ar_hdr->ar_name, "// ", 16) == 0) 813 /* This is the array with the long names. */ 814 elf_ar_hdr->ar_name = memcpy (elf->state.ar.ar_name, "//", 3); 815 else if (likely (isdigit (ar_hdr->ar_name[1]))) 816 { 817 size_t offset; 818 819 /* This is a long name. First we have to read the long name 820 table, if this hasn't happened already. */ 821 if (unlikely (elf->state.ar.long_names == NULL 822 && read_long_names (elf) == NULL)) 823 { 824 /* No long name table although it is reference. The archive is 825 broken. */ 826 __libelf_seterrno (ELF_E_INVALID_ARCHIVE); 827 return -1; 828 } 829 830 offset = atol (ar_hdr->ar_name + 1); 831 if (unlikely (offset >= elf->state.ar.long_names_len)) 832 { 833 /* The index in the long name table is larger than the table. */ 834 __libelf_seterrno (ELF_E_INVALID_ARCHIVE); 835 return -1; 836 } 837 elf_ar_hdr->ar_name = elf->state.ar.long_names + offset; 838 } 839 else 840 { 841 /* This is none of the known special entries. */ 842 __libelf_seterrno (ELF_E_INVALID_ARCHIVE); 843 return -1; 844 } 845 } 846 else 847 { 848 char *endp; 849 850 /* It is a normal entry. Copy over the name. */ 851 endp = (char *) memccpy (elf->state.ar.ar_name, ar_hdr->ar_name, 852 '/', 16); 853 if (endp != NULL) 854 endp[-1] = '\0'; 855 else 856 { 857 /* In the old BSD style of archive, there is no / terminator. 858 Instead, there is space padding at the end of the name. */ 859 size_t i = 15; 860 do 861 elf->state.ar.ar_name[i] = '\0'; 862 while (i > 0 && elf->state.ar.ar_name[--i] == ' '); 863 } 864 865 elf_ar_hdr->ar_name = elf->state.ar.ar_name; 866 } 867 868 if (unlikely (ar_hdr->ar_size[0] == ' ')) 869 /* Something is really wrong. We cannot live without a size for 870 the member since it will not be possible to find the next 871 archive member. */ 872 { 873 __libelf_seterrno (ELF_E_INVALID_ARCHIVE); 874 return -1; 875 } 876 877 /* Since there are no specialized functions to convert ASCII to 878 time_t, uid_t, gid_t, mode_t, and off_t we use either atol or 879 atoll depending on the size of the types. We are also prepared 880 for the case where the whole field in the `struct ar_hdr' is 881 filled in which case we cannot simply use atol/l but instead have 882 to create a temporary copy. */ 883 884 #define INT_FIELD(FIELD) \ 885 do \ 886 { \ 887 char buf[sizeof (ar_hdr->FIELD) + 1]; \ 888 const char *string = ar_hdr->FIELD; \ 889 if (ar_hdr->FIELD[sizeof (ar_hdr->FIELD) - 1] != ' ') \ 890 { \ 891 *((char *) __mempcpy (buf, ar_hdr->FIELD, sizeof (ar_hdr->FIELD))) \ 892 = '\0'; \ 893 string = buf; \ 894 } \ 895 if (sizeof (elf_ar_hdr->FIELD) <= sizeof (long int)) \ 896 elf_ar_hdr->FIELD = (__typeof (elf_ar_hdr->FIELD)) atol (string); \ 897 else \ 898 elf_ar_hdr->FIELD = (__typeof (elf_ar_hdr->FIELD)) atoll (string); \ 899 } \ 900 while (0) 901 902 INT_FIELD (ar_date); 903 INT_FIELD (ar_uid); 904 INT_FIELD (ar_gid); 905 INT_FIELD (ar_mode); 906 INT_FIELD (ar_size); 907 908 return 0; 909 } 910 911 912 /* We were asked to return a clone of an existing descriptor. This 913 function must be called with the lock on the parent descriptor 914 being held. */ 915 static Elf * 916 dup_elf (int fildes, Elf_Cmd cmd, Elf *ref) 917 { 918 struct Elf *result; 919 920 if (fildes == -1) 921 /* Allow the user to pass -1 as the file descriptor for the new file. */ 922 fildes = ref->fildes; 923 /* The file descriptor better should be the same. If it was disconnected 924 already (using `elf_cntl') we do not test it. */ 925 else if (unlikely (ref->fildes != -1 && fildes != ref->fildes)) 926 { 927 __libelf_seterrno (ELF_E_FD_MISMATCH); 928 return NULL; 929 } 930 931 /* The mode must allow reading. I.e., a descriptor creating with a 932 command different then ELF_C_READ, ELF_C_WRITE and ELF_C_RDWR is 933 not allowed. */ 934 if (unlikely (ref->cmd != ELF_C_READ && ref->cmd != ELF_C_READ_MMAP 935 && ref->cmd != ELF_C_WRITE && ref->cmd != ELF_C_WRITE_MMAP 936 && ref->cmd != ELF_C_RDWR && ref->cmd != ELF_C_RDWR_MMAP 937 && ref->cmd != ELF_C_READ_MMAP_PRIVATE)) 938 { 939 __libelf_seterrno (ELF_E_INVALID_OP); 940 return NULL; 941 } 942 943 /* Now it is time to distinguish between reading normal files and 944 archives. Normal files can easily be handled be incrementing the 945 reference counter and return the same descriptor. */ 946 if (ref->kind != ELF_K_AR) 947 { 948 ++ref->ref_count; 949 return ref; 950 } 951 952 /* This is an archive. We must create a descriptor for the archive 953 member the internal pointer of the archive file desriptor is 954 pointing to. First read the header of the next member if this 955 has not happened already. */ 956 if (ref->state.ar.elf_ar_hdr.ar_name == NULL 957 && __libelf_next_arhdr_wrlock (ref) != 0) 958 /* Something went wrong. Maybe there is no member left. */ 959 return NULL; 960 961 /* We have all the information we need about the next archive member. 962 Now create a descriptor for it. */ 963 result = read_file (fildes, ref->state.ar.offset + sizeof (struct ar_hdr), 964 ref->state.ar.elf_ar_hdr.ar_size, cmd, ref); 965 966 /* Enlist this new descriptor in the list of children. */ 967 if (result != NULL) 968 { 969 result->next = ref->state.ar.children; 970 ref->state.ar.children = result; 971 } 972 973 return result; 974 } 975 976 977 /* Return desriptor for empty file ready for writing. */ 978 static struct Elf * 979 write_file (int fd, Elf_Cmd cmd) 980 { 981 /* We simply create an empty `Elf' structure. */ 982 #define NSCNSALLOC 10 983 Elf *result = allocate_elf (fd, NULL, 0, 0, cmd, NULL, ELF_K_ELF, 984 NSCNSALLOC * sizeof (Elf_Scn)); 985 986 if (result != NULL) 987 { 988 /* We have to write to the file in any case. */ 989 result->flags = ELF_F_DIRTY; 990 991 /* Some more or less arbitrary value. */ 992 result->state.elf.scnincr = NSCNSALLOC; 993 994 /* We have allocated room for some sections. */ 995 assert (offsetof (struct Elf, state.elf32.scns) 996 == offsetof (struct Elf, state.elf64.scns)); 997 result->state.elf.scns_last = &result->state.elf32.scns; 998 result->state.elf32.scns.max = NSCNSALLOC; 999 } 1000 1001 return result; 1002 } 1003 1004 1005 /* Return a descriptor for the file belonging to FILDES. */ 1006 Elf * 1007 elf_begin (fildes, cmd, ref) 1008 int fildes; 1009 Elf_Cmd cmd; 1010 Elf *ref; 1011 { 1012 Elf *retval; 1013 1014 if (unlikely (! __libelf_version_initialized)) 1015 { 1016 /* Version wasn't set so far. */ 1017 __libelf_seterrno (ELF_E_NO_VERSION); 1018 return NULL; 1019 } 1020 1021 if (ref != NULL) 1022 /* Make sure the descriptor is not suddenly going away. */ 1023 rwlock_rdlock (ref->lock); 1024 else if (unlikely (fcntl (fildes, F_GETFL) == -1 && errno == EBADF)) 1025 { 1026 /* We cannot do anything productive without a file descriptor. */ 1027 __libelf_seterrno (ELF_E_INVALID_FILE); 1028 return NULL; 1029 } 1030 1031 Elf *lock_dup_elf () 1032 { 1033 /* We need wrlock to dup an archive. */ 1034 if (ref->kind == ELF_K_AR) 1035 { 1036 rwlock_unlock (ref->lock); 1037 rwlock_wrlock (ref->lock); 1038 } 1039 1040 /* Duplicate the descriptor. */ 1041 return dup_elf (fildes, cmd, ref); 1042 } 1043 1044 switch (cmd) 1045 { 1046 case ELF_C_NULL: 1047 /* We simply return a NULL pointer. */ 1048 retval = NULL; 1049 break; 1050 1051 case ELF_C_READ_MMAP_PRIVATE: 1052 /* If we have a reference it must also be opened this way. */ 1053 if (unlikely (ref != NULL && ref->cmd != ELF_C_READ_MMAP_PRIVATE)) 1054 { 1055 __libelf_seterrno (ELF_E_INVALID_CMD); 1056 retval = NULL; 1057 break; 1058 } 1059 /* FALLTHROUGH */ 1060 1061 case ELF_C_READ: 1062 case ELF_C_READ_MMAP: 1063 if (ref != NULL) 1064 retval = lock_dup_elf (); 1065 else 1066 /* Create descriptor for existing file. */ 1067 retval = read_file (fildes, 0, ~((size_t) 0), cmd, NULL); 1068 break; 1069 1070 case ELF_C_RDWR: 1071 case ELF_C_RDWR_MMAP: 1072 /* If we have a REF object it must also be opened using this 1073 command. */ 1074 if (ref != NULL) 1075 { 1076 if (unlikely (ref->cmd != ELF_C_RDWR && ref->cmd != ELF_C_RDWR_MMAP 1077 && ref->cmd != ELF_C_WRITE 1078 && ref->cmd != ELF_C_WRITE_MMAP)) 1079 { 1080 /* This is not ok. REF must also be opened for writing. */ 1081 __libelf_seterrno (ELF_E_INVALID_CMD); 1082 retval = NULL; 1083 } 1084 else 1085 retval = lock_dup_elf (); 1086 } 1087 else 1088 /* Create descriptor for existing file. */ 1089 retval = read_file (fildes, 0, ~((size_t) 0), cmd, NULL); 1090 break; 1091 1092 case ELF_C_WRITE: 1093 case ELF_C_WRITE_MMAP: 1094 /* We ignore REF and prepare a descriptor to write a new file. */ 1095 retval = write_file (fildes, cmd); 1096 break; 1097 1098 default: 1099 __libelf_seterrno (ELF_E_INVALID_CMD); 1100 retval = NULL; 1101 break; 1102 } 1103 1104 /* Release the lock. */ 1105 if (ref != NULL) 1106 rwlock_unlock (ref->lock); 1107 1108 return retval; 1109 } 1110 INTDEF(elf_begin) 1111