Home | History | Annotate | Download | only in micro_bench
      1 /*
      2 ** Copyright 2010 The Android Open Source Project
      3 **
      4 ** Licensed under the Apache License, Version 2.0 (the "License");
      5 ** you may not use this file except in compliance with the License.
      6 ** You may obtain a copy of the License at
      7 **
      8 **     http://www.apache.org/licenses/LICENSE-2.0
      9 **
     10 ** Unless required by applicable law or agreed to in writing, software
     11 ** distributed under the License is distributed on an "AS IS" BASIS,
     12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 ** See the License for the specific language governing permissions and
     14 ** limitations under the License.
     15 */
     16 
     17 /*
     18  * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
     19  */
     20 
     21 #include <stdio.h>
     22 #include <stdlib.h>
     23 #include <ctype.h>
     24 #include <math.h>
     25 #include <sched.h>
     26 #include <sys/resource.h>
     27 #include <time.h>
     28 #include <unistd.h>
     29 
     30 // The default size of data that will be manipulated in each iteration of
     31 // a memory benchmark. Can be modified with the --data_size option.
     32 #define DEFAULT_DATA_SIZE       1000000000
     33 
     34 // The amount of memory allocated for the cold benchmarks to use.
     35 #define DEFAULT_COLD_DATA_SIZE  128*1024*1024
     36 
     37 // The default size of the stride between each buffer for cold benchmarks.
     38 #define DEFAULT_COLD_STRIDE_SIZE  4096
     39 
     40 // Number of nanoseconds in a second.
     41 #define NS_PER_SEC              1000000000
     42 
     43 // The maximum number of arguments that a benchmark will accept.
     44 #define MAX_ARGS    2
     45 
     46 // Default memory alignment of malloc.
     47 #define DEFAULT_MALLOC_MEMORY_ALIGNMENT   8
     48 
     49 // Contains information about benchmark options.
     50 typedef struct {
     51     bool print_average;
     52     bool print_each_iter;
     53 
     54     int dst_align;
     55     int dst_or_mask;
     56     int src_align;
     57     int src_or_mask;
     58 
     59     int cpu_to_lock;
     60 
     61     int data_size;
     62     int dst_str_size;
     63     int cold_data_size;
     64     int cold_stride_size;
     65 
     66     int args[MAX_ARGS];
     67     int num_args;
     68 } command_data_t;
     69 
     70 typedef void *(*void_func_t)();
     71 typedef void *(*memcpy_func_t)(void *, const void *, size_t);
     72 typedef void *(*memset_func_t)(void *, int, size_t);
     73 typedef int (*strcmp_func_t)(const char *, const char *);
     74 typedef char *(*str_func_t)(char *, const char *);
     75 typedef size_t (*strlen_func_t)(const char *);
     76 
     77 // Struct that contains a mapping of benchmark name to benchmark function.
     78 typedef struct {
     79     const char *name;
     80     int (*ptr)(const char *, const command_data_t &, void_func_t func);
     81     void_func_t func;
     82 } function_t;
     83 
     84 // Get the current time in nanoseconds.
     85 uint64_t nanoTime() {
     86   struct timespec t;
     87 
     88   t.tv_sec = t.tv_nsec = 0;
     89   clock_gettime(CLOCK_MONOTONIC, &t);
     90   return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
     91 }
     92 
     93 // Allocate memory with a specific alignment and return that pointer.
     94 // This function assumes an alignment value that is a power of 2.
     95 // If the alignment is 0, then use the pointer returned by malloc.
     96 uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
     97   uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
     98   if (alignment > 0) {
     99       // When setting the alignment, set it to exactly the alignment chosen.
    100       // The pointer returned will be guaranteed not to be aligned to anything
    101       // more than that.
    102       ptr += alignment - (ptr & (alignment - 1));
    103       ptr |= alignment | or_mask;
    104   }
    105 
    106   return reinterpret_cast<uint8_t*>(ptr);
    107 }
    108 
    109 // Allocate memory with a specific alignment and return that pointer.
    110 // This function assumes an alignment value that is a power of 2.
    111 // If the alignment is 0, then use the pointer returned by malloc.
    112 uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
    113   uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
    114   if (!ptr)
    115       return NULL;
    116   return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
    117 }
    118 
    119 void initString(uint8_t *buf, size_t size) {
    120     for (size_t i = 0; i < size - 1; i++) {
    121         buf[i] = static_cast<char>(32 + (i % 96));
    122     }
    123     buf[size-1] = '\0';
    124 }
    125 
    126 static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
    127     return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
    128 }
    129 
    130 static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
    131     return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
    132 }
    133 
    134 static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
    135     return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
    136 }
    137 
    138 static inline double computeStdDev(double square_avg, double running_avg) {
    139     return sqrt(square_avg - running_avg * running_avg);
    140 }
    141 
    142 static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
    143     printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
    144            name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
    145 }
    146 
    147 static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
    148     printf("  %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
    149            name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
    150            max/1024.0);
    151 }
    152 
    153 // For the cold benchmarks, a large buffer will be created which
    154 // contains many "size" buffers. This function will figure out the increment
    155 // needed between each buffer so that each one is aligned to "alignment".
    156 int getAlignmentIncrement(size_t size, int alignment) {
    157     if (alignment == 0) {
    158         alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
    159     }
    160     alignment *= 2;
    161     return size + alignment - (size % alignment);
    162 }
    163 
    164 uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
    165     uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
    166     if (!buffers) {
    167         return NULL;
    168     }
    169     return getAlignedMemory(buffers, alignment, or_mask);
    170 }
    171 
    172 static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
    173     return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
    174 }
    175 
    176 static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
    177     printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
    178            name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
    179 }
    180 
    181 static void inline printColdSummary(
    182         uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
    183         double running_avg, double square_avg, double min, double max) {
    184     printf("  %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
    185            name, copies, num_buffers, size, running_avg/1024.0,
    186            computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
    187 }
    188 
    189 #define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
    190     uint64_t time_ns;                                                 \
    191     int iters = cmd_data.args[1];                                     \
    192     bool print_average = cmd_data.print_average;                      \
    193     bool print_each_iter = cmd_data.print_each_iter;                  \
    194     double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
    195     double avg;                                                       \
    196     for (int i = 0; iters == -1 || i < iters; i++) {                  \
    197         time_ns = nanoTime();                                         \
    198         BENCH;                                                        \
    199         time_ns = nanoTime() - time_ns;                               \
    200         avg = COMPUTE_AVG;                                            \
    201         if (print_average) {                                          \
    202             running_avg = computeRunningAvg(avg, running_avg, i);     \
    203             square_avg = computeRunningSquareAvg(avg, square_avg, i); \
    204             if (min == 0.0 || avg < min) {                            \
    205                 min = avg;                                            \
    206             }                                                         \
    207             if (avg > max) {                                          \
    208                 max = avg;                                            \
    209             }                                                         \
    210         }                                                             \
    211         if (print_each_iter) {                                        \
    212             PRINT_ITER;                                               \
    213         }                                                             \
    214     }                                                                 \
    215     if (print_average) {                                              \
    216         PRINT_AVG;                                                    \
    217     }
    218 
    219 #define MAINLOOP_DATA(name, cmd_data, size, BENCH)                    \
    220     size_t copies = cmd_data.data_size/size;                          \
    221     size_t j;                                                         \
    222     MAINLOOP(cmd_data,                                                \
    223              for (j = 0; j < copies; j++) {                           \
    224                  BENCH;                                               \
    225              },                                                       \
    226              computeAverage(time_ns, size, copies),                   \
    227              printIter(time_ns, name, size, copies, avg),             \
    228              double std_dev = computeStdDev(square_avg, running_avg); \
    229              printSummary(time_ns, name, size, copies, running_avg,   \
    230                           std_dev, min, max));
    231 
    232 #define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH)                 \
    233     size_t num_strides = num_buffers / num_incrs;                             \
    234     if ((num_buffers % num_incrs) != 0) {                                     \
    235         num_strides--;                                                        \
    236     }                                                                         \
    237     size_t copies = 1;                                                        \
    238     num_buffers = num_incrs * num_strides;                                    \
    239     if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) {       \
    240         copies = cmd_data.data_size / (num_buffers * size);                   \
    241     }                                                                         \
    242     if (num_strides == 0) {                                                   \
    243         printf("%s: Chosen options lead to no copies, aborting.\n", name);    \
    244         return -1;                                                            \
    245     }                                                                         \
    246     size_t j, k;                                                              \
    247     MAINLOOP(cmd_data,                                                        \
    248              for (j = 0; j < copies; j++) {                                   \
    249                  for (k = 0; k < num_incrs; k++) {                            \
    250                      BENCH;                                                   \
    251                 }                                                             \
    252             },                                                                \
    253             computeColdAverage(time_ns, size, copies, num_buffers),           \
    254             printColdIter(time_ns, name, size, copies, num_buffers, avg),     \
    255             printColdSummary(time_ns, name, size, copies, num_buffers,        \
    256                              running_avg, square_avg, min, max));
    257 
    258 // This version of the macro creates a single buffer of the given size and
    259 // alignment. The variable "buf" will be a pointer to the buffer and should
    260 // be used by the BENCH code.
    261 // INIT - Any specialized code needed to initialize the data. This will only
    262 //        be executed once.
    263 // BENCH - The actual code to benchmark and is timed.
    264 #define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH)                            \
    265     size_t size = cmd_data.args[0]; \
    266     uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
    267     if (!buf)                                                                 \
    268         return -1;                                                            \
    269     INIT;                                                                     \
    270     MAINLOOP_DATA(name, cmd_data, size, BENCH);
    271 
    272 // This version of the macro creates two buffers of the given sizes and
    273 // alignments. The variables "buf1" and "buf2" will be pointers to the
    274 // buffers and should be used by the BENCH code.
    275 // INIT - Any specialized code needed to initialize the data. This will only
    276 //        be executed once.
    277 // BENCH - The actual code to benchmark and is timed.
    278 #define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH)                           \
    279     size_t size = cmd_data.args[0];                                           \
    280     uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
    281     if (!buf1)                                                                \
    282         return -1;                                                            \
    283     size_t total_size = size;                                                 \
    284     if (cmd_data.dst_str_size > 0)                                            \
    285         total_size += cmd_data.dst_str_size;                                  \
    286     uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
    287     if (!buf2)                                                                \
    288         return -1;                                                            \
    289     INIT;                                                                     \
    290     MAINLOOP_DATA(name, cmd_data, size, BENCH);
    291 
    292 // This version of the macro attempts to benchmark code when the data
    293 // being manipulated is not in the cache, thus the cache is cold. It does
    294 // this by creating a single large buffer that is designed to be larger than
    295 // the largest cache in the system. The variable "buf" will be one slice
    296 // of the buffer that the BENCH code should use that is of the correct size
    297 // and alignment. In order to avoid any algorithms that prefetch past the end
    298 // of their "buf" and into the next sequential buffer, the code strides
    299 // through the buffer. Specifically, as "buf" values are iterated in BENCH
    300 // code, the end of "buf" is guaranteed to be at least "stride_size" away
    301 // from the next "buf".
    302 // INIT - Any specialized code needed to initialize the data. This will only
    303 //        be executed once.
    304 // BENCH - The actual code to benchmark and is timed.
    305 #define COLD_ONE_BUF(name, cmd_data, INIT, BENCH)                             \
    306     size_t size = cmd_data.args[0];                                           \
    307     size_t incr = getAlignmentIncrement(size, cmd_data.dst_align);            \
    308     size_t num_buffers = cmd_data.cold_data_size / incr;                      \
    309     size_t buffer_size = num_buffers * incr;                                  \
    310     uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
    311     if (!buffer)                                                              \
    312         return -1;                                                            \
    313     size_t num_incrs = cmd_data.cold_stride_size / incr + 1;                  \
    314     size_t stride_incr = incr * num_incrs;                                    \
    315     uint8_t *buf;                                                             \
    316     size_t l;                                                                 \
    317     INIT;                                                                     \
    318     MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
    319                   buf = buffer + k * incr;                                    \
    320                   for (l = 0; l < num_strides; l++) {                         \
    321                       BENCH;                                                  \
    322                       buf += stride_incr;                                     \
    323                   });
    324 
    325 // This version of the macro attempts to benchmark code when the data
    326 // being manipulated is not in the cache, thus the cache is cold. It does
    327 // this by creating two large buffers each of which is designed to be
    328 // larger than the largest cache in the system. Two variables "buf1" and
    329 // "buf2" will be the two buffers that BENCH code should use. In order
    330 // to avoid any algorithms that prefetch past the end of either "buf1"
    331 // or "buf2" and into the next sequential buffer, the code strides through
    332 // both buffers. Specifically, as "buf1" and "buf2" values are iterated in
    333 // BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
    334 // "stride_size" away from the next "buf1" and "buf2".
    335 // INIT - Any specialized code needed to initialize the data. This will only
    336 //        be executed once.
    337 // BENCH - The actual code to benchmark and is timed.
    338 #define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH)                            \
    339     size_t size = cmd_data.args[0];                                           \
    340     size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align);       \
    341     size_t total_size = size;                                                 \
    342     if (cmd_data.dst_str_size > 0)                                            \
    343         total_size += cmd_data.dst_str_size;                                  \
    344     size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
    345     size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr;        \
    346     size_t num_buffers = cmd_data.cold_data_size / max_incr;                  \
    347     size_t buffer1_size = num_buffers * buf1_incr;                            \
    348     size_t buffer2_size = num_buffers * buf2_incr;                            \
    349     uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
    350     if (!buffer1)                                                             \
    351         return -1;                                                            \
    352     uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
    353     if (!buffer2)                                                             \
    354         return -1;                                                            \
    355     size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr;        \
    356     size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1;              \
    357     size_t buf1_stride_incr = buf1_incr * num_incrs;                          \
    358     size_t buf2_stride_incr = buf2_incr * num_incrs;                          \
    359     size_t l;                                                                 \
    360     uint8_t *buf1;                                                            \
    361     uint8_t *buf2;                                                            \
    362     INIT;                                                                     \
    363     MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
    364                   buf1 = buffer1 + k * buf1_incr;                             \
    365                   buf2 = buffer2 + k * buf2_incr;                             \
    366                   for (l = 0; l < num_strides; l++) {                         \
    367                       BENCH;                                                  \
    368                       buf1 += buf1_stride_incr;                               \
    369                       buf2 += buf2_stride_incr;                               \
    370                   });
    371 
    372 int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
    373     int delay = cmd_data.args[0];
    374     MAINLOOP(cmd_data, sleep(delay),
    375              (double)time_ns/NS_PER_SEC,
    376              printf("sleep(%d) took %.06f seconds\n", delay, avg);,
    377              printf("  sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
    378                     delay, running_avg, computeStdDev(square_avg, running_avg), \
    379                     min, max));
    380 
    381     return 0;
    382 }
    383 
    384 int benchmarkCpu(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
    385     // Use volatile so that the loop is not optimized away by the compiler.
    386     volatile int cpu_foo;
    387 
    388     MAINLOOP(cmd_data,
    389              for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++),
    390              (double)time_ns/NS_PER_SEC,
    391              printf("cpu took %.06f seconds\n", avg),
    392              printf("  cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \
    393                     running_avg, computeStdDev(square_avg, running_avg), min, max));
    394 
    395     return 0;
    396 }
    397 
    398 int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
    399     memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
    400     BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
    401 
    402     return 0;
    403 }
    404 
    405 int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    406     memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
    407     COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
    408 
    409     return 0;
    410 }
    411 
    412 int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
    413     memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
    414 
    415     BENCH_TWO_BUFS(name, cmd_data,
    416                    memset(buf1, 0xff, size); \
    417                    memset(buf2, 0, size),
    418                    memcpy_func(buf2, buf1, size));
    419 
    420     return 0;
    421 }
    422 
    423 int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    424     memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
    425 
    426     COLD_TWO_BUFS(name, cmd_data,
    427                   memset(buffer1, 0xff, buffer1_size); \
    428                   memset(buffer2, 0x0, buffer2_size),
    429                   memcpy_func(buf2, buf1, size));
    430 
    431     return 0;
    432 }
    433 
    434 int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
    435     int size = cmd_data.args[0];
    436 
    437     uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
    438     if (!src)
    439         return -1;
    440     memset(src, 0xff, size);
    441 
    442     // Use volatile so the compiler does not optimize away the reads.
    443     volatile int foo;
    444     size_t k;
    445     MAINLOOP_DATA(name, cmd_data, size,
    446                   for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
    447 
    448     return 0;
    449 }
    450 
    451 int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
    452     strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
    453 
    454     int retval;
    455     BENCH_TWO_BUFS(name, cmd_data,
    456                    initString(buf1, size); \
    457                    initString(buf2, size),
    458                    retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
    459                    if (retval != 0) printf("%s failed, return value %d\n", name, retval));
    460 
    461     return 0;
    462 }
    463 
    464 int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    465     strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
    466 
    467     int retval;
    468     COLD_TWO_BUFS(name, cmd_data,
    469                   memset(buffer1, 'a', buffer1_size); \
    470                   memset(buffer2, 'a', buffer2_size); \
    471                   for (size_t i =0; i < num_buffers; i++) { \
    472                       buffer1[size-1+buf1_incr*i] = '\0'; \
    473                       buffer2[size-1+buf2_incr*i] = '\0'; \
    474                   },
    475                   retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
    476                   if (retval != 0) printf("%s failed, return value %d\n", name, retval));
    477 
    478     return 0;
    479 }
    480 
    481 int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
    482     size_t real_size;
    483     strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
    484     BENCH_ONE_BUF(name, cmd_data,
    485                   initString(buf, size),
    486                   real_size = strlen_func(reinterpret_cast<char*>(buf)); \
    487                   if (real_size + 1 != size) { \
    488                       printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
    489                       return -1; \
    490                   });
    491 
    492     return 0;
    493 }
    494 
    495 int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    496     strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
    497     size_t real_size;
    498     COLD_ONE_BUF(name, cmd_data,
    499                  memset(buffer, 'a', buffer_size); \
    500                  for (size_t i = 0; i < num_buffers; i++) { \
    501                      buffer[size-1+incr*i] = '\0'; \
    502                  },
    503                  real_size = strlen_func(reinterpret_cast<char*>(buf)); \
    504                  if (real_size + 1 != size) { \
    505                      printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
    506                      return -1; \
    507                  });
    508     return 0;
    509 }
    510 
    511 int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
    512     str_func_t str_func = reinterpret_cast<str_func_t>(func);
    513 
    514     int dst_str_size = cmd_data.dst_str_size;
    515     if (dst_str_size <= 0) {
    516         printf("%s requires --dst_str_size to be set to a non-zero value.\n",
    517                name);
    518         return -1;
    519     }
    520     BENCH_TWO_BUFS(name, cmd_data,
    521                    initString(buf1, size); \
    522                    initString(buf2, dst_str_size),
    523                    str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
    524 
    525     return 0;
    526 }
    527 
    528 int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    529     str_func_t str_func = reinterpret_cast<str_func_t>(func);
    530 
    531     int dst_str_size = cmd_data.dst_str_size;
    532     if (dst_str_size <= 0) {
    533         printf("%s requires --dst_str_size to be set to a non-zero value.\n",
    534                name);
    535         return -1;
    536     }
    537     COLD_TWO_BUFS(name, cmd_data,
    538                   memset(buffer1, 'a', buffer1_size); \
    539                   memset(buffer2, 'b', buffer2_size); \
    540                   for (size_t i = 0; i < num_buffers; i++) { \
    541                       buffer1[size-1+buf1_incr*i] = '\0'; \
    542                       buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
    543                   },
    544                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
    545 
    546     return 0;
    547 }
    548 
    549 
    550 int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
    551     str_func_t str_func = reinterpret_cast<str_func_t>(func);
    552 
    553     BENCH_TWO_BUFS(name, cmd_data,
    554                    initString(buf1, size); \
    555                    memset(buf2, 0, size),
    556                    str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
    557 
    558     return 0;
    559 }
    560 
    561 int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    562     str_func_t str_func = reinterpret_cast<str_func_t>(func);
    563 
    564     COLD_TWO_BUFS(name, cmd_data,
    565                   memset(buffer1, 'a', buffer1_size); \
    566                   for (size_t i = 0; i < num_buffers; i++) { \
    567                      buffer1[size-1+buf1_incr*i] = '\0'; \
    568                   } \
    569                   memset(buffer2, 0, buffer2_size),
    570                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
    571 
    572     return 0;
    573 }
    574 
    575 // Create the mapping structure.
    576 function_t function_table[] = {
    577     { "cpu", benchmarkCpu, NULL },
    578     { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
    579     { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
    580     { "memread", benchmarkMemread, NULL },
    581     { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
    582     { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
    583     { "sleep", benchmarkSleep, NULL },
    584     { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
    585     { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
    586     { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
    587     { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
    588     { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
    589     { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
    590     { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
    591     { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
    592 };
    593 
    594 void usage() {
    595     printf("Usage:\n");
    596     printf("  micro_bench [--data_size DATA_BYTES] [--print_average]\n");
    597     printf("              [--no_print_each_iter] [--lock_to_cpu CORE]\n");
    598     printf("              [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
    599     printf("              [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
    600     printf("              [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
    601     printf("              [--cold_stride_size SIZE]\n");
    602     printf("    --data_size DATA_BYTES\n");
    603     printf("      For the data benchmarks (memcpy/memset/memread) the approximate\n");
    604     printf("      size of data, in bytes, that will be manipulated in each iteration.\n");
    605     printf("    --print_average\n");
    606     printf("      Print the average and standard deviation of all iterations.\n");
    607     printf("    --no_print_each_iter\n");
    608     printf("      Do not print any values in each iteration.\n");
    609     printf("    --lock_to_cpu CORE\n");
    610     printf("      Lock to the specified CORE. The default is to use the last core found.\n");
    611     printf("    --dst_align ALIGN\n");
    612     printf("      If the command supports it, align the destination pointer to ALIGN.\n");
    613     printf("      The default is to use the value returned by malloc.\n");
    614     printf("    --dst_or_mask OR_MASK\n");
    615     printf("      If the command supports it, or in the OR_MASK on to the destination pointer.\n");
    616     printf("      The OR_MASK must be smaller than the dst_align value.\n");
    617     printf("      The default value is 0.\n");
    618 
    619     printf("    --src_align ALIGN\n");
    620     printf("      If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
    621     printf("      value returned by malloc.\n");
    622     printf("    --src_or_mask OR_MASK\n");
    623     printf("      If the command supports it, or in the OR_MASK on to the source pointer.\n");
    624     printf("      The OR_MASK must be smaller than the src_align value.\n");
    625     printf("      The default value is 0.\n");
    626     printf("    --dst_str_size SIZE\n");
    627     printf("      If the command supports it, create a destination string of this length.\n");
    628     printf("      The default is to not update the destination string.\n");
    629     printf("    --cold_data_size DATA_SIZE\n");
    630     printf("      For _cold benchmarks, use this as the total amount of memory to use.\n");
    631     printf("      The default is 128MB, and the number should be larger than the cache on the chip.\n");
    632     printf("      This value is specified in bytes.\n");
    633     printf("    --cold_stride_size SIZE\n");
    634     printf("      For _cold benchmarks, use this as the minimum stride between iterations.\n");
    635     printf("      The default is 4096 bytes and the number should be larger than the amount of data\n");
    636     printf("      pulled in to the cache by each run of the benchmark.\n");
    637     printf("    ITERS\n");
    638     printf("      The number of iterations to execute each benchmark. If not\n");
    639     printf("      passed in then run forever.\n");
    640     printf("  micro_bench cpu UNUSED [ITERS]\n");
    641     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
    642     printf("  micro_bench memread NUM_BYTES [ITERS]\n");
    643     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
    644     printf("  micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
    645     printf("    TIME_TO_SLEEP\n");
    646     printf("      The time in seconds to sleep.\n");
    647     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
    648     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
    649     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
    650     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
    651     printf("\n");
    652     printf("  In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
    653     printf("  that will execute the function on a buffer not in the cache.\n");
    654 }
    655 
    656 function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
    657     function_t *command = NULL;
    658 
    659     // Initialize the command_flags.
    660     cmd_data->print_average = false;
    661     cmd_data->print_each_iter = true;
    662     cmd_data->dst_align = 0;
    663     cmd_data->src_align = 0;
    664     cmd_data->src_or_mask = 0;
    665     cmd_data->dst_or_mask = 0;
    666     cmd_data->num_args = 0;
    667     cmd_data->cpu_to_lock = -1;
    668     cmd_data->data_size = DEFAULT_DATA_SIZE;
    669     cmd_data->dst_str_size = -1;
    670     cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
    671     cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
    672     for (int i = 0; i < MAX_ARGS; i++) {
    673         cmd_data->args[i] = -1;
    674     }
    675 
    676     for (int i = 1; i < argc; i++) {
    677         if (argv[i][0] == '-') {
    678             int *save_value = NULL;
    679             if (strcmp(argv[i], "--print_average") == 0) {
    680                 cmd_data->print_average = true;
    681             } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
    682                 cmd_data->print_each_iter = false;
    683             } else if (strcmp(argv[i], "--dst_align") == 0) {
    684                 save_value = &cmd_data->dst_align;
    685             } else if (strcmp(argv[i], "--src_align") == 0) {
    686                 save_value = &cmd_data->src_align;
    687             } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
    688                 save_value = &cmd_data->dst_or_mask;
    689             } else if (strcmp(argv[i], "--src_or_mask") == 0) {
    690                 save_value = &cmd_data->src_or_mask;
    691             } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
    692                 save_value = &cmd_data->cpu_to_lock;
    693             } else if (strcmp(argv[i], "--data_size") == 0) {
    694                 save_value = &cmd_data->data_size;
    695             } else if (strcmp(argv[i], "--dst_str_size") == 0) {
    696                 save_value = &cmd_data->dst_str_size;
    697             } else if (strcmp(argv[i], "--cold_data_size") == 0) {
    698                 save_value = &cmd_data->cold_data_size;
    699             } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
    700                 save_value = &cmd_data->cold_stride_size;
    701             } else {
    702                 printf("Unknown option %s\n", argv[i]);
    703                 return NULL;
    704             }
    705             if (save_value) {
    706                 // Checking both characters without a strlen() call should be
    707                 // safe since as long as the argument exists, one character will
    708                 // be present (\0). And if the first character is '-', then
    709                 // there will always be a second character (\0 again).
    710                 if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
    711                     printf("The option %s requires one argument.\n",
    712                            argv[i]);
    713                     return NULL;
    714                 }
    715                 *save_value = (int)strtol(argv[++i], NULL, 0);
    716             }
    717         } else if (!command) {
    718             for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
    719                 if (strcmp(argv[i], function_table[j].name) == 0) {
    720                     command = &function_table[j];
    721                     break;
    722                 }
    723             }
    724             if (!command) {
    725                 printf("Uknown command %s\n", argv[i]);
    726                 return NULL;
    727             }
    728         } else if (cmd_data->num_args > MAX_ARGS) {
    729             printf("More than %d number arguments passed in.\n", MAX_ARGS);
    730             return NULL;
    731         } else {
    732             cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
    733         }
    734     }
    735 
    736     // Check the arguments passed in make sense.
    737     if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
    738         printf("Not enough arguments passed in.\n");
    739         return NULL;
    740     } else if (cmd_data->dst_align < 0) {
    741         printf("The --dst_align option must be greater than or equal to 0.\n");
    742         return NULL;
    743     } else if (cmd_data->src_align < 0) {
    744         printf("The --src_align option must be greater than or equal to 0.\n");
    745         return NULL;
    746     } else if (cmd_data->data_size <= 0) {
    747         printf("The --data_size option must be a positive number.\n");
    748         return NULL;
    749     } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
    750         printf("The --dst_align option must be a power of 2.\n");
    751         return NULL;
    752     } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
    753         printf("The --src_align option must be a power of 2.\n");
    754         return NULL;
    755     } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
    756         printf("The --src_or_mask option requires that --src_align be set.\n");
    757         return NULL;
    758     } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
    759         printf("The --dst_or_mask option requires that --dst_align be set.\n");
    760         return NULL;
    761     } else if (cmd_data->src_or_mask > cmd_data->src_align) {
    762         printf("The value of --src_or_mask cannot be larger that --src_align.\n");
    763         return NULL;
    764     } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
    765         printf("The value of --src_or_mask cannot be larger that --src_align.\n");
    766         return NULL;
    767     }
    768 
    769     return command;
    770 }
    771 
    772 bool raisePriorityAndLock(int cpu_to_lock) {
    773     cpu_set_t cpuset;
    774 
    775     if (setpriority(PRIO_PROCESS, 0, -20)) {
    776         perror("Unable to raise priority of process.\n");
    777         return false;
    778     }
    779 
    780     CPU_ZERO(&cpuset);
    781     if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
    782         perror("sched_getaffinity failed");
    783         return false;
    784     }
    785 
    786     if (cpu_to_lock < 0) {
    787         // Lock to the last active core we find.
    788         for (int i = 0; i < CPU_SETSIZE; i++) {
    789             if (CPU_ISSET(i, &cpuset)) {
    790                 cpu_to_lock = i;
    791             }
    792         }
    793     } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
    794         printf("Cpu %d does not exist.\n", cpu_to_lock);
    795         return false;
    796     }
    797 
    798     if (cpu_to_lock < 0) {
    799         printf("Cannot find any valid cpu to lock.\n");
    800         return false;
    801     }
    802 
    803     CPU_ZERO(&cpuset);
    804     CPU_SET(cpu_to_lock, &cpuset);
    805     if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
    806         perror("sched_setaffinity failed");
    807         return false;
    808     }
    809 
    810     return true;
    811 }
    812 
    813 int main(int argc, char **argv) {
    814     command_data_t cmd_data;
    815 
    816     function_t *command = processOptions(argc, argv, &cmd_data);
    817     if (!command) {
    818       usage();
    819       return -1;
    820     }
    821 
    822     if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
    823       return -1;
    824     }
    825 
    826     printf("%s\n", command->name);
    827     return (*command->ptr)(command->name, cmd_data, command->func);
    828 }
    829