Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 
     18 #include "fault_handler.h"
     19 
     20 #include <sys/ucontext.h>
     21 #include "base/macros.h"
     22 #include "base/hex_dump.h"
     23 #include "globals.h"
     24 #include "base/logging.h"
     25 #include "base/hex_dump.h"
     26 #include "instruction_set.h"
     27 #include "mirror/art_method.h"
     28 #include "mirror/art_method-inl.h"
     29 #include "thread.h"
     30 #include "thread-inl.h"
     31 
     32 //
     33 // ARM specific fault handler functions.
     34 //
     35 
     36 namespace art {
     37 
     38 extern "C" void art_quick_throw_null_pointer_exception();
     39 extern "C" void art_quick_throw_stack_overflow();
     40 extern "C" void art_quick_implicit_suspend();
     41 
     42 // Get the size of a thumb2 instruction in bytes.
     43 static uint32_t GetInstructionSize(uint8_t* pc) {
     44   uint16_t instr = pc[0] | pc[1] << 8;
     45   bool is_32bit = ((instr & 0xF000) == 0xF000) || ((instr & 0xF800) == 0xE800);
     46   uint32_t instr_size = is_32bit ? 4 : 2;
     47   return instr_size;
     48 }
     49 
     50 void FaultManager::HandleNestedSignal(int sig, siginfo_t* info, void* context) {
     51   // Note that in this handler we set up the registers and return to
     52   // longjmp directly rather than going through an assembly language stub.  The
     53   // reason for this is that longjmp is (currently) in ARM mode and that would
     54   // require switching modes in the stub - incurring an unwanted relocation.
     55 
     56   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
     57   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
     58   Thread* self = Thread::Current();
     59   CHECK(self != nullptr);       // This will cause a SIGABRT if self is nullptr.
     60 
     61   sc->arm_r0 = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState());
     62   sc->arm_r1 = 1;
     63   sc->arm_pc = reinterpret_cast<uintptr_t>(longjmp);
     64   VLOG(signals) << "longjmp address: " << reinterpret_cast<void*>(sc->arm_pc);
     65 }
     66 
     67 void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
     68                                              mirror::ArtMethod** out_method,
     69                                              uintptr_t* out_return_pc, uintptr_t* out_sp) {
     70   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
     71   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
     72   *out_sp = static_cast<uintptr_t>(sc->arm_sp);
     73   VLOG(signals) << "sp: " << *out_sp;
     74   if (*out_sp == 0) {
     75     return;
     76   }
     77 
     78   // In the case of a stack overflow, the stack is not valid and we can't
     79   // get the method from the top of the stack.  However it's in r0.
     80   uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(sc->fault_address);
     81   uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
     82       reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kArm));
     83   if (overflow_addr == fault_addr) {
     84     *out_method = reinterpret_cast<mirror::ArtMethod*>(sc->arm_r0);
     85   } else {
     86     // The method is at the top of the stack.
     87     *out_method = reinterpret_cast<mirror::ArtMethod*>(reinterpret_cast<uintptr_t*>(*out_sp)[0]);
     88   }
     89 
     90   // Work out the return PC.  This will be the address of the instruction
     91   // following the faulting ldr/str instruction.  This is in thumb mode so
     92   // the instruction might be a 16 or 32 bit one.  Also, the GC map always
     93   // has the bottom bit of the PC set so we also need to set that.
     94 
     95   // Need to work out the size of the instruction that caused the exception.
     96   uint8_t* ptr = reinterpret_cast<uint8_t*>(sc->arm_pc);
     97   VLOG(signals) << "pc: " << std::hex << static_cast<void*>(ptr);
     98   uint32_t instr_size = GetInstructionSize(ptr);
     99 
    100   *out_return_pc = (sc->arm_pc + instr_size) | 1;
    101 }
    102 
    103 bool NullPointerHandler::Action(int sig, siginfo_t* info, void* context) {
    104   // The code that looks for the catch location needs to know the value of the
    105   // ARM PC at the point of call.  For Null checks we insert a GC map that is immediately after
    106   // the load/store instruction that might cause the fault.  However the mapping table has
    107   // the low bits set for thumb mode so we need to set the bottom bit for the LR
    108   // register in order to find the mapping.
    109 
    110   // Need to work out the size of the instruction that caused the exception.
    111   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
    112   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
    113   uint8_t* ptr = reinterpret_cast<uint8_t*>(sc->arm_pc);
    114 
    115   uint32_t instr_size = GetInstructionSize(ptr);
    116   sc->arm_lr = (sc->arm_pc + instr_size) | 1;      // LR needs to point to gc map location
    117   sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_throw_null_pointer_exception);
    118   VLOG(signals) << "Generating null pointer exception";
    119   return true;
    120 }
    121 
    122 // A suspend check is done using the following instruction sequence:
    123 // 0xf723c0b2: f8d902c0  ldr.w   r0, [r9, #704]  ; suspend_trigger_
    124 // .. some intervening instruction
    125 // 0xf723c0b6: 6800      ldr     r0, [r0, #0]
    126 
    127 // The offset from r9 is Thread::ThreadSuspendTriggerOffset().
    128 // To check for a suspend check, we examine the instructions that caused
    129 // the fault (at PC-4 and PC).
    130 bool SuspensionHandler::Action(int sig, siginfo_t* info, void* context) {
    131   // These are the instructions to check for.  The first one is the ldr r0,[r9,#xxx]
    132   // where xxx is the offset of the suspend trigger.
    133   uint32_t checkinst1 = 0xf8d90000 + Thread::ThreadSuspendTriggerOffset<4>().Int32Value();
    134   uint16_t checkinst2 = 0x6800;
    135 
    136   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
    137   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
    138   uint8_t* ptr2 = reinterpret_cast<uint8_t*>(sc->arm_pc);
    139   uint8_t* ptr1 = ptr2 - 4;
    140   VLOG(signals) << "checking suspend";
    141 
    142   uint16_t inst2 = ptr2[0] | ptr2[1] << 8;
    143   VLOG(signals) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2;
    144   if (inst2 != checkinst2) {
    145     // Second instruction is not good, not ours.
    146     return false;
    147   }
    148 
    149   // The first instruction can a little bit up the stream due to load hoisting
    150   // in the compiler.
    151   uint8_t* limit = ptr1 - 40;   // Compiler will hoist to a max of 20 instructions.
    152   bool found = false;
    153   while (ptr1 > limit) {
    154     uint32_t inst1 = ((ptr1[0] | ptr1[1] << 8) << 16) | (ptr1[2] | ptr1[3] << 8);
    155     VLOG(signals) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1;
    156     if (inst1 == checkinst1) {
    157       found = true;
    158       break;
    159     }
    160     ptr1 -= 2;      // Min instruction size is 2 bytes.
    161   }
    162   if (found) {
    163     VLOG(signals) << "suspend check match";
    164     // This is a suspend check.  Arrange for the signal handler to return to
    165     // art_quick_implicit_suspend.  Also set LR so that after the suspend check it
    166     // will resume the instruction (current PC + 2).  PC points to the
    167     // ldr r0,[r0,#0] instruction (r0 will be 0, set by the trigger).
    168 
    169     // NB: remember that we need to set the bottom bit of the LR register
    170     // to switch to thumb mode.
    171     VLOG(signals) << "arm lr: " << std::hex << sc->arm_lr;
    172     VLOG(signals) << "arm pc: " << std::hex << sc->arm_pc;
    173     sc->arm_lr = sc->arm_pc + 3;      // +2 + 1 (for thumb)
    174     sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_implicit_suspend);
    175 
    176     // Now remove the suspend trigger that caused this fault.
    177     Thread::Current()->RemoveSuspendTrigger();
    178     VLOG(signals) << "removed suspend trigger invoking test suspend";
    179     return true;
    180   }
    181   return false;
    182 }
    183 
    184 // Stack overflow fault handler.
    185 //
    186 // This checks that the fault address is equal to the current stack pointer
    187 // minus the overflow region size (16K typically).  The instruction sequence
    188 // that generates this signal is:
    189 //
    190 // sub r12,sp,#16384
    191 // ldr.w r12,[r12,#0]
    192 //
    193 // The second instruction will fault if r12 is inside the protected region
    194 // on the stack.
    195 //
    196 // If we determine this is a stack overflow we need to move the stack pointer
    197 // to the overflow region below the protected region.
    198 
    199 bool StackOverflowHandler::Action(int sig, siginfo_t* info, void* context) {
    200   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
    201   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
    202   VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc;
    203   VLOG(signals) << "sigcontext: " << std::hex << sc;
    204 
    205   uintptr_t sp = sc->arm_sp;
    206   VLOG(signals) << "sp: " << std::hex << sp;
    207 
    208   uintptr_t fault_addr = sc->fault_address;
    209   VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
    210   VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
    211     ", fault_addr: " << fault_addr;
    212 
    213   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kArm);
    214 
    215   // Check that the fault address is the value expected for a stack overflow.
    216   if (fault_addr != overflow_addr) {
    217     VLOG(signals) << "Not a stack overflow";
    218     return false;
    219   }
    220 
    221   VLOG(signals) << "Stack overflow found";
    222 
    223   // Now arrange for the signal handler to return to art_quick_throw_stack_overflow_from.
    224   // The value of LR must be the same as it was when we entered the code that
    225   // caused this fault.  This will be inserted into a callee save frame by
    226   // the function to which this handler returns (art_quick_throw_stack_overflow).
    227   sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);
    228 
    229   // The kernel will now return to the address in sc->arm_pc.
    230   return true;
    231 }
    232 }       // namespace art
    233