Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread_pool.h"
     18 
     19 #include "base/casts.h"
     20 #include "base/stl_util.h"
     21 #include "runtime.h"
     22 #include "thread-inl.h"
     23 
     24 namespace art {
     25 
     26 static constexpr bool kMeasureWaitTime = false;
     27 
     28 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
     29                                    size_t stack_size)
     30     : thread_pool_(thread_pool),
     31       name_(name) {
     32   std::string error_msg;
     33   stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
     34                                     false, &error_msg));
     35   CHECK(stack_.get() != nullptr) << error_msg;
     36   const char* reason = "new thread pool worker thread";
     37   pthread_attr_t attr;
     38   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
     39   CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
     40   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
     41   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
     42 }
     43 
     44 ThreadPoolWorker::~ThreadPoolWorker() {
     45   CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "thread pool worker shutdown");
     46 }
     47 
     48 void ThreadPoolWorker::Run() {
     49   Thread* self = Thread::Current();
     50   Task* task = NULL;
     51   thread_pool_->creation_barier_.Wait(self);
     52   while ((task = thread_pool_->GetTask(self)) != NULL) {
     53     task->Run(self);
     54     task->Finalize();
     55   }
     56 }
     57 
     58 void* ThreadPoolWorker::Callback(void* arg) {
     59   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
     60   Runtime* runtime = Runtime::Current();
     61   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, NULL, false));
     62   // Do work until its time to shut down.
     63   worker->Run();
     64   runtime->DetachCurrentThread();
     65   return NULL;
     66 }
     67 
     68 void ThreadPool::AddTask(Thread* self, Task* task) {
     69   MutexLock mu(self, task_queue_lock_);
     70   tasks_.push_back(task);
     71   // If we have any waiters, signal one.
     72   if (started_ && waiting_count_ != 0) {
     73     task_queue_condition_.Signal(self);
     74   }
     75 }
     76 
     77 ThreadPool::ThreadPool(const char* name, size_t num_threads)
     78   : name_(name),
     79     task_queue_lock_("task queue lock"),
     80     task_queue_condition_("task queue condition", task_queue_lock_),
     81     completion_condition_("task completion condition", task_queue_lock_),
     82     started_(false),
     83     shutting_down_(false),
     84     waiting_count_(0),
     85     start_time_(0),
     86     total_wait_time_(0),
     87     // Add one since the caller of constructor waits on the barrier too.
     88     creation_barier_(num_threads + 1),
     89     max_active_workers_(num_threads) {
     90   Thread* self = Thread::Current();
     91   while (GetThreadCount() < num_threads) {
     92     const std::string name = StringPrintf("%s worker thread %zu", name_.c_str(), GetThreadCount());
     93     threads_.push_back(new ThreadPoolWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
     94   }
     95   // Wait for all of the threads to attach.
     96   creation_barier_.Wait(self);
     97 }
     98 
     99 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
    100   MutexLock mu(Thread::Current(), task_queue_lock_);
    101   CHECK_LE(threads, GetThreadCount());
    102   max_active_workers_ = threads;
    103 }
    104 
    105 ThreadPool::~ThreadPool() {
    106   {
    107     Thread* self = Thread::Current();
    108     MutexLock mu(self, task_queue_lock_);
    109     // Tell any remaining workers to shut down.
    110     shutting_down_ = true;
    111     // Broadcast to everyone waiting.
    112     task_queue_condition_.Broadcast(self);
    113     completion_condition_.Broadcast(self);
    114   }
    115   // Wait for the threads to finish.
    116   STLDeleteElements(&threads_);
    117 }
    118 
    119 void ThreadPool::StartWorkers(Thread* self) {
    120   MutexLock mu(self, task_queue_lock_);
    121   started_ = true;
    122   task_queue_condition_.Broadcast(self);
    123   start_time_ = NanoTime();
    124   total_wait_time_ = 0;
    125 }
    126 
    127 void ThreadPool::StopWorkers(Thread* self) {
    128   MutexLock mu(self, task_queue_lock_);
    129   started_ = false;
    130 }
    131 
    132 Task* ThreadPool::GetTask(Thread* self) {
    133   MutexLock mu(self, task_queue_lock_);
    134   while (!IsShuttingDown()) {
    135     const size_t thread_count = GetThreadCount();
    136     // Ensure that we don't use more threads than the maximum active workers.
    137     const size_t active_threads = thread_count - waiting_count_;
    138     // <= since self is considered an active worker.
    139     if (active_threads <= max_active_workers_) {
    140       Task* task = TryGetTaskLocked(self);
    141       if (task != NULL) {
    142         return task;
    143       }
    144     }
    145 
    146     ++waiting_count_;
    147     if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
    148       // We may be done, lets broadcast to the completion condition.
    149       completion_condition_.Broadcast(self);
    150     }
    151     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
    152     task_queue_condition_.Wait(self);
    153     if (kMeasureWaitTime) {
    154       const uint64_t wait_end = NanoTime();
    155       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
    156     }
    157     --waiting_count_;
    158   }
    159 
    160   // We are shutting down, return NULL to tell the worker thread to stop looping.
    161   return NULL;
    162 }
    163 
    164 Task* ThreadPool::TryGetTask(Thread* self) {
    165   MutexLock mu(self, task_queue_lock_);
    166   return TryGetTaskLocked(self);
    167 }
    168 
    169 Task* ThreadPool::TryGetTaskLocked(Thread* self) {
    170   if (started_ && !tasks_.empty()) {
    171     Task* task = tasks_.front();
    172     tasks_.pop_front();
    173     return task;
    174   }
    175   return NULL;
    176 }
    177 
    178 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
    179   if (do_work) {
    180     Task* task = NULL;
    181     while ((task = TryGetTask(self)) != NULL) {
    182       task->Run(self);
    183       task->Finalize();
    184     }
    185   }
    186   // Wait until each thread is waiting and the task list is empty.
    187   MutexLock mu(self, task_queue_lock_);
    188   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) {
    189     if (!may_hold_locks) {
    190       completion_condition_.Wait(self);
    191     } else {
    192       completion_condition_.WaitHoldingLocks(self);
    193     }
    194   }
    195 }
    196 
    197 size_t ThreadPool::GetTaskCount(Thread* self) {
    198   MutexLock mu(self, task_queue_lock_);
    199   return tasks_.size();
    200 }
    201 
    202 WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name,
    203                                        size_t stack_size)
    204     : ThreadPoolWorker(thread_pool, name, stack_size), task_(NULL) {}
    205 
    206 void WorkStealingWorker::Run() {
    207   Thread* self = Thread::Current();
    208   Task* task = NULL;
    209   WorkStealingThreadPool* thread_pool = down_cast<WorkStealingThreadPool*>(thread_pool_);
    210   while ((task = thread_pool_->GetTask(self)) != NULL) {
    211     WorkStealingTask* stealing_task = down_cast<WorkStealingTask*>(task);
    212 
    213     {
    214       CHECK(task_ == NULL);
    215       MutexLock mu(self, thread_pool->work_steal_lock_);
    216       // Register that we are running the task
    217       ++stealing_task->ref_count_;
    218       task_ = stealing_task;
    219     }
    220     stealing_task->Run(self);
    221     // Mark ourselves as not running a task so that nobody tries to steal from us.
    222     // There is a race condition that someone starts stealing from us at this point. This is okay
    223     // due to the reference counting.
    224     task_ = NULL;
    225 
    226     bool finalize;
    227 
    228     // Steal work from tasks until there is none left to steal. Note: There is a race, but
    229     // all that happens when the race occurs is that we steal some work instead of processing a
    230     // task from the queue.
    231     while (thread_pool->GetTaskCount(self) == 0) {
    232       WorkStealingTask* steal_from_task  = NULL;
    233 
    234       {
    235         MutexLock mu(self, thread_pool->work_steal_lock_);
    236         // Try finding a task to steal from.
    237         steal_from_task = thread_pool->FindTaskToStealFrom(self);
    238         if (steal_from_task != NULL) {
    239           CHECK_NE(stealing_task, steal_from_task)
    240               << "Attempting to steal from completed self task";
    241           steal_from_task->ref_count_++;
    242         } else {
    243           break;
    244         }
    245       }
    246 
    247       if (steal_from_task != NULL) {
    248         // Task which completed earlier is going to steal some work.
    249         stealing_task->StealFrom(self, steal_from_task);
    250 
    251         {
    252           // We are done stealing from the task, lets decrement its reference count.
    253           MutexLock mu(self, thread_pool->work_steal_lock_);
    254           finalize = !--steal_from_task->ref_count_;
    255         }
    256 
    257         if (finalize) {
    258           steal_from_task->Finalize();
    259         }
    260       }
    261     }
    262 
    263     {
    264       MutexLock mu(self, thread_pool->work_steal_lock_);
    265       // If nobody is still referencing task_ we can finalize it.
    266       finalize = !--stealing_task->ref_count_;
    267     }
    268 
    269     if (finalize) {
    270       stealing_task->Finalize();
    271     }
    272   }
    273 }
    274 
    275 WorkStealingWorker::~WorkStealingWorker() {}
    276 
    277 WorkStealingThreadPool::WorkStealingThreadPool(const char* name, size_t num_threads)
    278     : ThreadPool(name, 0),
    279       work_steal_lock_("work stealing lock"),
    280       steal_index_(0) {
    281   while (GetThreadCount() < num_threads) {
    282     const std::string name = StringPrintf("Work stealing worker %zu", GetThreadCount());
    283     threads_.push_back(new WorkStealingWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
    284   }
    285 }
    286 
    287 WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom(Thread* self) {
    288   const size_t thread_count = GetThreadCount();
    289   for (size_t i = 0; i < thread_count; ++i) {
    290     // TODO: Use CAS instead of lock.
    291     ++steal_index_;
    292     if (steal_index_ >= thread_count) {
    293       steal_index_-= thread_count;
    294     }
    295 
    296     WorkStealingWorker* worker = down_cast<WorkStealingWorker*>(threads_[steal_index_]);
    297     WorkStealingTask* task = worker->task_;
    298     if (task) {
    299       // Not null, we can probably steal from this worker.
    300       return task;
    301     }
    302   }
    303   // Couldn't find something to steal.
    304   return NULL;
    305 }
    306 
    307 WorkStealingThreadPool::~WorkStealingThreadPool() {}
    308 
    309 }  // namespace art
    310