Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "utils.h"
     18 
     19 #include <inttypes.h>
     20 #include <pthread.h>
     21 #include <sys/stat.h>
     22 #include <sys/syscall.h>
     23 #include <sys/types.h>
     24 #include <sys/wait.h>
     25 #include <unistd.h>
     26 #include <memory>
     27 
     28 #include "base/stl_util.h"
     29 #include "base/unix_file/fd_file.h"
     30 #include "dex_file-inl.h"
     31 #include "field_helper.h"
     32 #include "mirror/art_field-inl.h"
     33 #include "mirror/art_method-inl.h"
     34 #include "mirror/class-inl.h"
     35 #include "mirror/class_loader.h"
     36 #include "mirror/object-inl.h"
     37 #include "mirror/object_array-inl.h"
     38 #include "mirror/string.h"
     39 #include "os.h"
     40 #include "scoped_thread_state_change.h"
     41 #include "utf-inl.h"
     42 
     43 #if !defined(HAVE_POSIX_CLOCKS)
     44 #include <sys/time.h>
     45 #endif
     46 
     47 #if defined(HAVE_PRCTL)
     48 #include <sys/prctl.h>
     49 #endif
     50 
     51 #if defined(__APPLE__)
     52 #include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
     53 #include <sys/syscall.h>
     54 #endif
     55 
     56 #include <backtrace/Backtrace.h>  // For DumpNativeStack.
     57 
     58 #if defined(__linux__)
     59 #include <linux/unistd.h>
     60 #endif
     61 
     62 namespace art {
     63 
     64 pid_t GetTid() {
     65 #if defined(__APPLE__)
     66   uint64_t owner;
     67   CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
     68   return owner;
     69 #else
     70   // Neither bionic nor glibc exposes gettid(2).
     71   return syscall(__NR_gettid);
     72 #endif
     73 }
     74 
     75 std::string GetThreadName(pid_t tid) {
     76   std::string result;
     77   if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
     78     result.resize(result.size() - 1);  // Lose the trailing '\n'.
     79   } else {
     80     result = "<unknown>";
     81   }
     82   return result;
     83 }
     84 
     85 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
     86 #if defined(__APPLE__)
     87   *stack_size = pthread_get_stacksize_np(thread);
     88   void* stack_addr = pthread_get_stackaddr_np(thread);
     89 
     90   // Check whether stack_addr is the base or end of the stack.
     91   // (On Mac OS 10.7, it's the end.)
     92   int stack_variable;
     93   if (stack_addr > &stack_variable) {
     94     *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size;
     95   } else {
     96     *stack_base = stack_addr;
     97   }
     98 
     99   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
    100   pthread_attr_t attributes;
    101   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
    102   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
    103   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    104 #else
    105   pthread_attr_t attributes;
    106   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
    107   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
    108   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
    109   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
    110 #endif
    111 }
    112 
    113 bool ReadFileToString(const std::string& file_name, std::string* result) {
    114   std::unique_ptr<File> file(new File);
    115   if (!file->Open(file_name, O_RDONLY)) {
    116     return false;
    117   }
    118 
    119   std::vector<char> buf(8 * KB);
    120   while (true) {
    121     int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
    122     if (n == -1) {
    123       return false;
    124     }
    125     if (n == 0) {
    126       return true;
    127     }
    128     result->append(&buf[0], n);
    129   }
    130 }
    131 
    132 std::string GetIsoDate() {
    133   time_t now = time(NULL);
    134   tm tmbuf;
    135   tm* ptm = localtime_r(&now, &tmbuf);
    136   return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
    137       ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
    138       ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
    139 }
    140 
    141 uint64_t MilliTime() {
    142 #if defined(HAVE_POSIX_CLOCKS)
    143   timespec now;
    144   clock_gettime(CLOCK_MONOTONIC, &now);
    145   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
    146 #else
    147   timeval now;
    148   gettimeofday(&now, NULL);
    149   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
    150 #endif
    151 }
    152 
    153 uint64_t MicroTime() {
    154 #if defined(HAVE_POSIX_CLOCKS)
    155   timespec now;
    156   clock_gettime(CLOCK_MONOTONIC, &now);
    157   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
    158 #else
    159   timeval now;
    160   gettimeofday(&now, NULL);
    161   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
    162 #endif
    163 }
    164 
    165 uint64_t NanoTime() {
    166 #if defined(HAVE_POSIX_CLOCKS)
    167   timespec now;
    168   clock_gettime(CLOCK_MONOTONIC, &now);
    169   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
    170 #else
    171   timeval now;
    172   gettimeofday(&now, NULL);
    173   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
    174 #endif
    175 }
    176 
    177 uint64_t ThreadCpuNanoTime() {
    178 #if defined(HAVE_POSIX_CLOCKS)
    179   timespec now;
    180   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
    181   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
    182 #else
    183   UNIMPLEMENTED(WARNING);
    184   return -1;
    185 #endif
    186 }
    187 
    188 void NanoSleep(uint64_t ns) {
    189   timespec tm;
    190   tm.tv_sec = 0;
    191   tm.tv_nsec = ns;
    192   nanosleep(&tm, NULL);
    193 }
    194 
    195 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
    196   int64_t endSec;
    197 
    198   if (absolute) {
    199 #if !defined(__APPLE__)
    200     clock_gettime(clock, ts);
    201 #else
    202     UNUSED(clock);
    203     timeval tv;
    204     gettimeofday(&tv, NULL);
    205     ts->tv_sec = tv.tv_sec;
    206     ts->tv_nsec = tv.tv_usec * 1000;
    207 #endif
    208   } else {
    209     ts->tv_sec = 0;
    210     ts->tv_nsec = 0;
    211   }
    212   endSec = ts->tv_sec + ms / 1000;
    213   if (UNLIKELY(endSec >= 0x7fffffff)) {
    214     std::ostringstream ss;
    215     LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
    216     endSec = 0x7ffffffe;
    217   }
    218   ts->tv_sec = endSec;
    219   ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
    220 
    221   // Catch rollover.
    222   if (ts->tv_nsec >= 1000000000L) {
    223     ts->tv_sec++;
    224     ts->tv_nsec -= 1000000000L;
    225   }
    226 }
    227 
    228 std::string PrettyDescriptor(mirror::String* java_descriptor) {
    229   if (java_descriptor == NULL) {
    230     return "null";
    231   }
    232   return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
    233 }
    234 
    235 std::string PrettyDescriptor(mirror::Class* klass) {
    236   if (klass == NULL) {
    237     return "null";
    238   }
    239   std::string temp;
    240   return PrettyDescriptor(klass->GetDescriptor(&temp));
    241 }
    242 
    243 std::string PrettyDescriptor(const char* descriptor) {
    244   // Count the number of '['s to get the dimensionality.
    245   const char* c = descriptor;
    246   size_t dim = 0;
    247   while (*c == '[') {
    248     dim++;
    249     c++;
    250   }
    251 
    252   // Reference or primitive?
    253   if (*c == 'L') {
    254     // "[[La/b/C;" -> "a.b.C[][]".
    255     c++;  // Skip the 'L'.
    256   } else {
    257     // "[[B" -> "byte[][]".
    258     // To make life easier, we make primitives look like unqualified
    259     // reference types.
    260     switch (*c) {
    261     case 'B': c = "byte;"; break;
    262     case 'C': c = "char;"; break;
    263     case 'D': c = "double;"; break;
    264     case 'F': c = "float;"; break;
    265     case 'I': c = "int;"; break;
    266     case 'J': c = "long;"; break;
    267     case 'S': c = "short;"; break;
    268     case 'Z': c = "boolean;"; break;
    269     case 'V': c = "void;"; break;  // Used when decoding return types.
    270     default: return descriptor;
    271     }
    272   }
    273 
    274   // At this point, 'c' is a string of the form "fully/qualified/Type;"
    275   // or "primitive;". Rewrite the type with '.' instead of '/':
    276   std::string result;
    277   const char* p = c;
    278   while (*p != ';') {
    279     char ch = *p++;
    280     if (ch == '/') {
    281       ch = '.';
    282     }
    283     result.push_back(ch);
    284   }
    285   // ...and replace the semicolon with 'dim' "[]" pairs:
    286   for (size_t i = 0; i < dim; ++i) {
    287     result += "[]";
    288   }
    289   return result;
    290 }
    291 
    292 std::string PrettyField(mirror::ArtField* f, bool with_type) {
    293   if (f == NULL) {
    294     return "null";
    295   }
    296   std::string result;
    297   if (with_type) {
    298     result += PrettyDescriptor(f->GetTypeDescriptor());
    299     result += ' ';
    300   }
    301   StackHandleScope<1> hs(Thread::Current());
    302   result += PrettyDescriptor(FieldHelper(hs.NewHandle(f)).GetDeclaringClassDescriptor());
    303   result += '.';
    304   result += f->GetName();
    305   return result;
    306 }
    307 
    308 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
    309   if (field_idx >= dex_file.NumFieldIds()) {
    310     return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
    311   }
    312   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
    313   std::string result;
    314   if (with_type) {
    315     result += dex_file.GetFieldTypeDescriptor(field_id);
    316     result += ' ';
    317   }
    318   result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
    319   result += '.';
    320   result += dex_file.GetFieldName(field_id);
    321   return result;
    322 }
    323 
    324 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
    325   if (type_idx >= dex_file.NumTypeIds()) {
    326     return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
    327   }
    328   const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
    329   return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
    330 }
    331 
    332 std::string PrettyArguments(const char* signature) {
    333   std::string result;
    334   result += '(';
    335   CHECK_EQ(*signature, '(');
    336   ++signature;  // Skip the '('.
    337   while (*signature != ')') {
    338     size_t argument_length = 0;
    339     while (signature[argument_length] == '[') {
    340       ++argument_length;
    341     }
    342     if (signature[argument_length] == 'L') {
    343       argument_length = (strchr(signature, ';') - signature + 1);
    344     } else {
    345       ++argument_length;
    346     }
    347     {
    348       std::string argument_descriptor(signature, argument_length);
    349       result += PrettyDescriptor(argument_descriptor.c_str());
    350     }
    351     if (signature[argument_length] != ')') {
    352       result += ", ";
    353     }
    354     signature += argument_length;
    355   }
    356   CHECK_EQ(*signature, ')');
    357   ++signature;  // Skip the ')'.
    358   result += ')';
    359   return result;
    360 }
    361 
    362 std::string PrettyReturnType(const char* signature) {
    363   const char* return_type = strchr(signature, ')');
    364   CHECK(return_type != NULL);
    365   ++return_type;  // Skip ')'.
    366   return PrettyDescriptor(return_type);
    367 }
    368 
    369 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) {
    370   if (m == nullptr) {
    371     return "null";
    372   }
    373   std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
    374   result += '.';
    375   result += m->GetName();
    376   if (UNLIKELY(m->IsFastNative())) {
    377     result += "!";
    378   }
    379   if (with_signature) {
    380     const Signature signature = m->GetSignature();
    381     std::string sig_as_string(signature.ToString());
    382     if (signature == Signature::NoSignature()) {
    383       return result + sig_as_string;
    384     }
    385     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    386         PrettyArguments(sig_as_string.c_str());
    387   }
    388   return result;
    389 }
    390 
    391 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
    392   if (method_idx >= dex_file.NumMethodIds()) {
    393     return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
    394   }
    395   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
    396   std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
    397   result += '.';
    398   result += dex_file.GetMethodName(method_id);
    399   if (with_signature) {
    400     const Signature signature = dex_file.GetMethodSignature(method_id);
    401     std::string sig_as_string(signature.ToString());
    402     if (signature == Signature::NoSignature()) {
    403       return result + sig_as_string;
    404     }
    405     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
    406         PrettyArguments(sig_as_string.c_str());
    407   }
    408   return result;
    409 }
    410 
    411 std::string PrettyTypeOf(mirror::Object* obj) {
    412   if (obj == NULL) {
    413     return "null";
    414   }
    415   if (obj->GetClass() == NULL) {
    416     return "(raw)";
    417   }
    418   std::string temp;
    419   std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
    420   if (obj->IsClass()) {
    421     result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
    422   }
    423   return result;
    424 }
    425 
    426 std::string PrettyClass(mirror::Class* c) {
    427   if (c == NULL) {
    428     return "null";
    429   }
    430   std::string result;
    431   result += "java.lang.Class<";
    432   result += PrettyDescriptor(c);
    433   result += ">";
    434   return result;
    435 }
    436 
    437 std::string PrettyClassAndClassLoader(mirror::Class* c) {
    438   if (c == NULL) {
    439     return "null";
    440   }
    441   std::string result;
    442   result += "java.lang.Class<";
    443   result += PrettyDescriptor(c);
    444   result += ",";
    445   result += PrettyTypeOf(c->GetClassLoader());
    446   // TODO: add an identifying hash value for the loader
    447   result += ">";
    448   return result;
    449 }
    450 
    451 std::string PrettySize(int64_t byte_count) {
    452   // The byte thresholds at which we display amounts.  A byte count is displayed
    453   // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
    454   static const int64_t kUnitThresholds[] = {
    455     0,              // B up to...
    456     3*1024,         // KB up to...
    457     2*1024*1024,    // MB up to...
    458     1024*1024*1024  // GB from here.
    459   };
    460   static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
    461   static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
    462   const char* negative_str = "";
    463   if (byte_count < 0) {
    464     negative_str = "-";
    465     byte_count = -byte_count;
    466   }
    467   int i = arraysize(kUnitThresholds);
    468   while (--i > 0) {
    469     if (byte_count >= kUnitThresholds[i]) {
    470       break;
    471     }
    472   }
    473   return StringPrintf("%s%" PRId64 "%s",
    474                       negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
    475 }
    476 
    477 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
    478   if (nano_duration == 0) {
    479     return "0";
    480   } else {
    481     return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
    482                           max_fraction_digits);
    483   }
    484 }
    485 
    486 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
    487   const uint64_t one_sec = 1000 * 1000 * 1000;
    488   const uint64_t one_ms  = 1000 * 1000;
    489   const uint64_t one_us  = 1000;
    490   if (nano_duration >= one_sec) {
    491     return kTimeUnitSecond;
    492   } else if (nano_duration >= one_ms) {
    493     return kTimeUnitMillisecond;
    494   } else if (nano_duration >= one_us) {
    495     return kTimeUnitMicrosecond;
    496   } else {
    497     return kTimeUnitNanosecond;
    498   }
    499 }
    500 
    501 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
    502   const uint64_t one_sec = 1000 * 1000 * 1000;
    503   const uint64_t one_ms  = 1000 * 1000;
    504   const uint64_t one_us  = 1000;
    505 
    506   switch (time_unit) {
    507     case kTimeUnitSecond:
    508       return one_sec;
    509     case kTimeUnitMillisecond:
    510       return one_ms;
    511     case kTimeUnitMicrosecond:
    512       return one_us;
    513     case kTimeUnitNanosecond:
    514       return 1;
    515   }
    516   return 0;
    517 }
    518 
    519 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
    520                            size_t max_fraction_digits) {
    521   const char* unit = nullptr;
    522   uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
    523   switch (time_unit) {
    524     case kTimeUnitSecond:
    525       unit = "s";
    526       break;
    527     case kTimeUnitMillisecond:
    528       unit = "ms";
    529       break;
    530     case kTimeUnitMicrosecond:
    531       unit = "us";
    532       break;
    533     case kTimeUnitNanosecond:
    534       unit = "ns";
    535       break;
    536   }
    537   const uint64_t whole_part = nano_duration / divisor;
    538   uint64_t fractional_part = nano_duration % divisor;
    539   if (fractional_part == 0) {
    540     return StringPrintf("%" PRIu64 "%s", whole_part, unit);
    541   } else {
    542     static constexpr size_t kMaxDigits = 30;
    543     size_t avail_digits = kMaxDigits;
    544     char fraction_buffer[kMaxDigits];
    545     char* ptr = fraction_buffer;
    546     uint64_t multiplier = 10;
    547     // This infinite loops if fractional part is 0.
    548     while (avail_digits > 1 && fractional_part * multiplier < divisor) {
    549       multiplier *= 10;
    550       *ptr++ = '0';
    551       avail_digits--;
    552     }
    553     snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
    554     fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
    555     return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
    556   }
    557 }
    558 
    559 std::string PrintableChar(uint16_t ch) {
    560   std::string result;
    561   result += '\'';
    562   if (NeedsEscaping(ch)) {
    563     StringAppendF(&result, "\\u%04x", ch);
    564   } else {
    565     result += ch;
    566   }
    567   result += '\'';
    568   return result;
    569 }
    570 
    571 std::string PrintableString(const char* utf) {
    572   std::string result;
    573   result += '"';
    574   const char* p = utf;
    575   size_t char_count = CountModifiedUtf8Chars(p);
    576   for (size_t i = 0; i < char_count; ++i) {
    577     uint16_t ch = GetUtf16FromUtf8(&p);
    578     if (ch == '\\') {
    579       result += "\\\\";
    580     } else if (ch == '\n') {
    581       result += "\\n";
    582     } else if (ch == '\r') {
    583       result += "\\r";
    584     } else if (ch == '\t') {
    585       result += "\\t";
    586     } else if (NeedsEscaping(ch)) {
    587       StringAppendF(&result, "\\u%04x", ch);
    588     } else {
    589       result += ch;
    590     }
    591   }
    592   result += '"';
    593   return result;
    594 }
    595 
    596 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
    597 std::string MangleForJni(const std::string& s) {
    598   std::string result;
    599   size_t char_count = CountModifiedUtf8Chars(s.c_str());
    600   const char* cp = &s[0];
    601   for (size_t i = 0; i < char_count; ++i) {
    602     uint16_t ch = GetUtf16FromUtf8(&cp);
    603     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
    604       result.push_back(ch);
    605     } else if (ch == '.' || ch == '/') {
    606       result += "_";
    607     } else if (ch == '_') {
    608       result += "_1";
    609     } else if (ch == ';') {
    610       result += "_2";
    611     } else if (ch == '[') {
    612       result += "_3";
    613     } else {
    614       StringAppendF(&result, "_0%04x", ch);
    615     }
    616   }
    617   return result;
    618 }
    619 
    620 std::string DotToDescriptor(const char* class_name) {
    621   std::string descriptor(class_name);
    622   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
    623   if (descriptor.length() > 0 && descriptor[0] != '[') {
    624     descriptor = "L" + descriptor + ";";
    625   }
    626   return descriptor;
    627 }
    628 
    629 std::string DescriptorToDot(const char* descriptor) {
    630   size_t length = strlen(descriptor);
    631   if (length > 1) {
    632     if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    633       // Descriptors have the leading 'L' and trailing ';' stripped.
    634       std::string result(descriptor + 1, length - 2);
    635       std::replace(result.begin(), result.end(), '/', '.');
    636       return result;
    637     } else {
    638       // For arrays the 'L' and ';' remain intact.
    639       std::string result(descriptor);
    640       std::replace(result.begin(), result.end(), '/', '.');
    641       return result;
    642     }
    643   }
    644   // Do nothing for non-class/array descriptors.
    645   return descriptor;
    646 }
    647 
    648 std::string DescriptorToName(const char* descriptor) {
    649   size_t length = strlen(descriptor);
    650   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
    651     std::string result(descriptor + 1, length - 2);
    652     return result;
    653   }
    654   return descriptor;
    655 }
    656 
    657 std::string JniShortName(mirror::ArtMethod* m) {
    658   std::string class_name(m->GetDeclaringClassDescriptor());
    659   // Remove the leading 'L' and trailing ';'...
    660   CHECK_EQ(class_name[0], 'L') << class_name;
    661   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
    662   class_name.erase(0, 1);
    663   class_name.erase(class_name.size() - 1, 1);
    664 
    665   std::string method_name(m->GetName());
    666 
    667   std::string short_name;
    668   short_name += "Java_";
    669   short_name += MangleForJni(class_name);
    670   short_name += "_";
    671   short_name += MangleForJni(method_name);
    672   return short_name;
    673 }
    674 
    675 std::string JniLongName(mirror::ArtMethod* m) {
    676   std::string long_name;
    677   long_name += JniShortName(m);
    678   long_name += "__";
    679 
    680   std::string signature(m->GetSignature().ToString());
    681   signature.erase(0, 1);
    682   signature.erase(signature.begin() + signature.find(')'), signature.end());
    683 
    684   long_name += MangleForJni(signature);
    685 
    686   return long_name;
    687 }
    688 
    689 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
    690 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
    691   0x00000000,  // 00..1f low control characters; nothing valid
    692   0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
    693   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
    694   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
    695 };
    696 
    697 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
    698 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
    699   /*
    700    * It's a multibyte encoded character. Decode it and analyze. We
    701    * accept anything that isn't (a) an improperly encoded low value,
    702    * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
    703    * control character, or (e) a high space, layout, or special
    704    * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
    705    * U+fff0..U+ffff). This is all specified in the dex format
    706    * document.
    707    */
    708 
    709   uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
    710 
    711   // Perform follow-up tests based on the high 8 bits.
    712   switch (utf16 >> 8) {
    713   case 0x00:
    714     // It's only valid if it's above the ISO-8859-1 high space (0xa0).
    715     return (utf16 > 0x00a0);
    716   case 0xd8:
    717   case 0xd9:
    718   case 0xda:
    719   case 0xdb:
    720     // It's a leading surrogate. Check to see that a trailing
    721     // surrogate follows.
    722     utf16 = GetUtf16FromUtf8(pUtf8Ptr);
    723     return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
    724   case 0xdc:
    725   case 0xdd:
    726   case 0xde:
    727   case 0xdf:
    728     // It's a trailing surrogate, which is not valid at this point.
    729     return false;
    730   case 0x20:
    731   case 0xff:
    732     // It's in the range that has spaces, controls, and specials.
    733     switch (utf16 & 0xfff8) {
    734     case 0x2000:
    735     case 0x2008:
    736     case 0x2028:
    737     case 0xfff0:
    738     case 0xfff8:
    739       return false;
    740     }
    741     break;
    742   }
    743   return true;
    744 }
    745 
    746 /* Return whether the pointed-at modified-UTF-8 encoded character is
    747  * valid as part of a member name, updating the pointer to point past
    748  * the consumed character. This will consume two encoded UTF-16 code
    749  * points if the character is encoded as a surrogate pair. Also, if
    750  * this function returns false, then the given pointer may only have
    751  * been partially advanced.
    752  */
    753 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
    754   uint8_t c = (uint8_t) **pUtf8Ptr;
    755   if (LIKELY(c <= 0x7f)) {
    756     // It's low-ascii, so check the table.
    757     uint32_t wordIdx = c >> 5;
    758     uint32_t bitIdx = c & 0x1f;
    759     (*pUtf8Ptr)++;
    760     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
    761   }
    762 
    763   // It's a multibyte encoded character. Call a non-inline function
    764   // for the heavy lifting.
    765   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
    766 }
    767 
    768 bool IsValidMemberName(const char* s) {
    769   bool angle_name = false;
    770 
    771   switch (*s) {
    772     case '\0':
    773       // The empty string is not a valid name.
    774       return false;
    775     case '<':
    776       angle_name = true;
    777       s++;
    778       break;
    779   }
    780 
    781   while (true) {
    782     switch (*s) {
    783       case '\0':
    784         return !angle_name;
    785       case '>':
    786         return angle_name && s[1] == '\0';
    787     }
    788 
    789     if (!IsValidPartOfMemberNameUtf8(&s)) {
    790       return false;
    791     }
    792   }
    793 }
    794 
    795 enum ClassNameType { kName, kDescriptor };
    796 static bool IsValidClassName(const char* s, ClassNameType type, char separator) {
    797   int arrayCount = 0;
    798   while (*s == '[') {
    799     arrayCount++;
    800     s++;
    801   }
    802 
    803   if (arrayCount > 255) {
    804     // Arrays may have no more than 255 dimensions.
    805     return false;
    806   }
    807 
    808   if (arrayCount != 0) {
    809     /*
    810      * If we're looking at an array of some sort, then it doesn't
    811      * matter if what is being asked for is a class name; the
    812      * format looks the same as a type descriptor in that case, so
    813      * treat it as such.
    814      */
    815     type = kDescriptor;
    816   }
    817 
    818   if (type == kDescriptor) {
    819     /*
    820      * We are looking for a descriptor. Either validate it as a
    821      * single-character primitive type, or continue on to check the
    822      * embedded class name (bracketed by "L" and ";").
    823      */
    824     switch (*(s++)) {
    825     case 'B':
    826     case 'C':
    827     case 'D':
    828     case 'F':
    829     case 'I':
    830     case 'J':
    831     case 'S':
    832     case 'Z':
    833       // These are all single-character descriptors for primitive types.
    834       return (*s == '\0');
    835     case 'V':
    836       // Non-array void is valid, but you can't have an array of void.
    837       return (arrayCount == 0) && (*s == '\0');
    838     case 'L':
    839       // Class name: Break out and continue below.
    840       break;
    841     default:
    842       // Oddball descriptor character.
    843       return false;
    844     }
    845   }
    846 
    847   /*
    848    * We just consumed the 'L' that introduces a class name as part
    849    * of a type descriptor, or we are looking for an unadorned class
    850    * name.
    851    */
    852 
    853   bool sepOrFirst = true;  // first character or just encountered a separator.
    854   for (;;) {
    855     uint8_t c = (uint8_t) *s;
    856     switch (c) {
    857     case '\0':
    858       /*
    859        * Premature end for a type descriptor, but valid for
    860        * a class name as long as we haven't encountered an
    861        * empty component (including the degenerate case of
    862        * the empty string "").
    863        */
    864       return (type == kName) && !sepOrFirst;
    865     case ';':
    866       /*
    867        * Invalid character for a class name, but the
    868        * legitimate end of a type descriptor. In the latter
    869        * case, make sure that this is the end of the string
    870        * and that it doesn't end with an empty component
    871        * (including the degenerate case of "L;").
    872        */
    873       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
    874     case '/':
    875     case '.':
    876       if (c != separator) {
    877         // The wrong separator character.
    878         return false;
    879       }
    880       if (sepOrFirst) {
    881         // Separator at start or two separators in a row.
    882         return false;
    883       }
    884       sepOrFirst = true;
    885       s++;
    886       break;
    887     default:
    888       if (!IsValidPartOfMemberNameUtf8(&s)) {
    889         return false;
    890       }
    891       sepOrFirst = false;
    892       break;
    893     }
    894   }
    895 }
    896 
    897 bool IsValidBinaryClassName(const char* s) {
    898   return IsValidClassName(s, kName, '.');
    899 }
    900 
    901 bool IsValidJniClassName(const char* s) {
    902   return IsValidClassName(s, kName, '/');
    903 }
    904 
    905 bool IsValidDescriptor(const char* s) {
    906   return IsValidClassName(s, kDescriptor, '/');
    907 }
    908 
    909 void Split(const std::string& s, char separator, std::vector<std::string>& result) {
    910   const char* p = s.data();
    911   const char* end = p + s.size();
    912   while (p != end) {
    913     if (*p == separator) {
    914       ++p;
    915     } else {
    916       const char* start = p;
    917       while (++p != end && *p != separator) {
    918         // Skip to the next occurrence of the separator.
    919       }
    920       result.push_back(std::string(start, p - start));
    921     }
    922   }
    923 }
    924 
    925 std::string Trim(std::string s) {
    926   std::string result;
    927   unsigned int start_index = 0;
    928   unsigned int end_index = s.size() - 1;
    929 
    930   // Skip initial whitespace.
    931   while (start_index < s.size()) {
    932     if (!isspace(s[start_index])) {
    933       break;
    934     }
    935     start_index++;
    936   }
    937 
    938   // Skip terminating whitespace.
    939   while (end_index >= start_index) {
    940     if (!isspace(s[end_index])) {
    941       break;
    942     }
    943     end_index--;
    944   }
    945 
    946   // All spaces, no beef.
    947   if (end_index < start_index) {
    948     return "";
    949   }
    950   // Start_index is the first non-space, end_index is the last one.
    951   return s.substr(start_index, end_index - start_index + 1);
    952 }
    953 
    954 template <typename StringT>
    955 std::string Join(std::vector<StringT>& strings, char separator) {
    956   if (strings.empty()) {
    957     return "";
    958   }
    959 
    960   std::string result(strings[0]);
    961   for (size_t i = 1; i < strings.size(); ++i) {
    962     result += separator;
    963     result += strings[i];
    964   }
    965   return result;
    966 }
    967 
    968 // Explicit instantiations.
    969 template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
    970 template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
    971 template std::string Join<char*>(std::vector<char*>& strings, char separator);
    972 
    973 bool StartsWith(const std::string& s, const char* prefix) {
    974   return s.compare(0, strlen(prefix), prefix) == 0;
    975 }
    976 
    977 bool EndsWith(const std::string& s, const char* suffix) {
    978   size_t suffix_length = strlen(suffix);
    979   size_t string_length = s.size();
    980   if (suffix_length > string_length) {
    981     return false;
    982   }
    983   size_t offset = string_length - suffix_length;
    984   return s.compare(offset, suffix_length, suffix) == 0;
    985 }
    986 
    987 void SetThreadName(const char* thread_name) {
    988   int hasAt = 0;
    989   int hasDot = 0;
    990   const char* s = thread_name;
    991   while (*s) {
    992     if (*s == '.') {
    993       hasDot = 1;
    994     } else if (*s == '@') {
    995       hasAt = 1;
    996     }
    997     s++;
    998   }
    999   int len = s - thread_name;
   1000   if (len < 15 || hasAt || !hasDot) {
   1001     s = thread_name;
   1002   } else {
   1003     s = thread_name + len - 15;
   1004   }
   1005 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
   1006   // pthread_setname_np fails rather than truncating long strings.
   1007   char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
   1008   strncpy(buf, s, sizeof(buf)-1);
   1009   buf[sizeof(buf)-1] = '\0';
   1010   errno = pthread_setname_np(pthread_self(), buf);
   1011   if (errno != 0) {
   1012     PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
   1013   }
   1014 #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
   1015   pthread_setname_np(thread_name);
   1016 #elif defined(HAVE_PRCTL)
   1017   prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
   1018 #else
   1019   UNIMPLEMENTED(WARNING) << thread_name;
   1020 #endif
   1021 }
   1022 
   1023 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
   1024   *utime = *stime = *task_cpu = 0;
   1025   std::string stats;
   1026   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
   1027     return;
   1028   }
   1029   // Skip the command, which may contain spaces.
   1030   stats = stats.substr(stats.find(')') + 2);
   1031   // Extract the three fields we care about.
   1032   std::vector<std::string> fields;
   1033   Split(stats, ' ', fields);
   1034   *state = fields[0][0];
   1035   *utime = strtoull(fields[11].c_str(), NULL, 10);
   1036   *stime = strtoull(fields[12].c_str(), NULL, 10);
   1037   *task_cpu = strtoull(fields[36].c_str(), NULL, 10);
   1038 }
   1039 
   1040 std::string GetSchedulerGroupName(pid_t tid) {
   1041   // /proc/<pid>/cgroup looks like this:
   1042   // 2:devices:/
   1043   // 1:cpuacct,cpu:/
   1044   // We want the third field from the line whose second field contains the "cpu" token.
   1045   std::string cgroup_file;
   1046   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1047     return "";
   1048   }
   1049   std::vector<std::string> cgroup_lines;
   1050   Split(cgroup_file, '\n', cgroup_lines);
   1051   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1052     std::vector<std::string> cgroup_fields;
   1053     Split(cgroup_lines[i], ':', cgroup_fields);
   1054     std::vector<std::string> cgroups;
   1055     Split(cgroup_fields[1], ',', cgroups);
   1056     for (size_t i = 0; i < cgroups.size(); ++i) {
   1057       if (cgroups[i] == "cpu") {
   1058         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1059       }
   1060     }
   1061   }
   1062   return "";
   1063 }
   1064 
   1065 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
   1066     mirror::ArtMethod* current_method) {
   1067   // We may be called from contexts where current_method is not null, so we must assert this.
   1068   if (current_method != nullptr) {
   1069     Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1070   }
   1071 #ifdef __linux__
   1072   std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
   1073   if (!backtrace->Unwind(0)) {
   1074     os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
   1075     return;
   1076   } else if (backtrace->NumFrames() == 0) {
   1077     os << prefix << "(no native stack frames for thread " << tid << ")\n";
   1078     return;
   1079   }
   1080 
   1081   for (Backtrace::const_iterator it = backtrace->begin();
   1082        it != backtrace->end(); ++it) {
   1083     // We produce output like this:
   1084     // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
   1085     // In order for parsing tools to continue to function, the stack dump
   1086     // format must at least adhere to this format:
   1087     //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
   1088     // The parsers require a single space before and after pc, and two spaces
   1089     // after the <RELATIVE_ADDR>. There can be any prefix data before the
   1090     // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
   1091     os << prefix << StringPrintf("#%02zu pc ", it->num);
   1092     if (!it->map) {
   1093       os << StringPrintf("%08" PRIxPTR "  ???", it->pc);
   1094     } else {
   1095       os << StringPrintf("%08" PRIxPTR "  ", it->pc - it->map->start)
   1096          << it->map->name << " (";
   1097       if (!it->func_name.empty()) {
   1098         os << it->func_name;
   1099         if (it->func_offset != 0) {
   1100           os << "+" << it->func_offset;
   1101         }
   1102       } else if (current_method != nullptr && current_method->IsWithinQuickCode(it->pc)) {
   1103         const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
   1104         os << JniLongName(current_method) << "+"
   1105            << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
   1106       } else {
   1107         os << "???";
   1108       }
   1109       os << ")";
   1110     }
   1111     os << "\n";
   1112   }
   1113 #endif
   1114 }
   1115 
   1116 #if defined(__APPLE__)
   1117 
   1118 // TODO: is there any way to get the kernel stack on Mac OS?
   1119 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
   1120 
   1121 #else
   1122 
   1123 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
   1124   if (tid == GetTid()) {
   1125     // There's no point showing that we're reading our stack out of /proc!
   1126     return;
   1127   }
   1128 
   1129   std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
   1130   std::string kernel_stack;
   1131   if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
   1132     os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
   1133     return;
   1134   }
   1135 
   1136   std::vector<std::string> kernel_stack_frames;
   1137   Split(kernel_stack, '\n', kernel_stack_frames);
   1138   // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
   1139   // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
   1140   kernel_stack_frames.pop_back();
   1141   for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
   1142     // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
   1143     // into "futex_wait_queue_me+0xcd/0x110".
   1144     const char* text = kernel_stack_frames[i].c_str();
   1145     const char* close_bracket = strchr(text, ']');
   1146     if (close_bracket != NULL) {
   1147       text = close_bracket + 2;
   1148     }
   1149     os << prefix;
   1150     if (include_count) {
   1151       os << StringPrintf("#%02zd ", i);
   1152     }
   1153     os << text << "\n";
   1154   }
   1155 }
   1156 
   1157 #endif
   1158 
   1159 const char* GetAndroidRoot() {
   1160   const char* android_root = getenv("ANDROID_ROOT");
   1161   if (android_root == NULL) {
   1162     if (OS::DirectoryExists("/system")) {
   1163       android_root = "/system";
   1164     } else {
   1165       LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
   1166       return "";
   1167     }
   1168   }
   1169   if (!OS::DirectoryExists(android_root)) {
   1170     LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
   1171     return "";
   1172   }
   1173   return android_root;
   1174 }
   1175 
   1176 const char* GetAndroidData() {
   1177   std::string error_msg;
   1178   const char* dir = GetAndroidDataSafe(&error_msg);
   1179   if (dir != nullptr) {
   1180     return dir;
   1181   } else {
   1182     LOG(FATAL) << error_msg;
   1183     return "";
   1184   }
   1185 }
   1186 
   1187 const char* GetAndroidDataSafe(std::string* error_msg) {
   1188   const char* android_data = getenv("ANDROID_DATA");
   1189   if (android_data == NULL) {
   1190     if (OS::DirectoryExists("/data")) {
   1191       android_data = "/data";
   1192     } else {
   1193       *error_msg = "ANDROID_DATA not set and /data does not exist";
   1194       return nullptr;
   1195     }
   1196   }
   1197   if (!OS::DirectoryExists(android_data)) {
   1198     *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
   1199     return nullptr;
   1200   }
   1201   return android_data;
   1202 }
   1203 
   1204 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
   1205                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
   1206   CHECK(subdir != nullptr);
   1207   std::string error_msg;
   1208   const char* android_data = GetAndroidDataSafe(&error_msg);
   1209   if (android_data == nullptr) {
   1210     *have_android_data = false;
   1211     *dalvik_cache_exists = false;
   1212     *is_global_cache = false;
   1213     return;
   1214   } else {
   1215     *have_android_data = true;
   1216   }
   1217   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1218   *dalvik_cache = dalvik_cache_root + subdir;
   1219   *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
   1220   *is_global_cache = strcmp(android_data, "/data") == 0;
   1221   if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
   1222     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1223     *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
   1224                             (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
   1225   }
   1226 }
   1227 
   1228 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
   1229   CHECK(subdir != nullptr);
   1230   const char* android_data = GetAndroidData();
   1231   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
   1232   const std::string dalvik_cache = dalvik_cache_root + subdir;
   1233   if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) {
   1234     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
   1235     if (strcmp(android_data, "/data") != 0) {
   1236       int result = mkdir(dalvik_cache_root.c_str(), 0700);
   1237       if (result != 0 && errno != EEXIST) {
   1238         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root;
   1239         return "";
   1240       }
   1241       result = mkdir(dalvik_cache.c_str(), 0700);
   1242       if (result != 0) {
   1243         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
   1244         return "";
   1245       }
   1246     } else {
   1247       LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
   1248       return "";
   1249     }
   1250   }
   1251   return dalvik_cache;
   1252 }
   1253 
   1254 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
   1255                             std::string* filename, std::string* error_msg) {
   1256   if (location[0] != '/') {
   1257     *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
   1258     return false;
   1259   }
   1260   std::string cache_file(&location[1]);  // skip leading slash
   1261   if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
   1262     cache_file += "/";
   1263     cache_file += DexFile::kClassesDex;
   1264   }
   1265   std::replace(cache_file.begin(), cache_file.end(), '/', '@');
   1266   *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
   1267   return true;
   1268 }
   1269 
   1270 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
   1271   std::string ret;
   1272   std::string error_msg;
   1273   if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
   1274     LOG(FATAL) << error_msg;
   1275   }
   1276   return ret;
   1277 }
   1278 
   1279 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
   1280   // in = /foo/bar/baz
   1281   // out = /foo/bar/<isa>/baz
   1282   size_t pos = filename->rfind('/');
   1283   CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
   1284   filename->insert(pos, "/", 1);
   1285   filename->insert(pos + 1, GetInstructionSetString(isa));
   1286 }
   1287 
   1288 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
   1289   // location = /system/framework/boot.art
   1290   // filename = /system/framework/<isa>/boot.art
   1291   std::string filename(location);
   1292   InsertIsaDirectory(isa, &filename);
   1293   return filename;
   1294 }
   1295 
   1296 std::string DexFilenameToOdexFilename(const std::string& location, const InstructionSet isa) {
   1297   // location = /foo/bar/baz.jar
   1298   // odex_location = /foo/bar/<isa>/baz.odex
   1299 
   1300   CHECK_GE(location.size(), 4U) << location;  // must be at least .123
   1301   std::string odex_location(location);
   1302   InsertIsaDirectory(isa, &odex_location);
   1303   size_t dot_index = odex_location.size() - 3 - 1;  // 3=dex or zip or apk
   1304   CHECK_EQ('.', odex_location[dot_index]) << location;
   1305   odex_location.resize(dot_index + 1);
   1306   CHECK_EQ('.', odex_location[odex_location.size()-1]) << location << " " << odex_location;
   1307   odex_location += "odex";
   1308   return odex_location;
   1309 }
   1310 
   1311 bool IsZipMagic(uint32_t magic) {
   1312   return (('P' == ((magic >> 0) & 0xff)) &&
   1313           ('K' == ((magic >> 8) & 0xff)));
   1314 }
   1315 
   1316 bool IsDexMagic(uint32_t magic) {
   1317   return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
   1318 }
   1319 
   1320 bool IsOatMagic(uint32_t magic) {
   1321   return (memcmp(reinterpret_cast<const byte*>(magic),
   1322                  OatHeader::kOatMagic,
   1323                  sizeof(OatHeader::kOatMagic)) == 0);
   1324 }
   1325 
   1326 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
   1327   const std::string command_line(Join(arg_vector, ' '));
   1328 
   1329   CHECK_GE(arg_vector.size(), 1U) << command_line;
   1330 
   1331   // Convert the args to char pointers.
   1332   const char* program = arg_vector[0].c_str();
   1333   std::vector<char*> args;
   1334   for (size_t i = 0; i < arg_vector.size(); ++i) {
   1335     const std::string& arg = arg_vector[i];
   1336     char* arg_str = const_cast<char*>(arg.c_str());
   1337     CHECK(arg_str != nullptr) << i;
   1338     args.push_back(arg_str);
   1339   }
   1340   args.push_back(NULL);
   1341 
   1342   // fork and exec
   1343   pid_t pid = fork();
   1344   if (pid == 0) {
   1345     // no allocation allowed between fork and exec
   1346 
   1347     // change process groups, so we don't get reaped by ProcessManager
   1348     setpgid(0, 0);
   1349 
   1350     execv(program, &args[0]);
   1351 
   1352     PLOG(ERROR) << "Failed to execv(" << command_line << ")";
   1353     exit(1);
   1354   } else {
   1355     if (pid == -1) {
   1356       *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
   1357                                 command_line.c_str(), strerror(errno));
   1358       return false;
   1359     }
   1360 
   1361     // wait for subprocess to finish
   1362     int status;
   1363     pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
   1364     if (got_pid != pid) {
   1365       *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
   1366                                 "wanted %d, got %d: %s",
   1367                                 command_line.c_str(), pid, got_pid, strerror(errno));
   1368       return false;
   1369     }
   1370     if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
   1371       *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
   1372                                 command_line.c_str());
   1373       return false;
   1374     }
   1375   }
   1376   return true;
   1377 }
   1378 
   1379 std::string PrettyDescriptor(Primitive::Type type) {
   1380   return PrettyDescriptor(Primitive::Descriptor(type));
   1381 }
   1382 
   1383 }  // namespace art
   1384