Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Create CostFunctions as needed by the least squares framework, with
     32 // Jacobians computed via automatic differentiation. For more
     33 // information on automatic differentation, see the wikipedia article
     34 // at http://en.wikipedia.org/wiki/Automatic_differentiation
     35 //
     36 // To get an auto differentiated cost function, you must define a class with a
     37 // templated operator() (a functor) that computes the cost function in terms of
     38 // the template parameter T. The autodiff framework substitutes appropriate
     39 // "jet" objects for T in order to compute the derivative when necessary, but
     40 // this is hidden, and you should write the function as if T were a scalar type
     41 // (e.g. a double-precision floating point number).
     42 //
     43 // The function must write the computed value in the last argument
     44 // (the only non-const one) and return true to indicate
     45 // success. Please see cost_function.h for details on how the return
     46 // value maybe used to impose simple constraints on the parameter
     47 // block.
     48 //
     49 // For example, consider a scalar error e = k - x'y, where both x and y are
     50 // two-dimensional column vector parameters, the prime sign indicates
     51 // transposition, and k is a constant. The form of this error, which is the
     52 // difference between a constant and an expression, is a common pattern in least
     53 // squares problems. For example, the value x'y might be the model expectation
     54 // for a series of measurements, where there is an instance of the cost function
     55 // for each measurement k.
     56 //
     57 // The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
     58 // the squaring is implicitly done by the optimization framework.
     59 //
     60 // To write an auto-differentiable cost function for the above model, first
     61 // define the object
     62 //
     63 //   class MyScalarCostFunctor {
     64 //     MyScalarCostFunctor(double k): k_(k) {}
     65 //
     66 //     template <typename T>
     67 //     bool operator()(const T* const x , const T* const y, T* e) const {
     68 //       e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
     69 //       return true;
     70 //     }
     71 //
     72 //    private:
     73 //     double k_;
     74 //   };
     75 //
     76 // Note that in the declaration of operator() the input parameters x and y come
     77 // first, and are passed as const pointers to arrays of T. If there were three
     78 // input parameters, then the third input parameter would come after y. The
     79 // output is always the last parameter, and is also a pointer to an array. In
     80 // the example above, e is a scalar, so only e[0] is set.
     81 //
     82 // Then given this class definition, the auto differentiated cost function for
     83 // it can be constructed as follows.
     84 //
     85 //   CostFunction* cost_function
     86 //       = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
     87 //            new MyScalarCostFunctor(1.0));             ^  ^  ^
     88 //                                                       |  |  |
     89 //                            Dimension of residual -----+  |  |
     90 //                            Dimension of x ---------------+  |
     91 //                            Dimension of y ------------------+
     92 //
     93 // In this example, there is usually an instance for each measumerent of k.
     94 //
     95 // In the instantiation above, the template parameters following
     96 // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
     97 // 1-dimensional output from two arguments, both 2-dimensional.
     98 //
     99 // AutoDiffCostFunction also supports cost functions with a
    100 // runtime-determined number of residuals. For example:
    101 //
    102 //   CostFunction* cost_function
    103 //       = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
    104 //           new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^
    105 //           runtime_number_of_residuals); <----+           |     |  |
    106 //                                              |           |     |  |
    107 //                                              |           |     |  |
    108 //             Actual number of residuals ------+           |     |  |
    109 //             Indicate dynamic number of residuals --------+     |  |
    110 //             Dimension of x ------------------------------------+  |
    111 //             Dimension of y ---------------------------------------+
    112 //
    113 // The framework can currently accommodate cost functions of up to 10
    114 // independent variables, and there is no limit on the dimensionality
    115 // of each of them.
    116 //
    117 // WARNING #1: Since the functor will get instantiated with different types for
    118 // T, you must to convert from other numeric types to T before mixing
    119 // computations with other variables of type T. In the example above, this is
    120 // seen where instead of using k_ directly, k_ is wrapped with T(k_).
    121 //
    122 // WARNING #2: A common beginner's error when first using autodiff cost
    123 // functions is to get the sizing wrong. In particular, there is a tendency to
    124 // set the template parameters to (dimension of residual, number of parameters)
    125 // instead of passing a dimension parameter for *every parameter*. In the
    126 // example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
    127 // the last '2' argument. Please be careful when setting the size parameters.
    128 
    129 #ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
    130 #define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
    131 
    132 #include "ceres/internal/autodiff.h"
    133 #include "ceres/internal/scoped_ptr.h"
    134 #include "ceres/sized_cost_function.h"
    135 #include "ceres/types.h"
    136 #include "glog/logging.h"
    137 
    138 namespace ceres {
    139 
    140 // A cost function which computes the derivative of the cost with respect to
    141 // the parameters (a.k.a. the jacobian) using an autodifferentiation framework.
    142 // The first template argument is the functor object, described in the header
    143 // comment. The second argument is the dimension of the residual (or
    144 // ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
    145 // arguments describe the size of the Nth parameter, one per parameter.
    146 //
    147 // The constructors take ownership of the cost functor.
    148 //
    149 // If the number of residuals (argument kNumResiduals below) is
    150 // ceres::DYNAMIC, then the two-argument constructor must be used. The
    151 // second constructor takes a number of residuals (in addition to the
    152 // templated number of residuals). This allows for varying the number
    153 // of residuals for a single autodiff cost function at runtime.
    154 template <typename CostFunctor,
    155           int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.
    156           int N0,       // Number of parameters in block 0.
    157           int N1 = 0,   // Number of parameters in block 1.
    158           int N2 = 0,   // Number of parameters in block 2.
    159           int N3 = 0,   // Number of parameters in block 3.
    160           int N4 = 0,   // Number of parameters in block 4.
    161           int N5 = 0,   // Number of parameters in block 5.
    162           int N6 = 0,   // Number of parameters in block 6.
    163           int N7 = 0,   // Number of parameters in block 7.
    164           int N8 = 0,   // Number of parameters in block 8.
    165           int N9 = 0>   // Number of parameters in block 9.
    166 class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals,
    167                                                       N0, N1, N2, N3, N4,
    168                                                       N5, N6, N7, N8, N9> {
    169  public:
    170   // Takes ownership of functor. Uses the template-provided value for the
    171   // number of residuals ("kNumResiduals").
    172   explicit AutoDiffCostFunction(CostFunctor* functor)
    173       : functor_(functor) {
    174     CHECK_NE(kNumResiduals, DYNAMIC)
    175         << "Can't run the fixed-size constructor if the "
    176         << "number of residuals is set to ceres::DYNAMIC.";
    177   }
    178 
    179   // Takes ownership of functor. Ignores the template-provided
    180   // kNumResiduals in favor of the "num_residuals" argument provided.
    181   //
    182   // This allows for having autodiff cost functions which return varying
    183   // numbers of residuals at runtime.
    184   AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
    185       : functor_(functor) {
    186     CHECK_EQ(kNumResiduals, DYNAMIC)
    187         << "Can't run the dynamic-size constructor if the "
    188         << "number of residuals is not ceres::DYNAMIC.";
    189     SizedCostFunction<kNumResiduals,
    190                       N0, N1, N2, N3, N4,
    191                       N5, N6, N7, N8, N9>
    192         ::set_num_residuals(num_residuals);
    193   }
    194 
    195   virtual ~AutoDiffCostFunction() {}
    196 
    197   // Implementation details follow; clients of the autodiff cost function should
    198   // not have to examine below here.
    199   //
    200   // To handle varardic cost functions, some template magic is needed. It's
    201   // mostly hidden inside autodiff.h.
    202   virtual bool Evaluate(double const* const* parameters,
    203                         double* residuals,
    204                         double** jacobians) const {
    205     if (!jacobians) {
    206       return internal::VariadicEvaluate<
    207           CostFunctor, double, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>
    208           ::Call(*functor_, parameters, residuals);
    209     }
    210     return internal::AutoDiff<CostFunctor, double,
    211            N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(
    212                *functor_,
    213                parameters,
    214                SizedCostFunction<kNumResiduals,
    215                                  N0, N1, N2, N3, N4,
    216                                  N5, N6, N7, N8, N9>::num_residuals(),
    217                residuals,
    218                jacobians);
    219   }
    220 
    221  private:
    222   internal::scoped_ptr<CostFunctor> functor_;
    223 };
    224 
    225 }  // namespace ceres
    226 
    227 #endif  // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
    228