Home | History | Annotate | Download | only in cup
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "google_apis/cup/client_update_protocol.h"
      6 
      7 #include "base/base64.h"
      8 #include "base/logging.h"
      9 #include "base/memory/scoped_ptr.h"
     10 #include "base/sha1.h"
     11 #include "base/strings/string_util.h"
     12 #include "base/strings/stringprintf.h"
     13 #include "crypto/hmac.h"
     14 #include "crypto/random.h"
     15 
     16 namespace {
     17 
     18 base::StringPiece ByteVectorToSP(const std::vector<uint8>& vec) {
     19   if (vec.empty())
     20     return base::StringPiece();
     21 
     22   return base::StringPiece(reinterpret_cast<const char*>(&vec[0]), vec.size());
     23 }
     24 
     25 // This class needs to implement the same hashing and signing functions as the
     26 // Google Update server; for now, this is SHA-1 and HMAC-SHA1, but this may
     27 // change to SHA-256 in the near future.  For this reason, all primitives are
     28 // wrapped.  The name "SymSign" is used to mirror the CUP specification.
     29 size_t HashDigestSize() {
     30   return base::kSHA1Length;
     31 }
     32 
     33 std::vector<uint8> Hash(const std::vector<uint8>& data) {
     34   std::vector<uint8> result(HashDigestSize());
     35   base::SHA1HashBytes(data.empty() ? NULL : &data[0],
     36                       data.size(),
     37                       &result[0]);
     38   return result;
     39 }
     40 
     41 std::vector<uint8> Hash(const base::StringPiece& sdata) {
     42   std::vector<uint8> result(HashDigestSize());
     43   base::SHA1HashBytes(sdata.empty() ?
     44                           NULL :
     45                           reinterpret_cast<const unsigned char*>(sdata.data()),
     46                       sdata.length(),
     47                       &result[0]);
     48   return result;
     49 }
     50 
     51 std::vector<uint8> SymConcat(uint8 id,
     52                              const std::vector<uint8>* h1,
     53                              const std::vector<uint8>* h2,
     54                              const std::vector<uint8>* h3) {
     55   std::vector<uint8> result;
     56   result.push_back(id);
     57   const std::vector<uint8>* args[] = { h1, h2, h3 };
     58   for (size_t i = 0; i != arraysize(args); ++i) {
     59     if (args[i]) {
     60       DCHECK_EQ(args[i]->size(), HashDigestSize());
     61       result.insert(result.end(), args[i]->begin(), args[i]->end());
     62     }
     63   }
     64 
     65   return result;
     66 }
     67 
     68 std::vector<uint8> SymSign(const std::vector<uint8>& key,
     69                            const std::vector<uint8>& hashes) {
     70   DCHECK(!key.empty());
     71   DCHECK(!hashes.empty());
     72 
     73   crypto::HMAC hmac(crypto::HMAC::SHA1);
     74   if (!hmac.Init(&key[0], key.size()))
     75     return std::vector<uint8>();
     76 
     77   std::vector<uint8> result(hmac.DigestLength());
     78   if (!hmac.Sign(ByteVectorToSP(hashes), &result[0], result.size()))
     79     return std::vector<uint8>();
     80 
     81   return result;
     82 }
     83 
     84 bool SymSignVerify(const std::vector<uint8>& key,
     85                    const std::vector<uint8>& hashes,
     86                    const std::vector<uint8>& server_proof) {
     87   DCHECK(!key.empty());
     88   DCHECK(!hashes.empty());
     89   DCHECK(!server_proof.empty());
     90 
     91   crypto::HMAC hmac(crypto::HMAC::SHA1);
     92   if (!hmac.Init(&key[0], key.size()))
     93     return false;
     94 
     95   return hmac.Verify(ByteVectorToSP(hashes), ByteVectorToSP(server_proof));
     96 }
     97 
     98 // RsaPad() is implemented as described in the CUP spec.  It is NOT a general
     99 // purpose padding algorithm.
    100 std::vector<uint8> RsaPad(size_t rsa_key_size,
    101                           const std::vector<uint8>& entropy) {
    102   DCHECK_GE(rsa_key_size, HashDigestSize());
    103 
    104   // The result gets padded with zeros if the result size is greater than
    105   // the size of the buffer provided by the caller.
    106   std::vector<uint8> result(entropy);
    107   result.resize(rsa_key_size - HashDigestSize());
    108 
    109   // For use with RSA, the input needs to be smaller than the RSA modulus,
    110   // which has always the msb set.
    111   result[0] &= 127;  // Reset msb
    112   result[0] |= 64;   // Set second highest bit.
    113 
    114   std::vector<uint8> digest = Hash(result);
    115   result.insert(result.end(), digest.begin(), digest.end());
    116   DCHECK_EQ(result.size(), rsa_key_size);
    117   return result;
    118 }
    119 
    120 // CUP passes the versioned secret in the query portion of the URL for the
    121 // update check service -- and that means that a URL-safe variant of Base64 is
    122 // needed.  Call the standard Base64 encoder/decoder and then apply fixups.
    123 std::string UrlSafeB64Encode(const std::vector<uint8>& data) {
    124   std::string result;
    125   base::Base64Encode(ByteVectorToSP(data), &result);
    126 
    127   // Do an tr|+/|-_| on the output, and strip any '=' padding.
    128   for (std::string::iterator it = result.begin(); it != result.end(); ++it) {
    129     switch (*it) {
    130       case '+':
    131         *it = '-';
    132         break;
    133       case '/':
    134         *it = '_';
    135         break;
    136       default:
    137         break;
    138     }
    139   }
    140   base::TrimString(result, "=", &result);
    141 
    142   return result;
    143 }
    144 
    145 std::vector<uint8> UrlSafeB64Decode(const base::StringPiece& input) {
    146   std::string unsafe(input.begin(), input.end());
    147   for (std::string::iterator it = unsafe.begin(); it != unsafe.end(); ++it) {
    148     switch (*it) {
    149       case '-':
    150         *it = '+';
    151         break;
    152       case '_':
    153         *it = '/';
    154         break;
    155       default:
    156         break;
    157     }
    158   }
    159   if (unsafe.length() % 4)
    160     unsafe.append(4 - (unsafe.length() % 4), '=');
    161 
    162   std::string decoded;
    163   if (!base::Base64Decode(unsafe, &decoded))
    164     return std::vector<uint8>();
    165 
    166   return std::vector<uint8>(decoded.begin(), decoded.end());
    167 }
    168 
    169 }  // end namespace
    170 
    171 ClientUpdateProtocol::ClientUpdateProtocol(int key_version)
    172     : pub_key_version_(key_version) {
    173 }
    174 
    175 scoped_ptr<ClientUpdateProtocol> ClientUpdateProtocol::Create(
    176     int key_version,
    177     const base::StringPiece& public_key) {
    178   DCHECK_GT(key_version, 0);
    179   DCHECK(!public_key.empty());
    180 
    181   scoped_ptr<ClientUpdateProtocol> result(
    182       new ClientUpdateProtocol(key_version));
    183   if (!result)
    184     return scoped_ptr<ClientUpdateProtocol>();
    185 
    186   if (!result->LoadPublicKey(public_key))
    187     return scoped_ptr<ClientUpdateProtocol>();
    188 
    189   if (!result->BuildRandomSharedKey())
    190     return scoped_ptr<ClientUpdateProtocol>();
    191 
    192   return result.Pass();
    193 }
    194 
    195 std::string ClientUpdateProtocol::GetVersionedSecret() const {
    196   return base::StringPrintf("%d:%s",
    197                             pub_key_version_,
    198                             UrlSafeB64Encode(encrypted_key_source_).c_str());
    199 }
    200 
    201 bool ClientUpdateProtocol::SignRequest(const base::StringPiece& url,
    202                                        const base::StringPiece& request_body,
    203                                        std::string* client_proof) {
    204   DCHECK(!encrypted_key_source_.empty());
    205   DCHECK(!url.empty());
    206   DCHECK(!request_body.empty());
    207   DCHECK(client_proof);
    208 
    209   // Compute the challenge hash:
    210   //   hw = HASH(HASH(v|w)|HASH(request_url)|HASH(body)).
    211   // Keep the challenge hash for later to validate the server's response.
    212   std::vector<uint8> internal_hashes;
    213 
    214   std::vector<uint8> h;
    215   h = Hash(GetVersionedSecret());
    216   internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
    217   h = Hash(url);
    218   internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
    219   h = Hash(request_body);
    220   internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
    221   DCHECK_EQ(internal_hashes.size(), 3 * HashDigestSize());
    222 
    223   client_challenge_hash_ = Hash(internal_hashes);
    224 
    225   // Sign the challenge hash (hw) using the shared key (sk) to produce the
    226   // client proof (cp).
    227   std::vector<uint8> raw_client_proof =
    228       SymSign(shared_key_, SymConcat(3, &client_challenge_hash_, NULL, NULL));
    229   if (raw_client_proof.empty()) {
    230     client_challenge_hash_.clear();
    231     return false;
    232   }
    233 
    234   *client_proof = UrlSafeB64Encode(raw_client_proof);
    235   return true;
    236 }
    237 
    238 bool ClientUpdateProtocol::ValidateResponse(
    239     const base::StringPiece& response_body,
    240     const base::StringPiece& server_cookie,
    241     const base::StringPiece& server_proof) {
    242   DCHECK(!client_challenge_hash_.empty());
    243 
    244   if (response_body.empty() || server_cookie.empty() || server_proof.empty())
    245     return false;
    246 
    247   // Decode the server proof from URL-safe Base64 to a binary HMAC for the
    248   // response.
    249   std::vector<uint8> sp_decoded = UrlSafeB64Decode(server_proof);
    250   if (sp_decoded.empty())
    251     return false;
    252 
    253   // If the request was received by the server, the server will use its
    254   // private key to decrypt |w_|, yielding the original contents of |r_|.
    255   // The server can then recreate |sk_|, compute |hw_|, and SymSign(3|hw)
    256   // to ensure that the cp matches the contents.  It will then use |sk_|
    257   // to sign its response, producing the server proof |sp|.
    258   std::vector<uint8> hm = Hash(response_body);
    259   std::vector<uint8> hc = Hash(server_cookie);
    260   return SymSignVerify(shared_key_,
    261                        SymConcat(1, &client_challenge_hash_, &hm, &hc),
    262                        sp_decoded);
    263 }
    264 
    265 bool ClientUpdateProtocol::BuildRandomSharedKey() {
    266   DCHECK_GE(PublicKeyLength(), HashDigestSize());
    267 
    268   // Start by generating some random bytes that are suitable to be encrypted;
    269   // this will be the source of the shared HMAC key that client and server use.
    270   // (CUP specification calls this "r".)
    271   std::vector<uint8> key_source;
    272   std::vector<uint8> entropy(PublicKeyLength() - HashDigestSize());
    273   crypto::RandBytes(&entropy[0], entropy.size());
    274   key_source = RsaPad(PublicKeyLength(), entropy);
    275 
    276   return DeriveSharedKey(key_source);
    277 }
    278 
    279 bool ClientUpdateProtocol::SetSharedKeyForTesting(
    280   const base::StringPiece& key_source) {
    281   DCHECK_EQ(key_source.length(), PublicKeyLength());
    282 
    283   return DeriveSharedKey(std::vector<uint8>(key_source.begin(),
    284                                             key_source.end()));
    285 }
    286 
    287 bool ClientUpdateProtocol::DeriveSharedKey(const std::vector<uint8>& source) {
    288   DCHECK(!source.empty());
    289   DCHECK_GE(source.size(), HashDigestSize());
    290   DCHECK_EQ(source.size(), PublicKeyLength());
    291 
    292   // Hash the key source (r) to generate a new shared HMAC key (sk').
    293   shared_key_ = Hash(source);
    294 
    295   // Encrypt the key source (r) using the public key (pk[v]) to generate the
    296   // encrypted key source (w).
    297   if (!EncryptKeySource(source))
    298     return false;
    299   if (encrypted_key_source_.size() != PublicKeyLength())
    300     return false;
    301 
    302   return true;
    303 }
    304