Home | History | Annotate | Download | only in services
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <sched.h>
      6 #include <stdio.h>
      7 #include <string.h>
      8 #include <sys/socket.h>
      9 #include <sys/syscall.h>
     10 #include <sys/wait.h>
     11 #include <unistd.h>
     12 
     13 #include <vector>
     14 
     15 #include "base/files/scoped_file.h"
     16 #include "base/logging.h"
     17 #include "base/memory/scoped_vector.h"
     18 #include "base/posix/eintr_wrapper.h"
     19 #include "base/posix/unix_domain_socket_linux.h"
     20 #include "base/process/process_handle.h"
     21 #include "sandbox/linux/tests/unit_tests.h"
     22 
     23 // Additional tests for base's UnixDomainSocket to make sure it behaves
     24 // correctly in the presence of sandboxing functionality (e.g., receiving
     25 // PIDs across namespaces).
     26 
     27 namespace sandbox {
     28 
     29 namespace {
     30 
     31 const char kHello[] = "hello";
     32 
     33 // If the calling process isn't root, then try using unshare(CLONE_NEWUSER)
     34 // to fake it.
     35 void FakeRoot() {
     36   // If we're already root, then allow test to proceed.
     37   if (geteuid() == 0)
     38     return;
     39 
     40   // Otherwise hope the kernel supports unprivileged namespaces.
     41   if (unshare(CLONE_NEWUSER) == 0)
     42     return;
     43 
     44   printf("Permission to use CLONE_NEWPID missing; skipping test.\n");
     45   UnitTests::IgnoreThisTest();
     46 }
     47 
     48 void WaitForExit(pid_t pid) {
     49   int status;
     50   CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0)));
     51   CHECK(WIFEXITED(status));
     52   CHECK_EQ(0, WEXITSTATUS(status));
     53 }
     54 
     55 base::ProcessId GetParentProcessId(base::ProcessId pid) {
     56   // base::GetParentProcessId() is defined as taking a ProcessHandle instead of
     57   // a ProcessId, even though it's a POSIX-only function and IDs and Handles
     58   // are both simply pid_t on POSIX... :/
     59   base::ProcessHandle handle;
     60   CHECK(base::OpenProcessHandle(pid, &handle));
     61   base::ProcessId ret = base::GetParentProcessId(pid);
     62   base::CloseProcessHandle(handle);
     63   return ret;
     64 }
     65 
     66 // SendHello sends a "hello" to socket fd, and then blocks until the recipient
     67 // acknowledges it by calling RecvHello.
     68 void SendHello(int fd) {
     69   int pipe_fds[2];
     70   CHECK_EQ(0, pipe(pipe_fds));
     71   base::ScopedFD read_pipe(pipe_fds[0]);
     72   base::ScopedFD write_pipe(pipe_fds[1]);
     73 
     74   std::vector<int> send_fds;
     75   send_fds.push_back(write_pipe.get());
     76   CHECK(UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds));
     77 
     78   write_pipe.reset();
     79 
     80   // Block until receiver closes their end of the pipe.
     81   char ch;
     82   CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1)));
     83 }
     84 
     85 // RecvHello receives and acknowledges a "hello" on socket fd, and returns the
     86 // process ID of the sender in sender_pid.  Optionally, write_pipe can be used
     87 // to return a file descriptor, and the acknowledgement will be delayed until
     88 // the descriptor is closed.
     89 // (Implementation details: SendHello allocates a new pipe, sends us the writing
     90 // end alongside the "hello" message, and then blocks until we close the writing
     91 // end of the pipe.)
     92 void RecvHello(int fd,
     93                base::ProcessId* sender_pid,
     94                base::ScopedFD* write_pipe = NULL) {
     95   // Extra receiving buffer space to make sure we really received only
     96   // sizeof(kHello) bytes and it wasn't just truncated to fit the buffer.
     97   char buf[sizeof(kHello) + 1];
     98   ScopedVector<base::ScopedFD> message_fds;
     99   ssize_t n = UnixDomainSocket::RecvMsgWithPid(
    100       fd, buf, sizeof(buf), &message_fds, sender_pid);
    101   CHECK_EQ(sizeof(kHello), static_cast<size_t>(n));
    102   CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello)));
    103   CHECK_EQ(1U, message_fds.size());
    104   if (write_pipe)
    105     write_pipe->swap(*message_fds[0]);
    106 }
    107 
    108 // Check that receiving PIDs works across a fork().
    109 SANDBOX_TEST(UnixDomainSocketTest, Fork) {
    110   int fds[2];
    111   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
    112   base::ScopedFD recv_sock(fds[0]);
    113   base::ScopedFD send_sock(fds[1]);
    114 
    115   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
    116 
    117   const pid_t pid = fork();
    118   CHECK_NE(-1, pid);
    119   if (pid == 0) {
    120     // Child process.
    121     recv_sock.reset();
    122     SendHello(send_sock.get());
    123     _exit(0);
    124   }
    125 
    126   // Parent process.
    127   send_sock.reset();
    128 
    129   base::ProcessId sender_pid;
    130   RecvHello(recv_sock.get(), &sender_pid);
    131   CHECK_EQ(pid, sender_pid);
    132 
    133   WaitForExit(pid);
    134 }
    135 
    136 // Similar to Fork above, but forking the child into a new pid namespace.
    137 SANDBOX_TEST(UnixDomainSocketTest, Namespace) {
    138   FakeRoot();
    139 
    140   int fds[2];
    141   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
    142   base::ScopedFD recv_sock(fds[0]);
    143   base::ScopedFD send_sock(fds[1]);
    144 
    145   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
    146 
    147   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
    148   CHECK_NE(-1, pid);
    149   if (pid == 0) {
    150     // Child process.
    151     recv_sock.reset();
    152 
    153     // Check that we think we're pid 1 in our new namespace.
    154     CHECK_EQ(1, syscall(__NR_getpid));
    155 
    156     SendHello(send_sock.get());
    157     _exit(0);
    158   }
    159 
    160   // Parent process.
    161   send_sock.reset();
    162 
    163   base::ProcessId sender_pid;
    164   RecvHello(recv_sock.get(), &sender_pid);
    165   CHECK_EQ(pid, sender_pid);
    166 
    167   WaitForExit(pid);
    168 }
    169 
    170 // Again similar to Fork, but now with nested PID namespaces.
    171 SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) {
    172   FakeRoot();
    173 
    174   int fds[2];
    175   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
    176   base::ScopedFD recv_sock(fds[0]);
    177   base::ScopedFD send_sock(fds[1]);
    178 
    179   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
    180 
    181   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
    182   CHECK_NE(-1, pid);
    183   if (pid == 0) {
    184     // Child process.
    185     recv_sock.reset();
    186 
    187     const pid_t pid2 = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
    188     CHECK_NE(-1, pid2);
    189 
    190     if (pid2 != 0) {
    191       // Wait for grandchild to run to completion; see comments below.
    192       WaitForExit(pid2);
    193 
    194       // Fallthrough once grandchild has sent its hello and exited.
    195     }
    196 
    197     // Check that we think we're pid 1.
    198     CHECK_EQ(1, syscall(__NR_getpid));
    199 
    200     SendHello(send_sock.get());
    201     _exit(0);
    202   }
    203 
    204   // Parent process.
    205   send_sock.reset();
    206 
    207   // We have two messages to receive: first from the grand-child,
    208   // then from the child.
    209   for (unsigned iteration = 0; iteration < 2; ++iteration) {
    210     base::ProcessId sender_pid;
    211     base::ScopedFD pipe_fd;
    212     RecvHello(recv_sock.get(), &sender_pid, &pipe_fd);
    213 
    214     // We need our child and grandchild processes to both be alive for
    215     // GetParentProcessId() to return a valid pid, hence the pipe trickery.
    216     // (On the first iteration, grandchild is blocked reading from the pipe
    217     // until we close it, and child is blocked waiting for grandchild to exit.)
    218     switch (iteration) {
    219       case 0:  // Grandchild's message
    220         // Check that sender_pid refers to our grandchild by checking that pid
    221         // (our child) is its parent.
    222         CHECK_EQ(pid, GetParentProcessId(sender_pid));
    223         break;
    224       case 1:  // Child's message
    225         CHECK_EQ(pid, sender_pid);
    226         break;
    227       default:
    228         NOTREACHED();
    229     }
    230   }
    231 
    232   WaitForExit(pid);
    233 }
    234 
    235 // Tests that GetPeerPid() returns 0 if the peer does not exist in caller's
    236 // namespace.
    237 SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) {
    238   FakeRoot();
    239 
    240   int fds[2];
    241   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
    242   base::ScopedFD send_sock(fds[0]);
    243   base::ScopedFD recv_sock(fds[1]);
    244 
    245   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
    246 
    247   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
    248   CHECK_NE(-1, pid);
    249   if (pid == 0) {
    250     // Child process.
    251     send_sock.reset();
    252 
    253     base::ProcessId sender_pid;
    254     RecvHello(recv_sock.get(), &sender_pid);
    255     CHECK_EQ(0, sender_pid);
    256     _exit(0);
    257   }
    258 
    259   // Parent process.
    260   recv_sock.reset();
    261   SendHello(send_sock.get());
    262   WaitForExit(pid);
    263 }
    264 
    265 }  // namespace
    266 
    267 }  // namespace sandbox
    268